基于高通量计算的成形过程分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming Process Based on High Throughput Calculation
  • 作者:卓柏呈 ; 李培杰 ; 宋立博
  • 英文作者:CHO Po-chen;LI Pei-jie;SONG Li-bo;National Center of Novel Materials for International Research, Tsinghua University;
  • 关键词:材料基因组计划 ; 高通量计算 ; 高通量实验 ; COMSOL软件 ; 凝固模拟 ; 力学挤压
  • 英文关键词:materials genome project;;high throughput computing;;high throughput experiment;;COMSOL software;;solidification simulation;;mechanical extrusion
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:清华大学新材料国际研发中心;
  • 出版日期:2019-03-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.59
  • 基金:国家重点研发计划(SQ2017YFGX090027)
  • 语种:中文;
  • 页:JMCX201902002
  • 页数:8
  • CN:02
  • ISSN:50-1199/TB
  • 分类号:7-14
摘要
目的介绍一种来自材料基因组计划的方法,由高通量计算、高通量实验与数据管理构成,并以45#钢为例,介绍高通量计算与高通量实验的优势。方法先以模拟软件与理论结合,预测研发方向,再设计合适高通量的实验方案,最后将所得数据建立数据库,方便管理。以45#大型钢铸锭为例,以COMSOL软件模拟3种不同钢锭成形过程,设计实验方案,记录过程参数,并记录于数据库中。结果 COMSOL软件在高通量计算中扮演重要角色,其强大的耦合功能让模拟精度更高,各项参数也较为准确。透过模拟得知,约2.9 h后,20 t钢锭凝固厚度最厚达约500 mm,此时将中间液芯挤出,可减少划痕等缺陷的产生,并将凝固过程的缺陷挤出。结论材料基因组计划在材料研发的进程中能起到较大的指导作用,因此在国家支持下国内已有多个项目开展,将此研究方法用于传统浇铸工业的步骤中具有一定的推广价值。
        This paper aims to present an approach from the materials genome project, which is composed of high-throughput computing, high-throughput experiment and data management, and to introduce the advantages of high-throughput computing and high-throughput experiment with 45# steel as an example. First, simulation software and theory were combined to predict the direction and plan of research and development(high-throughput computing); then,suitable high-throughput experiment scheme were designed; finally, a database was established with the data obtained to be convenient for management. With 45# steel as an example, COMSOL software was used to simulate three different ingot forming processes. This subject designed the experiment plan and recorded the process parameters in the database.COMSOL software played an important role in high-throughput computing. Its powerful coupling function enabled higher simulation accuracy and more accurate parameter. Through the simulation, it was known that after about 2.9 h, the maximum solidification thickness of 20 t ingot is about 500 mm. At this time, extruding the intermediate liquid core could reduce scratches and other defects, and extrude the defects in the solidification process. As the material genome project plays a significant guiding role in the process of material research and development, there have been a number of projects in China under the support of the state. Therefore, it is of great value to popularize this research method in the traditional casting industry.
引文
[1]ANNALISA P,MARCELLO G,GIOVINA L V.Comprehensive Numerical Simulation of Filling and Solidification of Steel Ingots[J].Materials,2016,9(9):769-782.
    [2]魏鑫燕,朱荣,林腾昌.大钢锭凝固过程的数值模拟研究[J].铸造技术,2011,32(11):1576-1579.WEI Xin-yan,ZHU Rong,LIN Teng-chang.Numerical Simulation on Temperature Field in Ingot Solidification Process[J].Foundry Technology,2011,32(11):1576-1579.
    [3]金泉林.大型锻件锻造与工艺数值模拟[C]//2011年全国塑性力学会议,2011.JIN Quan-lin.Numerical Simulation on Forging and Process in Large Forgings[C]//2011 National Conference on Plastic Mechanics,2011.
    [4]董洁.锻造用钢锭凝固过程温度场、应力场的数值模拟及其应用[D].西安:西安建筑科技大学,2005.DONG Jie.Numerical Simulation of Temperature and Thermal Stress Field in Steel Ingot Solidification Process and Application[D].Xi'an:Xi'an University of Architecture and Technology,2005.
    [5]柳百成.铸件充型凝固过程数值模拟国内外研究进展[J].铸造,1999(8):40-45.LIU Bai-cheng.Research Progress on Numerical Simulation of Casting Filling Solidification Process at Home and Abroad[J].Casting,1999(8):40-45.
    [6]柳百成.铸件凝固过程的宏观及微观模拟仿真研究进展[J].中国工程科学,2000,2(9):29-37.LIU Bai-cheng.Progress in Macro and Micro Modeling of Solidification Process of Shaped Casting[J].Engineering Science,2000,2(9):29-37.
    [7]R W.The Finite Element Method in Plane Stress Analysis[J].Conference on Electronic Computation,1960,87:345-378.
    [8]ZIENKIEWICZ O C.The Finite Element Method in Structural and Continuum Mechanics:Numerical Solution of Problems in Structural and Continuum Mechanics[M].McGraw-Hill Publishing Company Limited,1967.
    [9]李昊.空心钢锭凝固过程的温度场模拟[D].沈阳:沈阳大学,2015.LI Hao.Temperature Field Simulation of Hollow Ingot Solidification Process[D].Shenyang:Shenyang University,2015.
    [10]王开坤,曾攀.半固态A356铝合金触变锻造成形过程有限元模拟[J].特种铸造及有色合金,2007,27(7):518-521.WANG Kai-kun,ZENG Pan.FEM Simulation on Thixoforging of Aluminum Alloy A356[J].Special Casting&Nonferrous Alloys,2007,27(7):518-521.
    [11]杜艳梅,王开坤,张鹏,等.半固态挤压铝/镁合金双金属复合管的有限元模拟[J].中国有色金属学报,2009,19(2):208-216.DU Yan-mei,WANG Kai-kun,ZHANG Peng,et al.FEM Simulation on Extrusion of Double-layer Tube of Aluminum and Magnesium Alloys[J].Chinese Journal of Nonferrous Metals,2009,19(2):208-216.
    [12]张博,朱花,赵晓东,等.空心钢锭凝固过程缺陷的模拟研究[J].太原科技大学学报,2018(1):35-41.ZHANG Bo,ZHU Hua,ZHAO Xiao-dong,et al.Simulation of Solidification Processes of Hollow Ingots[J].Journal of Taiyuan University of Science&Technology,2018(1):35-41.
    [13]林海,郑家新,林原,等.材料基因组技术在新能源材料领域应用进展[J].储能科学与技术,2017,6(5):990-999.LIN Hai,ZHENG Jia-xin,LIN Yuan,et al.The Development of Material Genome Technology in the Field of New Energy Materials[J].Energy Storage Science&Technology,2017,6(5):990-999.
    [14]向勇,闫宗楷,朱焱麟,等.材料基因组技术前沿进展[J].电子科技大学学报,2016,45(4):634-649.XIANG Yong,YAN Zong-kai,ZHU Yan-lin,et al.Progress on Materials Genome Technology[J].Journal of University of Electronic Science and Technology of China,2016,45(4):634-649.
    [15]王海舟,汪洪,丁洪,等.材料的高通量制备与表征技术[J].科技导报,2015,33(10):31-49.WANG Hai-zhou,WANG Hong,DING Hong,et al.Progress in High-throughput Materials Synthesis and Characterization[J].Science&Technology Review,2015,33(10):31-49.
    [16]赵继成.材料基因组计划简介[J].自然杂志,2014,36(2):89-104.ZHAO Ji-cheng.A Perspective on the Materials Genome Initiative[J].Chinese Journal of Nature,2014,36(2):89-104.
    [17]关永军,陈柳,王金三.材料基因组技术内涵与发展趋势[J].航空材料学报,2016,36(3):71-78.GUAN Yong-jun,CHEN Liu,WANG Jin-san.Materials Genome Technology and Its Development Trend[J].Journal of Aeronautical Materials,2016,36(3):71-78.
    [18]杨小渝.加快材料基因组工程信息化基础设施的建设[J].科技导报,2016,34(8):13-14.YANG Xiao-yu.Accelerate the Construction of Informatization Infrastructure of Material Genome Project[J].Science&Technology Review,2016,34(8):13-14.
    [19]ZHAO J C,ZHENG X,CAHILL D G.High-throughput Measurements of Materials Properties[J].JOM,2011,63(3):40-44.
    [20]LIU J,LIU R,CHEN L,et al.Numerical Simulation of Solidification Microstructure and Effects of Phase-field Parameters on Grain Growth Morphologies[J].Journal of Materials Science&Technology,2005,21(6):921-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700