管道清管器旁通流场三维数值模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three Dimensional Numerical Simulation Analysis of Flow Field of Pipeline Pig Bypass
  • 作者:田宏军 ; 魏云港 ; 曹宇光 ; 刘畅
  • 英文作者:Tian Hongjun;Wei Yungang;Cao Yuguang;Liu Chang;Shandong Province Key Laboratory of Oil and Gas Storage and Transportation Safety,China University of Petroleum (East China);
  • 关键词:管道 ; 清管器 ; 旁通 ; 流场分布 ; 数值模拟 ; 驱动力
  • 英文关键词:pipeline;;pig;;bypass;;flow field distribution;;numerical simulation;;driving force
  • 中文刊名:SYJI
  • 英文刊名:China Petroleum Machinery
  • 机构:中国石油大学(华东)山东省油气储运安全重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:石油机械
  • 年:2019
  • 期:v.47;No.479
  • 基金:国家重点研发计划资助项目“临海油气管道完整性管理技术研究及示范应用”(2016YFC0802306);; 国家自然科学基金项目“管道检测器卡堵关键力学问题研究”(11472309);; 中国石油大学(华东)研究生创新工程资助项目“管道清管器通过性关键力学问题研究”(YCX2018069)
  • 语种:中文;
  • 页:SYJI201901020
  • 页数:10
  • CN:01
  • ISSN:42-1246/TE
  • 分类号:124-133
摘要
为探究清管器与管道内壁间存在旁通时流场分布情况,进而为提升其清管效率和通过安全性提供依据,利用ICEM CFD软件建立旁通流场三维模型,采用FLUENT软件中的标准k-ε模型进行数值模拟分析。分析结果表明:在产生旁通状态下,高速流体通过旁路,对管道内壁产生强剪切作用,流过清管器后,在下游形成涡流区。压力场分为上游高压区、清管器中压区、头部低压区和下游稳定区;旁路上和轴线上最大流体速度随间隙量的增加而减小,流场压降及所受的驱动力随间隙量的增加而急剧减小。对比可知:两种类型的清管器旁路上最大流体速度、驱动力大小随间隙量的变化大致相同;在相同间隙量下直板式清管器轴线上的流体速度更大,且旁路上的流体对管道内壁产生的剪切作用也更强。研究结果可为清管器在发生旁通状态下的通过安全性提供参考。
        To understand the flow field distribution between the pig and the inner wall of the pipeline with bypass,and to provide a basis for improving the efficiency and safety of the pigging,the three-dimensional model of the bypass flow field is established by using ICEM CFD software,and is numerical simulated using standard k-εmodel in the FLUENT software. The analysis results show that with the bypass,the high-velocity fluid passes through the bypass and produces strong shearing action on the inner wall of the pipeline. Fluid flow through the pig produces a downstream vortex zone. The pressure field is divided into an upstream high pressure zone,a middle pressure zone at pig,a low pressure zone at the pig head,and a downstream stable zone. The maximum fluid velocity on the bypass and on the axis decreases with the increase of the clearance. The flow field pressure drop and the driving force decrease sharply with the increase of the clearance. The comparison shows that the maximum fluid velocity and the driving force of the two types of pig bypass are almost the same under the variation of clearance. Given the same amount of clearance,the fluid velocity on the axis of the straight plate-type pig is larger,and the fluid on the bypass produces stronger shearing effect on the inner wall of the pipeline. The study can provide references for the passing safety of the pipeline pig in the bypass state.
引文
[1] MIRSHAMSI M,RAFEEYAN M. Dynamic analysis ofpig through two and three dimensional gas pipeline[J].Journal of Applied Fluid Mechanics,2015,8(1):43-54.
    [2]李勇,陈开明,熊建嘉,等.漏磁式智能检测技术在输气管道上的应用[J].油气储运,2002,21(8):24-29.LI Y,CHEN K M,XIONG J J,et al. The applicationof magnescan HR in gas transmission pipeline[J]. Oil&Gas Storage and Transportation,2002,21(8):24-29.
    [3]王彬,马洪新,郭斌,等.内检测技术在复杂海底管道中的工程应用[J].石油工程建设,2016,42(4):83-86.WANG B,MA H X,GUO B,et al. Engineering appli-cation of internal inspection technique in complicatedsubmarine pipeline[J]. Petroleum Engineering Con-struction,2016,42(4):83-86.
    [4] LIANG Z,HE H G,CAI W L. Speed simulation of by-pass hole pig with a brake unit in liquid pipe[J]. Jour-nal of Natural Gas Science&Engineering,2017,42:40-47.
    [5]丁俊刚,蔡亮,王静,等.中国与俄罗斯管道清管技术标准差异分析[J].油气储运,2013,32(9):1018-1021.DING J G,CAI L,WANG J,et al. Differences in pig-ging standards between China and Russia[J]. Oil&Gas Storage&Transportation,2013,32(9):1018-1021.
    [6]王会坤,罗京新,戚菁菁.川气东送管道干线清管实践[J].油气储运,2015,34(4):408-412.WANG H K,LUO J X,QI J J. Pigging operation of theSichuan-East gas transmission pipeline[J]. Oil&GasStorage&Transportation,2015,34(4):408-412.
    [7]郭庆丰.曹妃甸油田变径海底管道清管的可行性[J].油气储运,2016,35(11):1243-1246.GUO Q F. Feasibility of pigging operations in submarineadjustable pipelines in Caofeidian oileld[J]. Oil&Gas Storage&Transportation,2016,35(11):1243-1246.
    [8]檀伟,姜兆昌,曹伟秋,等.津华线清管作业中存在的问题及分析[J].现代化工,2016(9):204-207.TAN W,JIANG Z C,CAO W Q,et al. Analysis andproblems about the pigging operation in Jinhua pipeline[J]. Modern Chemical Industry,2016(9):204-207.
    [9]张金伟,陈传胜,尹家文.川气东送支线清管难点分析及对策[J].管道技术与设备,2017(1):51-53.ZHANG J W,CHEN C S,YIN J W. Difficulty analysisand countermeasures in pigging of Sichuan-East gastransmission branch pipeline[J]. Pipeline Techniqueand Equipment,2017(1):51-53.
    [10]颜芳蕤,张彦龙,季宏,等.南堡1-3人工岛外输海底管道内检测实践与思考[J].石油工程建设,2017,43(2):80-84.YAN F R,ZHANG Y L,JI H,et al. Practice andthinking of internal detection for submarine outwardtransportation pipeline from Nanpu 1-3 artificial island[J]. Petroleum Engineering Construction,2017,43(2):80-84.
    [11] TAN T N,SANG B K,HUI R Y,et al. Modeling andsimulation for pig with bypass flow control in naturalgas pipeline[J]. KSME International Journal,2001,15(9):1302-1310.
    [12]史培玉,岳明,李玉星,等.水平管路清管过程流动参数变化规律模拟研究[J].中国海上油气(工程),2003,15(6):19-23.SHI P Y,YUE M,LI Y X,et al. A simulation studyon the change of flow parameters during pigging hori-zontal pipeline[J]. China Offshore Oil&Gas(Engi-neering),2003,15(6):19-23.
    [13]丁浩,李玉星,冯叔初.水平气液混输管路清管操作的数值模拟[J].石油学报,2004,25(2):103-107.DING H,LI Y X,FENG S C. Pigging operation simu-lation for horizontal flow of gas and liquid in pipeline[J]. Acta Petrolei Sinica,2004,25(2):103-107.
    [14] MIRSHAMSI M,RAFEEYAN M. Dynamic analysisand simulation of long pig in gas pipeline[J]. Journalof Natural Gas Science&Engineering,2015,23(5):294-303.
    [15] PARILLI D J,LOAIZA N,GARCA J,et al. 3-Dtransient CFD modeling of pig motion[C]∥Proceed-ings of the 11th International Pipeline Conference. Al-berta,Canada:American Society of Mechanical Engi-neers,2016.
    [16] SINGH A,HENKES R A W M. CFD modeling of theflow around a by-pass pig[C]∥Proceedings of the8th North American Conference on Multiphase Technol-ogy. Alberta,Canada:BHR Group,2012.
    [17] AZPIROZ J E,HENDRIX M H W,BREUGEM W P,et al. CFD modelling of bypass pigs with a deflectordisk[C]∥Proceedings of the 17th InternationalConference on Multiphase Production Technology.Cannes,France:BHR Group,2015.
    [18]刘淼,曹学文,杨文,等.清管器运行过程中的旁通特性[J].油气田地面工程,2016,35(10):32-34.LIU M,CAO X W,YANG W,et al. Study of pig’sbypass character in running process[J]. Oil-Gas FieldSurface Engineering,2016,35(10):32-34.
    [19]孟浩龙,李著信,王菊芬,等.管内检测机器人周围流场的三维数值计算[J].石油学报,2006,27(6):128-132.MENG H L,LI Z X,WANG J F,et al. Numericalcomputation of three-dimensional flow field around in-pipe inspection robot[J]. Acta Petrolei Sinica,2006,27(6):128-132.
    [20]孟浩龙,李著信,王菊芬,等.管道内差压驱动机器人相关流场数值模拟研究[J].应用力学学报,2007,24(1):102-106.MENG H L,LI Z X,WANG J F,et al. Numericalsimulation to flow field around differential-pressure-driven in-pipe robot[J]. Chinese Journal of AppliedMechanics,2007,24(1):102-106.
    [21]张培,李著信,苏毅,等.差压式管道内检测机器人驱动力与速度分析[J].后勤工程学院学报,2010,26(4):24-28.ZHANG P,LI Z X,SU Y,et al. Drive force and ve-locity analysis of differential-pressure-driven in-pipe in-spection robot[J]. Journal of Logistical EngineeringUniversity,2010,26(4):24-28.
    [22]张培,李著信,张培理,等.差压式管道内检测机器人启动过程模拟仿真[J].后勤工程学院学报,2011,27(1):35-40.ZHANG P,LI Z X,ZHANG P L,et al. The simula-tion of starting process for the differential-pressure-driv-en in-pipe inspection robot[J]. Journal of LogisticalEngineering University,2011,27(1):35-40.
    [23]卢秀泉.石油管道检测机器人流场数值模拟及PIV实验研究[D].长春:吉林大学,2008.LU X Q. Numerical simulation and PIV experimentalresearch on the flow field of petroleum pipeline inspec-tion robot[D]. Changchun:Jilin University,2008.
    [24] LAUNDER B E,SPALDING D B. The numerical com-putation of turbulent flows[J]. Computer Methods inApplied Mechanics&Engineering,1990,3(2):269-289.
    [25] KALITZIN G,MEDIC G,IACCARINO G,et al.Near-wall behavior of RANS turbulence models andimplications for wall functions[J]. Journal of Compu-tational Physics,2005,204:265-291.
    [26]覃文洁,胡春光,郭良平,等.近壁面网格尺寸对湍流计算的影响[J].北京理工大学学报,2006,26(5):388-392.QIN W J,HU C G,GUO L P,et al. Effect of near-wall grid size on turbulent flow solutions[J]. Transac-tions of Beijing Institute of Technology, 2006, 26(5):388-392.
    [27] SALIM S M,CHEAH S C. Wall y+strategy for deal-ing with wall-bounded turbulent flows[C]∥Pro-ceedings of the International Multiconference of Engi-neers and Computer Scientists. Hong Kong, China:2009.
    [28] SALIM S M,CHEAH S C. Wall y(+)approach fordealing with turbulent flows over a wall mounted cube[J]. Progress in Computational Fluid Dynamics an In-ternational Journal,2010,10(5/6):341-351.
    [29]余志祥,闫雁军.近壁区网格Δy对TTU建筑风场湍流计算的影响[J].土木建筑与环境工程,2012,34(6):46-51.YU Z X,YAN Y J. Influence on turbulent flow calcu-lation of wind flow around TTU building by grid sizeΔyin near-wall region[J]. Journal of Civil,Architectural&Environmental Engineering,2012,34(6):46-51.
    [30]资丹,王福军,陶然,等.边界层网格尺度对泵站流场计算结果影响研究[J].水利学报,2016,47(2):139-149.ZI D,WANG F J,TAO R,et al. Research for im-pacts of boundary layer grid scale on flow field simula-tion results in pumping station[J]. Journal of Hydrau-lic Engineering,2016,47(2):139-149.
    [31]刘刚,陈雷,张国忠,等.管道清管器技术发展现状[J].油气储运,2011,30(9):646-653.LIU G,CHEN L,ZHANG G Z,et al. Developmentstatus of pipe pigging devices[J]. Oil&Gas Storage&Transportation,2011,30(9):646-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700