河水位变化影响下水下隧道的施工力学行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical behavior of constructed underwater tunnel Considering influence of river water level fluctuation
  • 作者:岳健 ; 谭仁华 ; 安永林 ; 刘运思
  • 英文作者:YUE Jian;TAN Renhua;AN Yonglin;LIU Yunsi;School of Civil Engineering,Hunan University of Science and Technology;Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring,Hunan University of Science and Technology;
  • 关键词:水下小净距隧道 ; 河水位变化 ; 施工力学行为 ; 矿山法
  • 英文关键词:underwater tunnels with small clear spacing;;river water level change;;mechanical behavior of construction;;mining method
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:湖南科技大学土木工程学院;湖南科技大学岩土工程稳定控制与健康监测省重点实验室;
  • 出版日期:2016-11-15
  • 出版单位:铁道科学与工程学报
  • 年:2016
  • 期:v.13;No.80
  • 基金:国家自然科学基金资助项目(51308209;51408216);; 湖南省自然科学基金资助项目(2015JJ6038)
  • 语种:中文;
  • 页:CSTD201611016
  • 页数:9
  • CN:11
  • ISSN:43-1423/U
  • 分类号:119-127
摘要
针对矿山法施工的下穿河流水下小净距交通隧道,结合数值模拟与现场监测,研究在河水位变化影响下的隧道施工力学行为。首先,考虑河水位变化、隧道开挖面位置变化对围岩的应力场与渗流场的影响,建立三维计算模型,根据现场监测得到的河水位-施工步变化曲线,在模型中设置了92种河水位与施工步的对应状态;然后分析计算结果,并对比数值模拟结果与现场监测结果;最后计算分析河水位暴涨与骤降的8种工况。研究结果表明:在相邻洞施工的影响下,本洞上台阶初衬的最大压应力出现在拱脚;相比前一施工步,施工仅仅向前推进1步的同时如果河水位暴涨5 m,会明显恶化本洞紧邻施工段的初衬的受力状况。基于研究结果提出了若干工程建议。
        The mechanical behaviors of underwater river-crossing traffic tunnels with small clearances that were constructed by the mining method were studied from numerical simulation and field monitoring with the influence of river water level fluctuation taken into account. Firstly,the effects of the river water level fluctuation and the excavation face position on the seepage field and stress field of the surrouding rock were considered. The threedimensional calculation model was established. According to the variation curve of river water level versus construction step obtained from field monitoring,92 cases of construction step versus river water level were fed into the model. Then,the calculation results were analyzed with those from numerical simulation and field monitoring compared. Finally,the 8 cases with sharp rise and sharp fall of river water level were calculated and analyzed.The results showed that with the disturbance of adjacent cave construction,the maximum crushing stress of initial lining of upper bench of the cave own appeared in the arch springing; in comparison with the former construction step,the new construction step that was advanced in conjunction with the sudden river level rise of 5m,could significantly exaggerate the force condition of the initial lining near the construction zone. Based on the research findings,some engineering suggestions were put forward.
引文
[1]DAVID M.Analysis of consolidation with constant rate of displacement[J].Canadian Geotechnical Journal,2016,53(5):740-752.
    [2]JUN S,SUNG K,MYNUG S.Attenuation of blast vibration in tunneling using a pre-cut discontinuity[J].Tunnelling and Underground Space Technology,2016,52(1):30-37.
    [3]傅鹤林,陈琛,张加兵.衬砌脱空对现役隧道结构安全性影响研究[J].铁道科学与工程学报,2016,13(3):517-522.FU Helin,CHEN Chen,ZHANG Jiabing.Research about cavity lining impact on structural safety for tunnel in service[J].Journal of Railway Science and Engineering,2016,13(3):517-522.
    [4]雷波,漆泰岳,王睿.海底隧道不同防排水条件下衬砌结构开裂情况研究[J].铁道科学与工程学报,2015,12(4):859-865.LEI Bo,QI Taiyue,WANG Rui.Study on the lining crack of subsea tunnel in the different conditions of waterproof and drainage[J].Journal of Railway Science and Engineering,2015,12(4):859-865.
    [5]许金华,何川,夏炜洋.水下盾构隧道渗流场应力场耦合效应研究[J].岩土力学,2009,30(11):3519-3527.XU Jinhua,HE Chuan,XIA Weiyang.Research on coupling seepage field and stress field analyses of underwater shield tunnel[J].Rock and Soil Mechanics,2009,30(11):3519-3527.
    [6]张志强,何本国,何川.水底隧道饱水地层衬砌作用荷载研究[J].岩土力学,2010,31(8):2465-2470.ZHANG Zhiqiang,HE Benguo,HE Chuan.Study of load of lining under condition of saturated stratum for underwater tunnels[J].Rock and Soil Mechanics,2010,31(8):2465-2470.
    [7]李鹏飞,张顶立,李兵.海底隧道施工过程中围岩稳定性的流固耦合分析[J].中国铁道科学,2010,31(3):35-41.LI Pengfei,ZHANG Dingli,LI Bing.Coupled fluid-solid analysis of the surrounding rock stability of the subsea tunnel during construction process[J].China Railway Science,2010,31(3):35-41.
    [8]于洪丹,陈卫忠,郭小红.潮汐对跨海峡隧道衬砌稳定性影响研究[J].岩石力学与工程学报,2009,28(增1):2905-2914.YU Hongdan,CHEN Weizhong,GUO Xiaohong.Research on effect of tide on stabilities of channel tunnel lining[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):2905-2914.
    [9]林存刚.盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究[D].杭州:浙江大学,2014:174-213.LIN Cungang.Research on shield tunnelling-induced ground surface heave and subsidence and behavior of underwater shield-driven tunnels subject to tidal bores[D].Hangzhou:Zhejiang University,2014.
    [10]User's manual of Midas-gts[Z].Beijing:Midas Technology Co.,Ltd of Beijing,2014:40-68.
    [11]LI Z,KENICHI S,PETER W.Long-term performance of cast-iron tunnel cross passage in London clay[J].Tunnelling and Underground Space Technology,2015,50(4):152-170.
    [12]LI B,HONG Y,GAO B.Numerical parametric study on stability and deformation of tunnel face reinforced with face bolts[J].Tunnelling and Underground Space Technology,2015,47(1):73-80.
    [13]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010:228-238.CHENG Weizhong,WU Guojun,JIA Shanpo.Application in tunnel and underground construction of ABAQUS[M].Beijing:China Water Power Press,2010:228-238.
    [14]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:46-55.LIU Bo,HAN Yanhui.Principle,example and application guide of FLAC[M].Beijing:China Communications Press,2005:46-55.
    [15]何川,谢红强.多场耦合分析在隧道工程中的应用[M].成都:西南交通大学出版社,2007:3-13.HE Chuan,XIE Hongqiang.Application in tunnel engineering of multi-field coupling analysis[M].Chengdu:Southwest Jiaotong University Press,2007:3-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700