保护性耕作对棕壤粒径分形特征及碳氮比分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of conservation tillage on soil particulate composition and distribution of soil carbon and nitrogen in brown soil
  • 作者:王少博 ; 曹亚倩 ; 冯倩倩 ; 郭亮亮 ; 梁海 ; 王雪洁 ; 韩惠芳 ; 宁堂原
  • 英文作者:WANG Shao-bo;CAO Ya-qian;FENG Qian-qian;GUO Liang-liang;LIANG Hai;WANG Xue-jie;HAN Hui-fang;NING Tang-yuan;College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources;
  • 关键词:保护性耕作 ; 土壤 ; 粒径分布 ; 分形特征 ; 碳氮比
  • 英文关键词:cultivation tillage;;soil;;particle size distribution;;fractal characteristics;;C/N ratio
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:山东农业大学农学院/作物生物学国家重点实验室/土肥资源高效利用国家工程实验室;
  • 出版日期:2019-05-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.128
  • 基金:公益性行业(农业)科研专项(201503117);; 国家自然科学基金项目(31771737,31471453)资助
  • 语种:中文;
  • 页:ZWYF201905011
  • 页数:13
  • CN:05
  • ISSN:11-3996/S
  • 分类号:98-110
摘要
[目的]分析长期不同耕作措施下棕壤土粒径分布的非均匀性和异质性变化特征,可为农田土壤发育过程以及科学合理耕作提供理论支撑。[方法]本试验基于山东农业大学农学试验站长期定位的保护性耕作试验田(始于2002),试验主要耕作措施有翻耕、免耕和深松3种,还田方式为秸秆全量还田和不还田。采用激光粒度分析仪(LS13320),测定小麦-玉米轮作系统中0—40 cm土层中的颗粒分布,应用土壤分形理论解析土壤颗粒含量、土壤质地颗粒分布状况及耕作措施和秸秆还田调控土壤颗粒分布的作用。[结果]土壤粒径的基本特征分布中,粘粒体积百分比表现为免耕>深松>初始土样>翻耕,秸秆还田>无秸秆还田,可见长期定位保护性耕作措施下,免耕秸秆还田增加了土壤粘粒含量,降低了土壤中C/NL比值,较低的C/N值促进土壤碳氮的分解从而增加土壤的C、N含量;土壤多重分形参数中,ZD(1)、D(1)/D(0)、D(2)、△a值都表现为深松和免耕显著高于翻耕处理,说明深松与免耕加剧了土壤颗粒细化,增进了土壤颗粒的异质性;深松秸秆还田加剧了土壤的非均匀程度,增强土壤结构稳定性,对土壤结构有一定的改良作用。土壤粘粒体积百分比与ZD(1)/D(0)呈显著负相关(P<0.05),土壤粉粒体积百分比与Δf呈显著负相关(P<0.05),土壤砂粒体积百分比与Δf呈正相关(P<0.05)。表明土壤多重分形参数可作为表征土壤颗粒分布、土壤性质的潜在指标。[结论]多重分形参数中D(1)、D(1)/D(0)、D(2)、Δα各处理间表现出差异,深松秸秆还田处理在细微程度上反映了保护性耕作措施的长期影响效果,免耕秸秆还田处理中土壤粘粒与土壤C/N呈极显著负相关,免耕秸秆还田促进粘粒增加,降低了土壤的C/N值,从而增加了土壤有机质及全氮的含量。多重分形参数对表征土壤性质具有重要的指导意义。
        [Objectives]To analyze the impact of long-term conservation tillage in brown soil on soil particulate composition and heterogeneity variation characteristics and explore ways to promote sustainable crop production while maintaining soil quality.[Methods ]A laser particle size( LS13320) analyzer was used to measure the particle size distribution of soil samples. The soil samples were collected from the top 0-40 cm soil depth of six treatments in a wheat-maize rotation system in 2006 and 2007, respectively, in the long-term tillage experiment on brown soil in Shandong Agricultural University Experimental Station. The tillage treatments included conventional tillage, no-till, and subsoiling tillage. Straw incorporation included complete return and straw removal. Soil particle fractionation was used to analyze soil particulate composition and its relationship with crop management.[Results ]On the characteristics of soil particulate size,the percentage of clay particulates was no-till > subsoiling > conventional tillage, and straw returning >the original soil> straw removal. Under the long-term continuous conservation tillage, clay particulates increased in the no-till straw returning, while soil C/N ratio reduced. The lower C/N ratio promotes decomposition of soil carbon and nitrogen. Values of soil multifraction parameters,D(1)、D(1)/D(0)、D(2) and Δa, showed increase in subsoiling tillage and no-till compared to conventional tillage, demonstrating the benefits of the subsoiling and no-till to soil particulate refinement, and improvement of soil particle heterogeneity. Subsoiling with straw returning increased soil particle aggregate inhomogeneity,enhanced soil structure stability and overall soil physical properties.[Conclusions ]Soil clay particulate and C/N ratio were significantly negatively correlated with no-till and straw returning, with increasing soil N and total N content. Multifraction parameters are useful indicators of soil properties.
引文
[1] Sun C L, Liu G B, Xue S. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil paticle-size distribution and soil nutrients[J]. Ecological Research,2016, 31(6):891-902.
    [2] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions:analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2):362-369.
    [3]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993, 38(20):1896-1899.Yang P L, Luo Y P, Shi Y C. Fractal features of soils characterized by particle weight distribution[J]. Chinese Science Bulletin, 1993,38(20):1896-1899.
    [4]孙国峰,陈阜,肖小平.轮耕对土壤物理性状及水稻产量影响的初步研究[J].农业工程学报,2007, 23(12):109-113.Sun G F, Chen F, Xiao X P. Preliminary study on effects of rotational tillage on soil physical properties and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12):109-113.
    [5] Herrick J E, Brown J R, Tugel A J. Management Paradigms from rangeland application of soil quality to monitoring and ecology[J].Agronomy Journal,2002, 94(1):3-11.
    [6] Gunther S, Holger K. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils[J]. Soil Biology and Biochemistry, 2003, 35:629-632.
    [7]张晓艳.保护性耕作条件下土壤物理性状及其土壤侵蚀的研究[D].兰州:甘肃农业大学硕士学位论文,2008.2-9.Zhang X Y. Study on soil physical characters and soil erosion under conservation tillage[D]. Lanzhou:MS Thesis of Gansu Agricultural University, 2008. 2-9.
    [8]刘鹏涛,冯佰利,慕芳.保护性耕作对黄土高原春玉米田土壤理化特性的影响[J].干旱地区农业研究,2009, 27(4):171-175.Liu P T, Feng B L, Mu F. Effects of conservation tillage on soil physicochemical properties in the spring maize area of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2009, 27(4):171-175.
    [9]周虎,李保国,吕贻忠.不同耕作措施下土壤孔隙的多重分形特征[J].土壤学报,2010,47(6):1094-1099.Zhou H, Li B G, Lu Y Z. Multifractal characteristics of soil pore structure under different tillage systems[J]. Acta Pedologica Sinca,2010, 47(6):1094-1099.
    [10]程科,李军,毛红玲.不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响[J].中国农业科学,2013, 46(18):3800-3808.Cheng K, Li J, Mao H L. Effects of different rotational tillage patterns on soil physical properties in rained wheat fields of the Loess Plateau[J]. Scientia Agricultura Sinica,2013, 46(18):3800-3808.
    [11]杨永辉,武继承,丁晋利,等.长期免耕对不同土层土壤结构与有机碳分布的影响[J].农业机械学报,2017, 48(9):173-182.Yang Y H, Wu J C, Ding J L, et al. Effects of long-term no-tillage on soil structure and organic carbon distribution in different soil layers[J]. Transactions of the Chinese Society for Agricultural Machinery,2017, 48(9):173-182.
    [12]王德,傅伯杰,陈利顶,等.不同土地利用类型下土壤粒径分形分析一以黄土丘陵沟壑区为例[J].生态学报,2007, 27(7):3081-3089.Wang D, Fu B J, Chen L X, et al. Fractal analysis of soil grain size under different land use types-taking loess hilly and gully region as an example[J]. Acta Ecologica Sinica, 2007, 27(7):3081-3089.
    [13]郑庆福,赵兰坡.农业利用对东北黑土粘粒矿物组成及养分的影响[J].吉林农业科学,2011,36(5):29-32.Zheng Q F, Zhao L P. Effect of agricultural use on clay minerals and nutrient of black soil in northeast of China[J]. Scientia AgriculturaJinlin, 2011,36(5):29-32.
    [14]孙梅,孙楠,徐明岗,等.长期不同施肥红壤粒径分布的多重分形特征[J].中国农业科学,2014, 47(11):2173-2181.Sun M, Sun N, Xu M G, et al. Multifractal characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11):2173-2181.
    [15]王金满,张萌,白中科.黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征[J].农业工程学报,2014, 30(4):230-238.Wang J M, Zhang M, Bai Z K. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4):230-238.
    [16] Grout H, Tarquis A M, Wiesner M R. Multifractal analysis of particle size distributions in soil[J]. Environmental Science&Technology,1998,32(9):1176-1182.
    [17] Evertsz C J G, Mandelbrot B B. Multifractal measures[M]. New York:Springler Verlag,1992.
    [18]茹豪,张建军,李玉婷,等.黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J].农业机械学报,2014, 46(4):176-182.Ru H, Zhang J J, Li Y T, et al. Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J].Transactions of the Chinese Society for Agricultural Machinery,2014,46(4):176-182.
    [19]赵明月,赵文武,刘源鑫.不同尺度下土壤粒径分布特征及其影响因子一以黄土丘陵沟壑区为例[J].生态学报,2015, 35(14):4625-4632.Zhao M Y, Zhao W W, Liu Y X. Comparative analysis of soil particle size distribution and its influence factors in different scales:a case study in the Loess Hilly-gully area[J]. Acta Ecologica Sinica,2015, 35(14):4625-4632.
    [20]孙哲,王一博,刘国华.基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析[J].冰川冻土, 2015, 37(4):980-990.Sun Z, Wang Y B, Liu G H. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory[J]. Journal of Glaciology and Geocryology, 2015, 37(4):980-990.
    [21]管孝艳,杨培岭,吕烨.基于多重分形的土壤粒径分布与土壤物理特性关系[J].农业机械学报,2011, 42(3):44-50.Guan X Y, Yang P L, Lu Y. Relationships between soil particle size distribution and soil physical properties based on multifractal[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(3):44-50.
    [22] Pieri L, Bittelli M, Pisa P R. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils[J]. Geoderma, 2006, 135(3):118-132.
    [23]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004, 24(1):71-74.Su Y Z, Zhao H L. Fractal characteristics of soil particles in farmland desertification evolution in Horqin Sandy land[J]. Acta Ecologica Sinica,2004, 24(1):71-74.
    [24]陈强,Keravchenko Y S,陈渊,等.少免耕土壤结构和导水能力的季节变化及其水保效果[J].土壤学报,2014, 51(1):11-21.Chen Q, Keravchenko Y S, Chen Y, et al. Seasonal variation of soil structure and water conduction capacity and its water conservation effect in less-tillage[J]. Acta Pedologica Sinica, 2014, 51(1):11-21.
    [25]于爱忠,黄高宝.保护性耕作对内陆河灌区春季麦田不可蚀性颗粒的影响[J].水土保持学报,2006, 20(2):6-9.Yu A Z, Huang G B. Effects of different tillage treatments on unerodible soil particles of wheat-field in spring in inland irrigation region[J]. Journal of Soil and Water Conservation,2006, 20(2):6-9.
    [26]温善菊,吴景贵.土壤颗粒和肥力关系的研究进展[J].延边大学农学报,2005, 15(1):65-71.Wen S J, Wu J G. Relation of soil-particle and fertility[J]. Journal of Agricultural Science Yanbian University, 2005, 15(1):65-71.
    [27]管孝艳,杨培岭,任树梅,等.基于多重分形理论的土壤粒径分布非均匀性分析[J].应用基础与工程科学学报,2009, 17(2):196-205.Guan X Y, Yang P L, Ren S M, et al. Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2):196-205.
    [28]李勇,张建辉,罗大伟.耕作侵蚀及其农业环境意义[J].山地学报,2000, 18(6):514-519.Li Y, Zhang J H, Luo D A. Tillage translocation and tillage erosion processes and their templcations for agro-ecosystems[J]. Journal of Mountain Science, 2000, 18(6):514-519.
    [29] Su Y Z, Zhao H L, Zhang T H, Zhao X Y. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China[J]. Soil and Tillage Research, 2004, 75(1):27-36.
    [30]夏青,何丙辉.土壤物理特性对水力侵蚀的影响[J].水土保持应用技术,2006,(5):12-15.Xia Q, He B H. Effects of soil physical characteristics on hydraulic erosion[J]. Application Technology of Soil and Water Conservation,2006,(5):12-15.
    [31]王建林,钟志明,王忠红,等.青藏高原高寒草原生态系统土壤碳氮比的分布特征[J].生态学报,2014, 34(22):6678-6691.Wang J L, Zhong Z M, Wang Z H. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22):6678-6691.
    [32] Adl S M, Coleman D C, Read F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no tillage management[J]. Agriculture Ecosystems&Environment, 2006,(2-4):323-334.
    [33]田慎重,王瑜,宁堂原,等.转变耕作方式对长期旋免耕农田土壤有机碳库的影响[J].农业工程学报,2016, 32(17):98-105.Tian S Z, Wang Y, Ning T Y. Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage[J]. Transactions of the Chinese Society of Agricultural Engineering,2016, 32(17):98-105.
    [34]赵亚丽,于淑婷,穆心愿,等.深耕加秸秆还田下施氮量对土壤碳氮比、玉米产量及氮效率的影响[J].河南农业科学,2016, 45(10):50-54.Zhao Y L, Yu S T, Mu X Y, et al. Effects of nitrogen application rate on soil C/N, maize yield and nitrogen efficiency under condition of deep tillage and straw returning[J]. Journal of Henan Agricultural Sciences, 2016, 45(10):50-54.
    [35]代豫杰,李锦荣,郭建英.乌兰布和沙漠不同灌丛土壤颗粒多重分形特征及其与有机碳分布的关系[J].环境科学研究,2017, 30(7):1069-1078.Dai Y J, Li J R, Guo J Y. Soil particle multifractals and soil organic carbon distributions and correlations under different shrubs in Ulan Buh Desert[J]. Research of Environmental Sciences, 2017, 30(7):1069-1078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700