含石墨烯胞室结构的铜复合材料及其耐腐蚀性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Resistance Enhancement of Copper Matrix Composites Embedded with Cellular Graphene Framework
  • 作者:戴丹 ; 林正得 ; 韩钰 ; 祝志祥 ; 陈保安 ; 丁一 ; 张强 ; 王强 ; 吴明亮 ; 舒圣程 ; 耿启 ; 李傲
  • 英文作者:DAI Dan;LIN Cheng-de;HAN Yu;ZHU Zhi-xiang;CHEN Bao-an;DING Yi;ZHANG Qiang;WANG Qiang;WU Ming-liang;SHU Sheng-cheng;GENG Qi;LI Ao;Key Laboratory of Marine Materials and Related Technologies,Ningbo Institute of Materials Technology and Engineering NIMTE, Chinese Academy of Sciences;Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering NIMTE, Chinese Academy of Sciences;State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd;State Grid Shanxi Electric Power Company;
  • 关键词:化学气相沉积 ; 立体胞室结构 ; 石墨烯/铜 ; 导电性 ; 抗刻蚀性能 ; 原位生长
  • 英文关键词:chemical vapor deposition;;cellular graphene framework;;graphene/copper composites;;electrical conductivity;;corrosion resistance;;in-situ synthesiss
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室;中国科学院宁波材料技术与工程研究所浙江省海洋与防护重点实验室;全球能源互联网研究院有限公司先进输电技术国家重点实验室;国网山西省电力公司;
  • 出版日期:2018-10-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:国家电网公司科技项目(SGRIDGKJ[2016]795)~~
  • 语种:中文;
  • 页:BMJS201810031
  • 页数:7
  • CN:10
  • ISSN:50-1083/TG
  • 分类号:235-241
摘要
目的开发一种石墨烯在铜基复合材料中的均匀分散结构,制备出兼具高导电和强抗刻蚀性能的石墨烯/铜复合材料。方法采用化学气相沉积原位生长法结合分散剂工艺,制备分散均匀石墨烯/铜基粉体复合材料。利用制备的石墨烯/铜粉体材料,采用真空热压工艺,制备了石墨烯/铜块体材料,然后用拉曼光谱、X射线粉末衍射仪和金相显微镜,考察石墨烯/铜试样的质量和形貌,最后用数字便携式涡流电导仪测量其电导率。利用自主设计的石墨烯/铜在过硫酸铵中刻蚀的实验装置,测试石墨烯/铜的抗刻蚀性能。结果利用石墨烯/铜粉体制备的石墨烯/铜块体和铜具有相同的(111)、(200)和(220)晶面,多层石墨烯以立体胞室结构均匀分布在铜晶粒的晶界处。石墨烯/铜块体的导电率为96%IACS,明显优于文献报道的以其他方法制备的石墨烯/铜块体,并且在过硫酸铵溶液中浸泡90 min后,石墨烯/铜块的质量损失为126.6 mg,石墨烯/铜比纯铜的抗刻蚀能力提高了37.6%,具有比铜更强的抗刻蚀性能。结论以CVD原位生长法和真空热压法制备的石墨烯/铜复合材料,石墨烯以立体胞室结构均匀分散在铜界面处,并且兼具高的导电性和强的抗刻蚀性能。
        Due to the high electrical conductivity and chemical inertness, graphene has been widely incorporated into the copper matrix to form the reinforced composites. However, graphene is prone to agglomerate. In addition, uniform dispersion between graphene and copper cannot be obtained due to the differences of density. In this study, in order to fabricate high electrical conductivity and superior anticorrosion performance Graphene/copper composites, the rational design of the microstructure of graphene within the matrix is investigated. First, high-quality graphene films were grown on the surface of copper powder by thermal CVD, followed by vacuum hot-pressing to fabricate graphene/copper composites. The composites were characterized by Raman and XRD spectra, and the electrical conductivity was determined by Eddy current tester. The comparison of anticorrosion performance was carried out by measuring the weight loss of the samples as the function of etching time by self designed device. Both Copper and Graphene/Copper samples exhibit typical crystal faces(111),(200), and(220) via XRD. A cellular graphene framework was created at the grain boundary in the composites. The composites exhibit high electrical conductivity of 96%IACS, which is higher than that of reported graphene/copper composites. In addition, our graphene/copper composites also have superior corrosion resistance property against wet corrosion in copper etchant, achieving 37.6% improvement compared to the bare copper. In conclusion, we developed a facile process for the synthesis of copper matrix composites embedded with cellular graphene framework. The obtained composites have a high electrical conductivity and superior anticorrosion performance.
引文
[1]GEIM A K, NOVOSELOV K S. The rise of graphene[J].Nature materials, 2007, 6(3):183-191.
    [2]KINLENPJ,MENONV,DINGYW.Amechanistic investigation of polyaniline corrosion protection using the scanningreferenceelectrodetechnique[J].Journalofthe electrochemical society, 1999, 146(10):3690-3695.
    [3]MITTALVK,BERAS,SARAVANANT,etal.Formationandcharacterizationofbi-layeroxidecoatingon carbon-steelforimprovingcorrosionresistance[J].Thin solid films, 2009, 517(5):1672-1676.
    [4]RAOBVA,IQBALMY,SREEDHARB,etal.Self-assembledmonolayerof2-(octadecylthio)benzothiazoleforcorrosionprotectionofcopper[J].Corrosion science, 2009, 51(6):1441-1452.
    [5]REDONDOMI,BRESLINCB.Polypyrroleelectrodepositedoncopperfromanaqueousphosphatesolution:Corrosionprotectionproperties[J].Corrosionscience,2007, 49(4):1765-1776.
    [6]ALAMFE,DAIWen,YANGMing-hui,etal.In-situ formationofacellulargrapheneframeworkinthermoplastic composites leading to superior thermal conductivity[J].JournalofmaterialschemistryA,2017,13:6164-6169.
    [7]GONGJin-rui,LIUZhi-duo,YUJin-hong,etal.Graphenewovenfabric-reinforcedpolyimidefilmswithenhanced and anisotropic thermal conductivity[J]. Composites part A, 2016, 87:290-296.
    [8]CHENSS,BROWNL,LEVENDORFM,etal.Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J].ACS nano, 2011, 5(2):1321-1327.
    [9]CHENY,ZHANGX,LIUE,etal.Fabricationof three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. Journal of alloys and compounds, 2016, 688:69-76.
    [10]CUI Y, WANG L, LI B, et al. Effect of ball milling on the defeatoffew-layergrapheneandpropertiesofcopper matrixcomposites[J].Actametallurgicasinica,2014(5):937-943.
    [11]CHENFan-yan,YINGJia-min,WANGYi-fei,etal.Effects of graphene content on the microstructure and propertiesofcoppermatrixcomposites[J].Carbon,2016,96:836-842.
    [12]JAGANNADHAMK.Thermalconductivityofcoppergraphene composite films synthesized by electrochemical depositionwithexfoliatedgrapheneplatelets[J].MetallurgicalandmaterialstransactionsB,2012,43(2):316-324.
    [13]CAO M, XIONG D B, TAN Z, et al. Aligning graphene in bulkcopper:Nacre-inspirednanolaminatedarchitecture coupledwithin-situprocessingforenhancedmechanical propertiesandhighelectricalconductivity[J].Carbon,2017, 117:65-74.
    [14]CHENY,ZHANGX,LIUE,etal.Fabricationof three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. Journal of alloys and compounds, 2016, 688:69-76.
    [15]KIMH,MATTEVIC,CALVOMR,etal.Activation energypathsforgraphenenucleationandgrowthon Cu[J]. Acs nano, 2012, 4(6):3614-3617.
    [16]CHENCai-yun,DAIDan,CHENGuo-xin,etal.Rapid growthofsingle-layergrapheneontheinsulatingsubstrates by thermal CVD[J]. Applied surface science, 2015,346:41-45.
    [17]WU Tao, LIU Zhi-duo, CHEN Guo-xin, et al. A study of thegrowth-timeeffectongraphenelayernumberbased onaCu-Nibilayercatalystsystem[J].RSCadvances,2016, 6(28):23956-23960.
    [18]KIM Y, LEE J, YEOM M S,et al. Strengthening effect of single-atomic-layergrapheneinmetal-graphenenanolayeredcomposites[J].Naturecommunications,2013,4:2114.
    [19]REINA A, JIA X, HO J, et al. Layer area, few-layer graphenefilmsonarbitrarysubstratesbychemicalvapor deposition[J]. Nano letters, 2009, 9(1):30-35.
    [20]WEIBW,QUD,HUCF,etal.Synthesisandphysical propertiesofgraphenenanosheetsreinforcedcopper composites[J].Advancedmaterialsresearch,2014,833:310-314.
    [21]JIANGR,ZHOUX,FANGQ,etal.Copper-graphene bulkcompositeswithhomogeneousgraphenedispersion and enhanced mechanical properties[J]. Materials science&engineering A, 2016, 654:124-130.
    [22]BUNCHJS,VERBRIDGESS,ALDENJS,etal.Impermeableatomicmembranesfromgraphenesheets[J].Nano letters, 2008, 8:2458-2462.
    [23]JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343:752-754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700