经导管主动脉瓣流固耦合分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fluid structure interaction analysis of transcatheter aortic valve implantation
  • 作者:朱宏伟 ; 袁泉 ; 刘杏铭 ; 丛华
  • 英文作者:Zhu Hongwei;Yuan Quan;Liu Xingming;Cong Hua;National Demonstration Center for Experimental Mechanical Engineering Education of Shandong University, Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education;
  • 关键词:主动脉瓣 ; 心脏瓣膜疾病 ; 组织工程 ; 经导管主动脉瓣置换 ; 心脏瓣膜病 ; 流固耦合 ; 浸没边界法 ; 支架 ; 变形分析 ; 应力分析 ; 有效开口面积指数 ; 国家自然科学基金
  • 英文关键词:,Aortic Valve;;Heart Valve Diseases;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:山东大学机械工程国家级实验教学示范中心高效洁净机械制造教育部重点实验室;
  • 出版日期:2019-01-29
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.867
  • 基金:国家自然科学基金(31170906),项目负责人:袁泉~~
  • 语种:中文;
  • 页:XDKF201910023
  • 页数:6
  • CN:10
  • ISSN:21-1581/R
  • 分类号:129-134
摘要
背景:心脏瓣膜病的治疗手段主要为心脏瓣膜置换术。与开胸手术比较,以经导管主动脉瓣置换术为代表的介入式换瓣手术具有创口小、恢复快的特点。目前国内经导管主动脉瓣置换术的应用范围仍较小,研究主要在患者术后的生理条件变化,少有对经导管主动脉瓣模型本身的分析。目的:探究经导管主动脉瓣变形特点和应力分布,验证其工作性能。方法:建立包括主动脉瓣、血管壁、血液和支架的经导管主动脉瓣有限元几何模型和数学模型,采用浸没边界法进行流固耦合分析,计算有效开口面积指数进行实验对比,验证模型的工作性能。结果与结论:(1)经导管主动脉瓣在血液冲击过程中,瓣叶变形最大且存在卷曲,最大变形处发生在瓣叶自由边1/4处和3/4处;(2)经导管主动脉瓣模型等效应力最大处在支架上,但其变形较小,瓣叶应力集中位置在自由边卷曲明显处和缝合边与支架接触的缝合点上,是容易发生瓣叶破坏的位置;(3)经脉动流实验验证,模型变形过程和有效开口面积均与实验结果接近,所建模型合理有效。
        BACKGROUND: Cardiac valve replacement provides an effective therapeutic means for valvular heart disease. Compared with thoracotomy surgery, interventional treatment, typified by transcatheter aortic valve implantation, has the advantages of minor trauma and rapid recovery. At present, the transcatheter aortic valve replacement is rarely applied in clinical practice. Existing studies mainly focus on the changes of physiological conditions after surgery, while little is reported on the transcatheter aortic valve models. OBJECTIVE: To explore the deformation and stress distribution features of the transcatheter aortic valve, and to verify its working performance. METHODS: The finite element geometric model and mathematical model of the aortic valve, including the aortic valve, blood vessel wall, blood and stent, were established. The fluid structure interaction analysis was carried out by the immersion boundary method, and the effective orifice area index was calculated to verify the performance of the model. RESULTS AND CONCLUSION: During the course of blood shock, the valve leaflets were curl, and the maximum deformation occurred at 1/4 and 3/4 of the valve leaflet free edge. The largest equivalent stress of the aortic valve model was on the stent, but it is almost unformed. The stress concentration of the valve leaflets was located at the curved site of the free edge and the suture points of the leaflets and stents, where a damage easily occurred. The dynamic flow experiments show that the process of the simulation model deformation and effective orifice area index are close to the experimental results. Therefore, the simulation model is reasonable and effective.
引文
[1]Dumani S,Likaj E,Dibra L,et al.Aortic Annulus Enlargement:Early and Long-Terms Results.Open Access Maced J Med Sci.2017;5(1):23-26.
    [2]杨子彬.人工心脏瓣膜研究的进展[J].现代临床医学生物工程学杂志,1995,1(1):7-9.
    [3]陈伟伟,高润霖,刘力生,等.《中国心血管病报告2016》概要[J].中国循环杂志,2017,32(6):521-529.
    [4]Kheradvar A,Groves EM,Dasi LP,et al.Emerging trends in heart valve engineering:part I.Solutions for future.Ann Biomed Eng.2015;43(4):833-843.
    [5]赵水平胡大一.心血管病诊疗指南解读(第3版)[M].北京:人民卫生出版社,2011.
    [6]Butcher JT.The root problem of heart valve engineering.Sci Transl Med.2018;10(440).pii:eaat5850.doi:10.1126/scitranslmed.aat5850.Review.
    [7]Zhu AS,Grande-Allen KJ.Heart valve tissue engineering for valve replacement and disease modeling.Curr Opin Biomed Eng.2018;5.DOI:10.1016/j.cobme.2017.12.006
    [8]Yacoub MH,Takkenberg JJ.Will heart valve tissue engineering change the world.Nat Clin Pract Cardiovasc Med.2005;2(2):60-61.
    [9]顾东风.心血管病预防的现状和展望[J].中华预防医学杂志,2003,37(2):75-76.
    [10]Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology(ESC),Vahanian A,Alfieri O,et al.Guidelines on the management of valvular heart disease(version 2012).Eur Heart J.2012;33(19):2451-2496.
    [11]Latib A,Maisano F,Bertoldi L,et al.Transcatheter vs surgical aortic valve replacement in intermediate-surgical-risk patients with aortic stenosis:a propensity score-matched case-control study.Am Heart J.2012;164(6):910-917.
    [12]Green P.Transcatheter aortic-valve replacement with a self-expanding prosthesis.N Engl J Med.2014;370(19):1790-1798.
    [13]Tasalak Thonghong,Manik Chopra,Ole De Backer,等.2017欧洲心脏病学会/欧洲心胸外科协会心脏瓣膜病管理指南中经导管主动脉瓣置换术相关更新解读[J].华西医学,2018,33(2):157-165.
    [14]Bapat V,Buellesfeld L,Peterson MD,et al.Transcatheter mitral valve implantation(TMVI)using the Edwards FORTIS device.EuroIntervention.2014;10 Suppl U:U120-128.
    [15]Falk V,Walther T,Schwammenthal E,et al.Transapical aortic valve implantation with a self-expanding anatomically oriented valve.Eur Heart J.2011;32(7):878-887.
    [16]CFDA网站.经皮介入人工心脏瓣膜系统产品获批上市[J].中国医疗设备,2017,32(5):145-145.
    [17]Booth C,Korossis SA,Wilcox HE,et al.Tissue engineering of cardiac valve prostheses I:development and histological characterization of an acellular porcine scaffold.J Heart Valve Dis.2002;11(4):457.
    [18]Fioretta ES,Boehmer LV,Motta SE,et al.Cardiovascular tissue engineering:From basic science to clinical application.Exp Gerontol.2018.pii:S0531-5565(18)30066-4.doi:10.1016/j.exger.2018.03.022.[Epub ahead of print]
    [19]Lee VK,Dai G.Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine.Ann Biomed Eng.2017;45(1):1-17.
    [20]王建安.心脏瓣膜病介入治疗的发展、现状及展望[J].中华心血管病杂志,2017,45(8):675-679.
    [21]葛均波,周达新,潘文志,等.经皮主动脉瓣植入术一例及其操作要点[J].中国介入心脏病学杂志,2010,18(5):243-246.
    [22]CFDA网站.经皮介入人工心脏瓣膜系统产品获批上市[J].中国医疗设备,2017,32(5):145-145.
    [23]赵维鹏,舒先红,潘翠珍,等.心腔内超声心动图在J Valve经心尖主动脉瓣植入术中应用的实验研究[C].中国超声医学工程学会全国超声心动图学术会议,2014.
    [24]Weinberg EJ,Kaazempur-Mofrad MR.On the Constitutive Models for Heart Valve Leaflet Mechanics.Cardiovasc Eng.2005;5(1):37-43.
    [25]Broom ND.Simultaneous morphological and stress-strain studies of the fibrous components in wet heart valve leaflet tissue.Connect Tissue Res.1978;6(1):37-50.
    [26]Billiar K L,Sacks M S.Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp——Part I:Experimental results.J Biomech Eng.2000;122(1):23-30.
    [27]Hvidberg E.Investigations into the effect of mechanical pressure on the water content of isolated skin.Acta Pharmacologica Et Toxicologica.1960;16(3):245.
    [28]柳兆荣.血液动力学原理和方法[M].上海:复旦大学出版社,1997.
    [29]Chandran KB,Rittgers SE,Yoganathan AP等著,邓小燕,孙安强,刘肖等译.生物流体力学[M].北京:机械工业出版社,2015.
    [30]王军,刘莹.316L不锈钢钝化膜的耐腐蚀性和血液相容性[J].上海交通大学学报,2018,52(5):593-598.
    [31]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理,2005,30(3):33-36.
    [32]晏名文.人体循环系统流体动力学[J].力学进展,1977,7(1):12-18.
    [33]Kheradvar A,Groves EM,Dasi LP,et al.Emerging trends in heart valve engineering:Part IV.Computational Modeling and Experimental Studies.Ann Biomed Eng.2015;43(4):833-843.
    [34]Peskin CS.The immersed boundary method.Acta Numerica.2002;11:479-517.
    [35]Bokros JC,Haubold AD,Akins RJ,et al.Replacement Cardiac Valves.New York,1992:21-48.
    [36]Natali AN,Carniel EL,Gregersen H.Biomechanical behaviour of oesophageal tissues:Material and structural configuration,experimental data and constitutive analysis.Med Eng Phys.2009;31(9):1056-1062.
    [37]申炳申,袁泉,王志超,等.生物瓣膜流固耦合分析的PISO算法研究[J].机械科学与技术,2018,38(1):19-23.
    [38]陈泳.脉动流条件下血管壁的应力分布[D].上海:复旦大学,2002.
    [39]申炳申.基于FLUENT及LS——DYNA的生物瓣膜流固耦合分析[D].济南:山东大学,2017.
    [40]Gelsomino S,Frassani R,Morocutti G,et al.Time course of left ventricular remodeling after stentless aortic valve replacement.Am Heart J.2001;142(3):556-562.
    [41]Silberman S,Shaheen J,Fink D,et al.Comparison of exercise hemodynamics among nonstented aortic bioprostheses,mechanical valves,and normal native aortic valves.J Card Surg.1998;13(5):412-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700