复杂长竖井引水隧洞施工通风两相流模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two-Phase Flow Simulation of Construction Ventilation in the Complex Diversion Tunnels with Long Vertical Shafts
  • 作者:刘震 ; 王晓玲 ; 刘长欣 ; 禹旺 ; 洪坤
  • 英文作者:Liu Zhen;Wang Xiaoling;Liu Changxin;Yu Wang;Hong Kun;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;
  • 关键词:复杂长竖井引水隧洞 ; 施工通风 ; 欧拉两相流模型 ; 风流场分布 ; 污染物迁移
  • 英文关键词:complex diversion tunnels with long vertical shafts;;construction ventilation;;Euler-Euler two-phase flow model;;airflow field distribution;;contaminant transport
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2018-11-12
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2018
  • 期:v.51;No.333
  • 基金:国家自然科学基金资助项目(51679165);国家自然科学基金创新群体资助项目(51621092);; 国家重点研发计划资助项目(2016YFC0401806)~~
  • 语种:中文;
  • 页:TJDX201811005
  • 页数:8
  • CN:11
  • ISSN:12-1127/N
  • 分类号:37-44
摘要
复杂长竖井引水隧洞纵横交错的洞室布置和上下平洞间的大高差导致其通风散烟困难,然而施工通风效果的好坏直接影响工程施工进度和施工安全.现有引水隧洞施工通风两相流数值模拟研究多是针对单一隧洞或同平面的交叉隧洞,并且其网格独立性分析局限于通过单一经验公式验证.本研究首先提出综合考虑气固两相相互作用力和上下平洞大高差导致的压差作用影响的复杂长竖井引水隧洞施工通风三维非稳态欧拉两相流数学模型,并且通过与现场实验数据对比,验证了数学模型的可靠性;其次,采用偏斜度指标、速度变化百分比以及经验公式对网格独立性进行分析,得出合理的网格划分方案;最后,结合实际工程,模拟得出复杂长竖井引水隧洞施工通风过程中的风流结构分布和污染物(粉尘、CO)迁移变化规律,并基于模拟结果得出合理的通风散烟时间.
        The crisscrossed cavity layout and large height difference between upper and lower horizontal sections in complex diversion tunnels with long vertical shafts result in difficulties in ventilation,and ventilation directly affects the construction schedule and safety.The current construction ventilation two-phase flow researches of diversion tunnel mainly focus on a single tunnel or conplane intersection tunnels,and the grid independence analysis is limited to single experience formula verification.Firstly,by considering gas-solid interaction force and pressure difference caused by large height difference between upper and lower horizontal sections synthetically,a three-dimensional unsteady Euler-Euler two-phase flow model was established,and the reliability of the mathematical model was verified by comparing it with in-situ test data.Then the equisize skew index,velocity percentage change and an experiential formula were used to analyze grid independence to obtain a reasonable meshing scheme.Finally,combined with practical engineering,the distribution of airflow structure and migration law of contaminants were obtained,and the rational ventilation time was proposed according to the simulation result.
引文
[1]JiJ,HanJY,FanCG,etal.Influenceofcrosssectional area and aspect ratio of shaft on natural ventilationinurbanroadtunnel[J].InternationalJournalof Heat and Mass Transfer,2013,67:420-431.
    [2]TongY,ShiMH,ZhaiZQ.Smokedistributionin naturallyventilatedurbantransportationtunnelswith multiple shafts[J]. Journal of Southeast University:English Edition,2013,29(3):305-309.
    [3]Fan C G,Ji J,Wang W,et al. Effects of vertical shaft arrangementonnaturalventilationperformanceduring tunnelfires[J].InternationalJournalofHeatandMass Transfer,2014,73:158-169.
    [4]童艳,王昶舜,陈丽萍.阻滞下的竖井型隧道自然通风试验与数值模拟[J].地下空间与工程学报,2015,11(1):241-245.Tong Yan,Wang Changshun,Chen Liping. Experiment and numerical simulation on natural ventilation for a traffic tunnel with shafts under traffic jam[J]. Chinese JournalofUndergroundSpaceandEngineering,2015,11(1):241-245(in Chinese).
    [5]Klemens R,Kosinski P,Wolanski P,et al. Numerical studyofdustliftinginachannelwithverticalobstacles[J].JournalofLossPreventionintheProcess Industries,2001,14(6):469-473.
    [6]Tora?o J,Torno S,Menendez M,et al. Auxiliary ventilationinminingroadwaysdrivenwithroadheaders:Validated CFD modelling of dust behavior[J]. Tunneling andUndergroundSpaceTechnology,2011,26(1):201-210.
    [7]Han F W,Wang D M,Jiang J X,et al. Modeling the influence of forced ventilation on the dispersion of dropletsejectedfromroadheader-mountedexternalsprayer[J]. International Journal of MiningScienceand Technology,2014,24(1):129-135.
    [8]张静,王晓玲,陈红超,等.引水隧洞独头掘进工作面风流和粉尘扩散的模拟[J].水力发电学报,2008,27(1):111-117.ZhangJing,WangXiaoling,ChenHongchao,etal.Simulationonventilationanddustdiffusiononheading face of the diversion tunnel[J]. Journal of Hydroelectric Engineering,2008,27(1):111-117(in Chinese).
    [9]王晓玲,刘震,杨安林,等.考虑热交换的引水隧洞施工通风两相流模拟[J].天津大学学报:自然科学与工程技术版,2013,46(4):322-327.WangXiaoling,Liu Zhen,YangAnlin,et al.Simulation for construction ventilation two-phase flow in diversiontunnelconsideringheatexchange[J].Journalof TianjinUniversity:ScienceandTechnology, 2013,46(4):322-327(in Chinese).
    [10] LiuZ,WangXL,ChengZF,etal.Simulationof constructionventilationinlongdiversiontunnelsusing Euler-Lagrange method[J]. Computers&Fluids,2014,105:28-38.
    [11]洪坤,刘震,王晓玲,等.水电站地下厂房钻爆施工工作面粉尘运移模拟[J].水力发电学报,2016,35(2):124-130,HongKun,LiuZhen,WangXiaoling,etal.Simulationofdustmigrationatworkingfacesduringdrillblastingconstructionofundergroundhydropower houses[J].JournalofHydroelectricEngineering,2016,35(2):124-130(in Chinese).
    [12]王晓玲,朱泽彪,刘震,等.引水隧洞施工通风Euler-Lagrange两相流大涡模拟[J].天津大学学报:自然科学与工程技术版,2017,50(7):725-731.WangXiaoling,ZhuZebiao,LiuZhen,etal.EulerLagrangetwo-phaseflowlargeeddysimulationofconstructionventilationindiversiontunnel[J].Journalof TianjinUniversity:ScienceandTechnology, 2017,50(7):725-731(in Chinese).
    [13]张爱丽.考虑热交换的大型深埋引水隧洞施工通风模拟[D].天津:天津大学建筑工程学院,2013.ZhangAili.ConstructionVentilationSimulationinthe Large-scaleDeepDiversionTunnelwithConsideration ofHeatExchange[D].Tianjin:SchoolofCivilEngineering,Tianjin University,2013(in Chinese).
    [14]曾惜.大型水电站地下洞室群施工期通风研究[D].成都:西南交通大学机械工程学院,2014.Zeng Xi. Study on Construction Ventilation of Large Hydropower Station Underground Caverns[D]. Chengdu:SchoolofMechanicalEngineering,SouthwestJiaotong University,2014(in Chinese).
    [15]洪坤.复杂长竖井长距离引水隧洞施工进度风险分析与仿真优化研究[D].天津:天津大学管理与经济学院,2016.HongKun.ScheduleRiskAnalysisandSimulationOptimizationResearchonComplexLongDistanceDiversionTunnelwithDeepShaft[D].Tianjin:Collegeof ManagementandEconomics, TianjinUniversity,2016(in Chinese).
    [16] FluentINC.Fluent6.3User’sGuide[M].Lebanon:Fluent Documentation,2006.
    [17] Cebeci T,Bradshaw P. Momentum Transfer in Boundary Layers[M].Washington:HemispherePublishingCorporation,1977.
    [18]苏利军.大型地下洞室群施工中的通风散烟问题研究[D].武汉:武汉水利电力大学水利水电学院,2000.SuLijun.StudyonVentilationandSmokeinConstructionofLargeUndergroundCaverns[D].Wuhan:WuhanUniversityofHydraulic andElectrical Engineering,2000(in Chinese).
    [19]刘毅,蒋仲安,蔡卫,等.综采工作面粉尘浓度分布的现场实测与数值模拟[J].煤炭科学技术,2006,34(4):80-82.LiuYi,JiangZhongan,CaiWei,etal.Sitemeasurement and digital simulation of dust density distribution in fullymechanizedlongwallcoalminingface[J].Coal ScienceandTechnology,2006,34(4):80-82(inChinese).
    [20]王晓珍,蒋仲安,刘毅.抽出式通风煤巷掘进过程中粉尘浓度分布规律的数值模拟[J].中国安全生产科学技术,2006,2(5):24-28.WangXiaozhen,JiangZhongan,LiuYi.Numerical simulationofdistributionregularitiesofdustconcentrationduringtheventilationprocessofcoaldriftdriving withexhaustventilation[J].JournalofSafetyScience and Technology,2006,2(5):24-28(in Chinese).
    [21]杨立新.现代隧道施工通风技术[M].北京:人民交通出版社,2012.YangLixin.VentilationTechnologyforModernTunnel Construction[M].Beijing:ChinaCommunications Press,2012(in Chinese).
    [22] FluentINC.Gambit2.4UserGuide[M].Lebanon:NH,2007.
    [23] XuGuang.RemoteCharacterizationofUnderground VentilationSystemsUsingTracerGasandCFD[D].Blacksburg:VirginiaPolytechnicInstituteandState University,2013.
    [24]伍悦滨,朱蒙生.工程流体力学泵与风机[M].北京:化学工业出版社,2005.WuYuebin,ZhuMengsheng.EngineeringFluidMechanics Pumps and Fans[M]. Beijing:Chemical Industry Press,2005(in Chinese).
    [25]水利电力部水利水电建设总局.水利水电工程施工组织设计手册(第2卷):施工技术[M].北京:水利电力出版社,1990.MinistryofWaterResourcesandElectricPowerWater Resources and Hydropower Construction Division. Water ConservancyandHydropowerProjectConstructionOrganizationDesignManual(VolumeⅡ):Construction Technology[M].Beijing:WaterConservancy andElectric Power Press,1990(in Chinese).
    [26]杨立新,陆茂成.隧道施工爆破后通风排烟风量计算的探讨[J].西部探矿工程,2000,62(1):55-56.Yang Lixin,Lu Maocheng. Discussion on calculation of ventilationandexhaustairvolumeaftertunnelblasting[J].West-ChinaExplorationEngineering, 2000,62(1):55-56(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700