黄河下游地下水中氡同位素的分布及影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution characteristics and influence factors of radium and radon isotopes in the lower reaches of the Yellow River
  • 作者:张晓洁 ; 徐晓涵 ; 相湛昌 ; 杨迪松 ; 张晓影 ; 许博超
  • 英文作者:ZHANG Xiao-jie;XU Xiao-han;XIANG Zhan-chang;YANG Di-song;ZHANG Xiao-ying;XU Bo-chao;Key Laboratory of Marine Chemistry Theory and Technology Ocean University of China,Ministry of Education;Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology;College of Chemistry and Chemical Engineering,Ocean University of China;Qingdao No.2 Middle school of Shandong province;Rizhao Entry-Exit Inspection And Quarantine Bureau;Institute of Groundwater and Earth Science,Jinan University;
  • 关键词:黄河 ; 地下水 ; 同位素 ; 氡同位素
  • 英文关键词:Yellow River;;underground water;;radium isotope;;radon isotope
  • 中文刊名:HYHJ
  • 英文刊名:Marine Environmental Science
  • 机构:中国海洋大学海洋化学理论与工程教育部重点实验室;海洋国家实验室海洋生态与环境科学功能实验室;中国海洋大学化学化工学院;青岛市第二中学;日照出入境检验检疫局;暨南大学地下水与地球科学研究院;
  • 出版日期:2018-01-12
  • 出版单位:海洋环境科学
  • 年:2018
  • 期:v.37;No.168
  • 基金:国家自然科学基金(41576075,41620104001);; 鳌山科技创新计划项目(2016ASKJ02-4);; 中国博士后科学基金(2015M582479)
  • 语种:中文;
  • 页:HYHJ201801001
  • 页数:7
  • CN:01
  • ISSN:21-1168/X
  • 分类号:4-10
摘要
为研究黄河下游地下水中氡同位素的含量、分布及其影响因素,于2015年5月至2016年2月,按季度对黄河下游利津水文站至黄河口区间100 km河道内的地下水进行了5次调查,得到结论如下:(1)黄河下游地下水中3种同位素(223Ra、224Ra和226Ra)活度变化范围为0.4~5.9 dpm/100L、23.5~358.1 dpm/100L和11.2~49.4 dpm/100L;222Rn活度变化范围为8.2~700.5 dpm/L,除个别站位(如DP-#)地下水中222Rn浓度较高以外(608.8±105.0 dpm/L),其他站点222Rn浓度水平基本上保持在8~200 dpm/L之间。(2)远离河口的采样站位(LJ-#、YL-#和YW-#)地下水中同位素浓度的季节性特征不明显,而靠近河口的采样点(DP-#和KY-#)的同位素浓度季节性差别显著。随着向河口方向的延伸,地下水中同位素浓度呈现出逐渐增加的趋势,盐度是影响同位素活度的关键因素。(3)各采样点水体中222Rn浓度变化均呈现出夏季略低于冬季的分布特征,水体停留时间和黄河径流量变化是影响222Rn活度变化的主要原因。
        In order to study the concentrations,distributions and influence factors of radium and radon isotopes in underground water in the lower reaches of the Yellow River,we carried out five surveys along the lower reaches of the river channel from Lijin station to the Yellow River estuary in different seasons from May,2015 to February,2016. The results indicate that:(1) Concentrations of the three radium isotopes(223 Ra,224 Ra and226 Ra) were 0. 4 ~ 5. 9 dpm/100 L,23. 5 ~ 358. 1 dpm/100 L and 11. 2 ~ 49. 4 dpm/100 L in underground water in lower reaches of Yellow River;The222 Rn contributions was 8. 2 ~ 700. 5 dpm/L,in addition to individual site(such as DP-# site),the222 Rn concentration was higher(608. 8 ± 105. 0 dpm/L),the222 Rn concentrations ranged from 8 to 200 dpm/L in other sites.(2) Far away from the Yellow River Estuary,radium isotopes did not have significant variation among seasons(LJ-#,YL-# and YW-#). In area close to the Yellow River Estuary(DP-# and KY-#),radium isotopes changed a lot among seasons. Along the direction to the Yellow River mouth,radium isotopes concentrations increased,and salinity was found to be the main controlling factor.(3)222 Rn concentration was higher in winter than summer,the groundwater residence time and river discharge amount were the main influence factors.
引文
[1]BOLLINGER M S,MOORE W S.Evaluation of salt marsh hydrology using radium as a tracer[J].Geochimica et Cosmochimica Acta,1993,57(10):2203-2212.
    [2]TORGERSEN T,TUREKIAN KK,TUREKIAN V C,et al.224Ra distribution in surface and deep water of Long Island Sound:sources and horizontal transport rates[J].Continental Shelf Research,1996,16(12):1545-1559.
    [3]CHARETTE M A,GONNEEA M E,MORRIS P J,et al.Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom[J].Deep Sea Research Part II:Topical Studies in Oceanography,2007,54(18/19/20):1989-1998.
    [4]XU B C,BURNETT W,DIMOVA N,et al.Hydrodynamics in the Yellow River Estuary via radium isotopes:ecological perspectives[J].Continental Shelf Research,2013,66:19-28.
    [5]XIA D,YU Z G,XU B C,et al.Variations of hydrodynamics and submarine groundwater discharge in the yellow river estuary under the influence of the water-sediment regulation scheme[J].Estuaries and Coasts,2016,39(2):333-343.
    [6]TORGERSEN T,DEANGELO E,O’DONNELL J.Calculations of horizontal mixing rates using222Rn and the controls on hypoxia in western Long Island Sound,1991[J].Estuaries,1997,20(2):328-345.
    [7]李开培,郭占荣,袁晓婕,等.氡和同位素在沿岸海底地下水研究中的应用[J].勘察科学计术,2011(5):30-36.
    [8]陈迪云,王湘云,关晓丽,等.珠海市地下水中放射性元素及对室内氡浓度的影响[J].环境化学,2000,19(4):377-381.
    [9]李学礼,孙占学,刘金辉.水文地球化学[M].3版.北京:原子能出版社,2010.
    [10]BURNETT W C,AGGARWAL P K,AURELI A,et al.Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J].Science of the Total Environment,2006,367(2/3):498-543.
    [11]郭占荣,李开培,袁晓婕,等.用氡-222评价五缘湾的地下水输入[J].水科学进展,2012,23(2):263-270.
    [12]潘峰,郭占荣,马志勇,等.胶州湾周边地下水和河水中222Rn的分布特征及影响因素[J].核化学与放射化学,2015,37(6):490-496.
    [13]PETERSON R N,BURNETT W C,MAKOTO T,et al.Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River Delta,China[J].Journal of Geophysical Research:Oceans,2008,113(C9):C09021.
    [14]XU B C,XIA D,BURNETT W C,et al.Natural222Rn and220Rn indicate the impact of the Water-Sediment Regulation Scheme(WSRS)on submarine groundwater discharge in the Yellow River estuary,China[J].Applied Geochemistry,2014,51:79-85.
    [15]MOORE W S,ARNOLD R.Measurement of223Ra and224Ra in coastal waters using a delayed coincidence counter[J].Journal of Geophysical Research:Oceans,1996,101(C1):1321-1329.
    [16]WASKA H,KIM S,KIM G,et al.An efficient and simple method for measuring226Ra using the scintillation cell in a delayed coincidence counting system(Ra De CC)[J].Journal of Environmental Radioactivity,2008,99(12):1859-1862.
    [17]SCHUBERT M,PASCHKE A,LIEBERMAN E,et al.Air-water partitioning of222Rn and its dependence on water temperature and salinity[J].Environmental Science&Technology,2012,46(7):3905-3911.
    [18]LAMBERT M J,BURNETT W C.Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J].Biogeochemistry,2003,66(1/2):55-73.
    [19]KIM G,RYU J W,HWANG D W.Radium tracing of submarine groundwater discharge(SGD)and associated nutrient fluxes in a highly-permeable bed coastal zone,Korea[J].Marine Chemistry,2008,109(3/4):307-317.
    [20]刘花台,郭占荣,袁晓婕,等.用同位素评价海水滞留时间及海底地下水排泄[J].地球科学-中国地质大学学报,2013,38(3):599-606.
    [21]王树玲.珠江口海底地下水以及其携带的营养盐和碳的通量研究[D].厦门:厦门大学,2014.
    [22]BECK A J,COCHRAN M A.Controls on solid-solution partitioning of radium in saturated marine sands[J].Marine Chemistry,2013,156:38-48.
    [23]夏冬.天然氡同位素示踪调水调沙对黄河口水体运移及海底地下水排放的影响[D].青岛:中国海洋大学,2015.
    [24]袁晓婕,郭占荣,马志勇,等.基于222Rn质量平衡模型的胶州湾海底地下水排泄[J].地球学报,2015,36(2):237-244.
    [25]ZHUO W H,IIDA T,YANG X T.Occurrence of222Rn,226Ra,228Ra and U in groundwater in Fujian Province,China[J].Journal of Environmental Radioactivity,2001,53(1):111-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700