基于雷诺数和直径比两个因素的同心环状缝隙流轴向速度试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Axial Velocity of Cyclical Slit Flow of Concentricity Based on Reynolds Number and Diameter Ratio
  • 作者:孙蕾
  • 英文作者:SUN Lei;Linfen Water Conservancy Surveying and Design Institute;College of Water Resources Science and Engineering,Taiyuan University of Technology;
  • 关键词:环状缝隙流 ; 管道水流 ; 轴向速度 ; 雷诺数 ; 直径比
  • 英文关键词:cyclical slit flow;;pipe flow;;axial velocity;;Reynolds number;;diameter ratio
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:临汾市水利勘测设计院;太原理工大学水利科学与工程学院;
  • 出版日期:2018-11-15
  • 出版单位:中国农村水利水电
  • 年:2018
  • 期:No.433
  • 基金:国家自然科学基金项目(51109115,51179116)
  • 语种:中文;
  • 页:ZNSD201811036
  • 页数:4
  • CN:11
  • ISSN:42-1419/TV
  • 分类号:180-183
摘要
为了进一步研究同心环状缝隙水流特性,通过理论分析推导出环状缝隙流轴向速度的计算公式,得出雷诺数和直径比是影响其大小的主要因素,并结合模型试验研究如何影响,以及其与管道水流速度和圆柱体速度三者之间的关系。结果表明:环状缝隙流轴向速度与雷诺数基本成正比的线性关系,同一直径比时,雷诺数越大,圆柱体速度增大最快,管道水流速度次之,环状缝隙流速增大最慢;直径比在0.5~0.7范围时,缝隙流速最大;雷诺数越大,达到稳定运动状态的直径比越小;直径比越大,达到稳定运动状态的雷诺数越小。因此从缝隙流量和系统稳定运行两个角度综合考虑时,建议选择雷诺数的范围为210 700~245 817,直径比为0.7。
        In order to further study the hydraulic characteristics of cyclical slit flow of concentricity,the formula of the axial velocity of cyclical slit flow is deduced through theoretical analysis.It is concluded that Reynolds number and diameter ratio are the main factors that have effect on it.How to influence and the relations among axial velocity of cyclical slit flow,pipe flow velocity and cylinder speed are probed intoby making model experiments.The results show that the axial velocity of cyclical slit flow is approximately linear with Reynolds number.As Reynolds number increases,the cylinder speed increases fastest,pipe flow velocity follows and axial velocity of cyclical slit flow slowest under same diameter ratio.The maximal axial velocity of cyclical slit flow is recorded when diameter ratio ranges from 0.5 to 0.7.The bigger the Reynolds number is,the stabilizing diameter ratio is smaller.The bigger the diameter ratio is,the stabilizing Reynolds number is smaller.Therefore,Reynolds number ranging from 210 700 to 245 817 and choosing the diameter ratio of 0.7 is proposed when two points of the silt flow and the system stable running are considered.
引文
[1]徐贤良,朱兵,张军.同心环形缝隙流理论研究[J].安徽理工大学学报,2004,(3):40-42.
    [2]曾亿山,郭永存.流体力学[M].合肥:合肥工业大学出版社,2008:149-150.
    [3]刘李平,侯煜.缝隙流动中温度和压差对泄漏量的影响[J].机械管理开发,2011,(2):48-50.
    [4]常玉连,李振海,高胜.增压泵换向滑阀间隙密封仿真研究[J].流体机械,2010,38(11):17-20.
    [5]张祝新,程晓新,夏圣强.流体在同心环状空间中流动时的压力损失[J].长春地质学院学报,1997,27(2):221-225.
    [6]赖邦钧,周梓荣,彭浩柯.间隙泄漏水量的初步测定及其计算公式的探讨[J].凿岩机械气动工具,2002,(2):45-54.
    [7]王强,姜继海,袁俊超.利用流场仿真技术计算水压外啮合齿轮泵内液压径向力[J].流体机械,2008,36(6):39-42.
    [8]金英字,李军,赵宝峰.平行平板缝隙流中黏性阻力的研究[J].水利科技与经济,1997,(1):28-29.
    [9]周梓荣,李夕兵,刘迎春.环形缝隙中压力水的流动规律研究与试验[J].中国机械工程,2005,(11):1 009-1 012.
    [10]吴持恭.水力学[M].北京:高等教育出版社,2008:133-142.
    [11]柳景青,张土乔.调度时用水量预测的分时段混沌建模方法[J].浙江大学学报:工学版,2005,39(1):11-15.
    [12]KID?I1 9.Stream flow forecasting using different artificial neural network algorithms[J].Journal of Hydrologic Engineering,2007:532-539.
    [13]李永业,孙西欢,李飞.不同型号的管道车在管道中运移的水力特性[J].排灌机械工程学报,2010,28(2):175-177.
    [14]王锐,孙西欢,李永业.管道车在不同雷诺数条件下的输送特性[J].排灌机械工程学报,2011,29(4):344-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700