旁路耦合微束等离子弧堆垛与熔池动态行为数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Dynamic Behavior of Molten Pool during the Stationary Pileup of the Double-electrode Micro Plasma Arc Welding
  • 作者:黄健康 ; 杨茂鸿 ; 余淑荣 ; 石玗 ; 樊丁
  • 英文作者:HUANG Jiankang;YANG Maohong;YU Shurong;SHI Yu;FAN Ding;State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology;School of Mechanical and Electrical Engineering,Lanzhou University of Technology;
  • 关键词:旁路耦合微束等离子弧焊 ; 定点堆垛 ; 熔滴冲击 ; 熔池动态 ; 数值模拟
  • 英文关键词:double-electrode micro plasma arc welding;;stationary pileup;;droplet impingement;;weld pool dynamics;;numerical simulation
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室;兰州理工大学机电工程学院;
  • 出版日期:2017-11-21 14:28
  • 出版单位:机械工程学报
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金资助项目(51665034)
  • 语种:中文;
  • 页:JXXB201802011
  • 页数:7
  • CN:02
  • ISSN:11-2187/TH
  • 分类号:84-90
摘要
针对旁路耦合微束等离子弧增材制造堆垛过程中熔滴与熔池的动态行为,在考虑自由表面的情况下,建立一个熔滴与熔池耦合作用的传热与传质模型,分析表面张力和熔滴冲击动量共同作用下的熔池瞬态形状和复杂的流体流动行为,并通过试验验证了模型的正确性。研究发现:当熔滴携带热量冲击熔池时,熔池温度升高,熔池中的最大速度可增大到2.06 m/s;随着进入熔池的熔滴数目增加,熔池余高增加,熔宽增加,而熔深基本不变;同时,当旁路电流增大时,母材温度较低,造成更浅的熔深,更高的余高和更小的熔宽,熔池液态金属的流动也不稳定;增加熔滴间隔时间后,每一层的顶部半径随着层数增加而减小。
        Aiming at the dynamic behavior of the droplet on the molten pool during the stationary pileup process of the double-electrode micro plasma arc welding,a mathematical model of the coupling effect between the droplet and the molten pool is established,the flow shape of the molten pool and the complex fluid flow are mainly calculated by the combination of surface tension and droplet impact momentum.It is found that,when the droplet carries heat to hit the molten pool,the bath temperature rises.When the droplets impact the pool of the moment,the maximum speed in the pool can be increased to 2.06 m/s.With the increase in the number of droplets entering the molten pool,the bath height increases,the melting width increases,the penetration depth is almost constant.As the bypass current increases,the base metal temperature is low.Resulting in a lighter depth,a higher height and a smaller weld width.Molten pool liquid metal flow is not stable.After increasing the cooling time,the radius of each layer decreases as the number of layers increases.
引文
[1]徐富家.Inconel625合金等离子弧快速成形组织控制及工艺优化[D].哈尔滨:哈尔滨工业大学,2013.XU Fujia.Microstructure control and process optimization of Inconel 625 alloy fabricated by plasma arc rapid prototyping[J].Harbin:Harbin Institute of Technology,2013.
    [2]THIVILLON L,BERTRAND P,LAGET B,et al.Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components[J].Journal of Nuclear Materials,2009,385(2):236-241.
    [3]THERIAULT A,XUE L,DRYDEN J R.Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures[J].Materials Science and Engineering A,2009,515(1-2):217-225.
    [4]LI Kehai,CHEN Jinsong,ZHANG Yuming.Double-electrode GMAW process and control[J].Welding Journal,2007,86(8):231-237.
    [5]KATON M,OH J,MIYAMOTOL Y,et al.Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding[J].Materials&Design,2007,28(7):2093-2098.
    [6]CHUA C K,LEONG K F,LIM C C S.Rapid prototyping:principles and applications[M].Hackensack:World Scientific Publishing Company,2010.
    [7]BENDER E M,DRELLISHAK S,FOKKENS A,et al.Grammar prototyping and testing with the Lin GO grammar matrix customization system[C]//Proceedings of the ACL 2010 System Demonstrations,2010:1-6.
    [8]EBRABIMNIA M,GOODARZI M,NOURI M,et al.Study of the effect of shielding gas composition on the mechanical weld properties of steel ST 37-2 in gas metal arc welding[J].Materials&Design,2009,30(9):3891-3895.
    [9]赵慧慧.GMAW再制造多重堆积路径对质量影响及优化方法研究[D].哈尔滨:哈尔滨工业大学,2012.ZHAO Huihui.Path influence on quality and path optimization method in multiple deposition of GMAW remanufacturing[D].Harbin:Harbin Harbin Institute of Technology,2012.
    [10]ZHAO H H,ZHANG G J,YIN Z Q,et al.Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J].Journal of Materials Processing Technology,2012,212(1):276-285.
    [11]DU J,WEI Z,CHEN Z,et al.Numerical investigation of pileup process in metal microdroplet deposition manufacture[J].Micromachines,2014,5(4):1429-1444.
    [12]MUKHERJEE T,MANVATKAR V,DE A,et al.Mitigation of thermal distortion during additive manufacturing[J].Scripta Materialia,2017,127:79-83.
    [13]申俊琦,胡绳荪,刘望兰,等.铝合金焊接快速成形层间间隔时间分析[J].焊接学报,2009,29(5):109-112.SHEN Junqi,HU Shengsun,LIU Wanglan,et al.Effects of time interval in rapid prototyping of Al-alloy based on welding[J].Transaction of the China Welding Institution,2009,29(5):109-112.
    [14]MANVATKAR V,DE A,DEBROY T.Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J].Journal of Applied physics,2014,116,124905.
    [15]武传松.焊接热过程数值模拟[M].哈尔滨:哈尔滨工业大学出版社,1990.WU Chuansong.Numerical simulation of welding heat process[M].Harbin:Harbin Institute of Technology Press,1990.
    [16]SCHLICHTING H,GERSTEN K,KRAUSE E,et al.Boundary-layer theory[M].New York:Mc Graw-Hill,1960.
    [17]SAHOO P,DEBROY T,MCNALLAN M J.Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy[J].Metallurgical transactions B,1988,19(3):483-491.
    [18]KOTHE D B,MJOLSNESS R C,TORREY M D.RIPPLE:A computer program for incompressible flows with free surfaces,Los Alamos National Lab[R].LA-10612-MS,Los Alamos,NM,1991.
    [19]USHIO M,WU Chuansong.Mathematical modeling of three-dimensional heat and fluid flow in a moving gas metal arc weld pool[J].Metal Mater.Trans.B,1997,28(3):509-516.
    [20]WU C S.Welding thermal processes and weld pool behaviors[M].Boca Raton:CRC Press,2011.
    [21]WASZINK J H,PIENA M J.Experimental investigation of drop detachment and drop velocity in GMAW[J].Welding Journal,1986,65(11):289-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700