多种同位素手段的硝酸盐污染源解析:以会仙湿地为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of Nitrate Pollution Sources Through Various Isotopic Methods: A Case Study of the Huixian Wetland
  • 作者:彭聪 ; 潘晓东 ; 焦友军 ; 任坤 ; 曾洁
  • 英文作者:PENG Cong;PAN Xiao-dong;JIAO You-jun;REN Kun;ZENG Jie;Key Laboratory of Karst Dynamics Laboratory,Ministry of Land and Resources & Guangxi,Institute of Karst Geology,Chinese Academy of Geological Sciences;
  • 关键词:会仙湿地 ; 硝酸盐污染 ; 氮氧同位素 ; 13CDIC ; 地下水径流条件
  • 英文关键词:Huixian wetland;;nitrate pollution;;nitrogen and oxygen isotopes;;13CDIC;;groundwater runoff condition
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国地质科学院岩溶地质研究所国土资源部广西岩溶动力学重点实验室;
  • 出版日期:2018-06-21 15:33
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41702278,41702279);; 中国地质科学院岩溶地质研究所基本科研业务项目(2017028);; 中国地质调查局地质调查项目(DD20160285)
  • 语种:中文;
  • 页:HJKZ201812014
  • 页数:8
  • CN:12
  • ISSN:11-1895/X
  • 分类号:124-131
摘要
近年来,湿地在人类掠夺性开发下生态环境正不断恶化.其中,硝酸盐污染就是湿地生态环境面临的一类主要问题.本文以会仙岩溶湿地为研究对象,为查明导致湿地水体硝酸盐升高的主要因素,利用~(15)N(NO_3~-)、~(18)O(NO_3~-)同位素手段确定区内硝酸盐污染的主要来源,并借助SIAR模型确定各类污染源的贡献率.在此基础上,通过~(13)C_(DIC)同位素定性描述地下水的径流条件,以此探究硝酸根浓度的空间分布与水循环的关系.结果表明,影响研究区水体中硝酸根浓度的主要因素有3个方面,动物粪便及生活污水、化肥中NO_3~-和土壤氮,其对硝酸盐污染的贡献率均值分别为39.1%、32.2%和28.5%.~(13)C_(DIC)同位素结果显示,轻~(13)C_(DIC)表明其地下水径流条件好,其对应的NO_3~-浓度值一般较低,而重~(13)C_(DIC)对应的NO_3~-浓度值一般较高.由此可知,地下水径流条件的好坏也一定程度地影响了NO_3~-浓度的分布.
        In recent years,the ecological environment of wetlands has deteriorated under the predatory exploitation of human beings.Nitrate pollution is a major problem faced by wetland ecosystems.In this paper,Huixian karst wetland was selected as a study area to identify the main factors leading to the increase of nitrate in wetland water.The main sources of nitrate pollution in the area were determined by means of~(15)N(NO_3~-)and~(18)O(NO_3~-)isotopes.The contribution rate of all types of pollution sources was determined with the SIAR model.To explore the relationship between the spatial distribution of the nitrate concentration and the groundwater runoff conditions,the~(13)C_(DIC)isotopes were used to qualitatively characterize the runoff conditions of the groundwater.The results show that there are three main factors affecting the nitrate concentration in the study area:animal manure and domestic sewage,NO_3~-in chemical fertilizer,and soil nitrogen.The average contribution rates to nitrate pollution are 39.1%,32.2%,and 28.5%respectively.The~(13)C_(DIC)isotope data clarify that a light~(13)C_(DIC)reflects better groundwater runoff conditions.The concentration of NO_3~-is generally lower,while the NO_3~-concentration corresponding to heavy~(13)C_(DIC)is generally higher.The condition of the groundwater runoff to a certain extent also affects the distribution of the NO_3~-concentration.
引文
[1]徐长君,殷亚杰,秦姝冕,等.大庆湿地生态系统服务功能及可持续发展[J].大庆师范学院学报,2014,34(3):67-71.
    [2]闫长平,马延吉.人类产业活动对湿地环境的影响研究进展[J].湿地科学,2010,8(1):98-104.Yan C P,Ma Y Y. Research progress on impacts of human industrial activities on wetland environment[J]. Wetland Science,2010,8(1):98-104.
    [3] Loeb R, Lamers L P M, Roelofs J G M. Assessing the eutrophication risks of water retention and water storage in riverine wetlands International[A]. In:Symposium on Wetland Pollution-Dynamics and Control[C]. Ghent,Belgium,2005.A119.
    [4] Mooney H A,Cropper A,Capistrano D,et al. Ecosystems and human well-being:a framework for assessment(millennium ecosystem assessment series)[M]. Reno:Published by Island Press,2003.
    [5] Wang J Z, Gu B H, Ewe S M L, et al. Stable isotope compositions of aquatic flora as indicators of wetland eutrophication[J]. Ecological Engineering,2015,83:13-18.
    [6]叶雅杰,罗金明,王永洁,等.扎龙湿地水体的富营养化特征及综合评价[J].干旱区资源与环境,2012,26(11):110-115.Ye Y J,Luo J M,Wang Y H,et al. Trophic state of Zhalong wetland and the comprehensive assessment[J]. Journal of Arid Land Resources and Environment,2012,26(11):110-115.
    [7]邢海燕,张浩,周绪申,等.基于改进熵权法的湿地水体富营养化评价[J].海河水利,2016,(1):36-38.Xing H Y,Zhang H,Zhou X S,et al. Eutrophication evaluation of wetland based on improved entropy weight[J]. Haihe Water Resources,2016,(1):36-38.
    [8]梁慧雅,翟德勤,孔晓乐,等.府河-白洋淀硝酸盐来源判定及迁移转化规律[J].中国生态农业学报,2017,25(8):1236-1244.Liang H Y,Zhai D L,Kong X L,et al. Sources,migration and transformation of nitrate in Fuhe River and Baiyangdian Lake,China[J]. Chinese Journal of Eco-Agriculture,2017,25(8):1236-1244.
    [9]赵楠芳,李荣昉,胡春华.鄱阳湖地表水硝酸盐时空变异性及其来源研究[J].环境科学与技术,2014,37(8):93-98.Zhao N F,Li R F,Hu C H. Spatial and temporal variability and sources of nitrate in surface water in Poyang Lake[J].Environmental Science&Technology,2014,37(8):93-98.
    [10]毛德华,夏军.洞庭湖湿地生态环境问题及形成机制分析[J].冰川冻土,2002,24(4):444-451.Mao D H,Xia J. Ecological and environmental problems and their causing mechanisms in Dongting lake wetland[J]. Journal of Glaciology and Geocryology,2002,24(4):444-451.
    [11] Huiskes A H L, Rozema J. The Impact of anthropogenic activities on the coastal wetlands of the north sea[A]. In:Salomons W, Bayne B L, Duursma E K, et al(Eds.).Pollution of the North Sea[M]. Berlin,Heidelberg:Springer,1993. 455-473.
    [12]周迅,姜月华.氮、氧同位素在地下水硝酸盐污染研究中的应用[J].地球学报,2007,28(4):389-395.Zhou X,Jiang Y H. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica,2007,28(4):389-395.
    [13]沈杨.浑河傍河区地下水水化学特征及氮污染来源同位素识别[D].北京:中国地质大学(北京),2013.Shen Y. Analyses of Hydrochemical characteristics of the groundwater and nitrogen pollution sources of the liguan riparian area by the means of the isotope[D]. Beijing:China University of Geosciences(Beijing),2013.
    [14] Johannsen A,Dhnke K,Emeis K. Isotopic composition of nitrate in five German rivers discharging into the North Sea[J].Organic Geochemistry,2008,39(12):1678-1689.
    [15] Parnell A C,Phillips D L,Bearhop S,et al. Bayesian stable isotope mixing models[J]. Environmetrics,2013,24(6):387-399.
    [16] Ji X L,Xie R T,Hao Y,et al. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed[J]. Environmental Pollution,2017,229:586-594.
    [17] Lu L,Cheng H G,Pu X,et al. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities[J]. Environmental Science:Processes&Impacts,2015,17(1):131-144.
    [18]卢丽,李文莉,裴建国,等.基于Iso Source的桂林寨底地下河硝酸盐来源定量研究[J].地球学报,2014,35(2):248-254.Lu L,Li W L,Pei J G,et al. A quantitative study of the sources of nitrate of Zhaidi underground river in Guilin based on Iso Source[J]. Acta Geoscientica Sinica,2014,35(2):248-254.
    [19] Liu M Z,Alfa-Sika M S L,Tchakala I,et al. Tracking sources of groundwater nitrate contamination using nitrogen and oxygen stable isotopes at Beijing area,China[J]. Environmental Earth Sciences,2014,72(3):707-715.
    [20]杨平恒,袁道先,任幼蓉,等.川东平行岭谷区典型岩溶含水系统中NO-3的存储和运移[J].环境科学,2012,33(9):3124-3131.Yang P H,Yuan D X,Ren Y R,et al. Nitrate storage and transport within a typical karst aquifer system in the paralleled ridge-valley of east Sichuan[J]. Environmental Science,2012,33(9):3124-3131.
    [21] Jiang Y J,Wu Y X,Yuan D X. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong Underground River System in Yunan,China[J]. Environmental Science&Technology,2009,43(20):7676-7683.
    [22]张远瞩,贺秋芳,蒋勇军,等.重庆南山表层岩溶泉与地下河三氮运移及氮通量估算[J].环境科学,2016,37(4):1379-1388.Zhang Y Z,He Q F,Jiang Y J,et al. Characteristics and transport patterns of ammonia,nitrites,nitrates and inorganic nitrogen flux at epikarst springs and a subterranean stream in Nanshan,Chongqing[J]. Environmental Science,2016,37(4):1379-1388.
    [23]蓝家程,杨平恒,任坤,等.重庆老龙洞地下河流域氮、磷及微生物污染调查研究[J].环境科学,2014,35(4):1297-1303.Lan J C,Yang P H,Ren K,et al. Investigation of nitrogen,phosphorus and microbial contamination in Laolongdong underground river system of Chongqing[J]. Environmental Science,2014,35(4):1297-1303.
    [24]李瑞,肖琼,刘文,等.运用硫同位素、氮氧同位素示踪里湖地下河硫酸盐、硝酸盐来源[J].环境科学,2015,36(8):2877-2886.Li R,Xiao Q,Liu W,et al. Usingδ34S-SO2-4andδ15N-NO-3,δ18O-NO-3to trace the sources of sulfur and nitrate in Lihu Lake undergound water,Guangxi,China[J]. Environmental Science,2015,36(8):2877-2886.
    [25]侯玉松,马振民,雒芸芸,等.焦作地区水文地质条件对浅层地下水污染的控制作用研究[J].中国农村水利水电,2013,(4):40-44.Hou Y S,Ma Z M,Luo Y Y,et al. Research on the control of hydrogeological conditions under shallow groundwater pollution in Jiaozuo area[J]. China Rural Water and Hydropower,2013,(4):40-44.
    [26]吴文欢,何小娟,吴海露,等.运用氮、氧双同位素技术研究永安江硝酸盐来源[J].生态与农村环境学报,2016,32(5):802-807.Wu W H,He X J,Wu H L,et al. Identification of sources of nitrate in the Yongan river with isotopic technology[J]. Journal of Ecology and Rural Environment,2016,32(5):802-807.
    [27] Ryu H D,Kim M S,Chung E G,et al. Assessment and identification of nitrogen pollution sources in the Cheongmi River with intensive livestock farming areas,Korea[J]. Environmental Science and Pollution Research,2018,25(14):13499-13510.
    [28]俞锦标,杨立铮,章海生,等.中国喀斯特发育规律典型研究:贵州普定南部地区喀斯特水资源评价及其开发利用[M].北京:科学出版社,1990. 266-227.
    [29]黄奇波,康志强,覃小群,等.习水县岩溶水系统ρ(Sr2+)、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)分布特征及其应用[J].地质科技情报,2011,30(4):98-103.Huang Q B, Kang Z Q, Qin X Q, et al. Distribution characteristics of Sr2+,Sr/Mg,Sr/Ca and its applications in karst water system of Xishui County[J]. Geological Science and Technology Information,2011,30(4):98-103.
    [30]黄奇波,覃小群,唐萍萍,等.桂林地区不同类型岩溶地下水中δ13CDIC、δ18O的特征及意义[J].地球化学,2013,42(1):64-72.Huang Q B,Qin X Q,Tang P P,et al. The characteristic and significance of carbon isotope(δ13CDIC)and oxygen isotope(δ18O)value in different type of karst water in Guilin[J].Geochimica,2013,42(1):64-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700