超声速三维进气道内激波干扰的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigations on Shock/Shock Interactions in Three-Dimensional Supersonic Inlets
  • 作者:项高翔 ; 王春 ; 汪运鹏 ; 姜宗林
  • 英文作者:XIANG Gao-xiang;WANG Chun;WANG Yun-peng;JIANG Zong-lin;Institute of Mechanics,Chinese Academy of Sciences;
  • 关键词:高超声速流动 ; 箱式进气道 ; 侧壁压缩进气道 ; 波系结构 ; 流场区域
  • 英文关键词:Hypersonic flow;;Box-type inlet;;Sidewall compression inlet;;Wave configuration;;Flow field
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国科学院力学研究所;
  • 出版日期:2017-10-23 15:48
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.246
  • 基金:国家自然科学基金(11372333;11672357)
  • 语种:中文;
  • 页:TJJS201712002
  • 页数:6
  • CN:12
  • ISSN:11-1813/V
  • 分类号:17-22
摘要
为了为三维进气道的设计提供有用的分析数据,对高超声速和超声速来流下三维进气道内激波干扰进行了理论和数值研究。进气道模型选取"箱式"以及三面侧压进气道作为研究对象。理论分析采用了"空间降维"方法,即将进气道各个角落处的三维双楔定常激波干扰问题转换为二维非定常激波干扰问题,并利用激波动力学对其进行求解。数值验证方法利用2阶NND差分格式求解三维无粘欧拉方程,网格数量为1200多万,并采用MPI并行进行计算。该理论分析方法很好地对进气道各个角落处的激波干扰波系结构进行了判别,并得到了干扰区马赫构型三波点附近以及规则构型反射点附近的解析解,理论分析结果与数值模拟结果吻合较好。此外,针对进气道截面内各个流场区域的总压恢复系数以及压力、密度和温度进行了研究,并考虑了箱式进气道和三面侧壁压缩进气道内的流场区域的非均匀性,干扰区马赫杆后的总压损失要比其他区域高10%左右。通过研究表明,"空间降维"方法适用于进气道压缩部分,将为进气道的设计和性能评估提供一种理论分析手段。
        In order to provide useful data for the designs of the 3D inlets,the shock/shock interactions for the three-dimensional(3D)inlets in supersonic and hypersonic flows theoretically and numerically were explored. Box-type and sidewall compression inlet were selected as the researching model. A theoretical approach called 'spatial dimension reduction' was used,which transformed the problem of 3D steady to a two-dimensional unsteady one and used the shock dynamics to solve it. A two-order NND(Non-oscillatory,Non-free-parameters,Dissipative)numerical scheme was used to solve the 3D inviscid Euler equations in the numerical validation,the mesh nodes were 12 million and MPI parallel computation technology was adopted in the program. The theoretical method could determine the wave configurations in corner flow of the inlet well and obtain the solution to the flow field of shock/shock interaction in the vicinity of three-point or near the reflection point,and it agreed well with the numerical results. Also,the density,temperature,pressure,and total pressure recovery coefficient of each zone on the cross-section were investigated,the non-uniformities in the flow field for box-type and sidewall compression inlet were also discussed,the total pressure recovery coefficient behind the Mach stem is about 10 percent less than other zones. It indicated the 'spatial dimension reduction' approach was applied to the compressional part of the inlets and it would be useful to the designs and performance assessment of the 3D inlets.
引文
[1]Babinsky H,John K H.Shock Wave-Boundary-Layer Interactions[M].UK:Cambridge University Press,2011.
    [2]Heiser W H,Pratt D T.Hypersonic Airbreathing Propulsion[J].AIAA Journal,1994,26(4):5-12.
    [3]Ben-Dor G.Shock Wave Reflection Phenomena[M].New York:Springer,2007.
    [4]Edney B.Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock[R].The Aeronautical Research Institute of Sweden,Report No.:FFA-115,1968.
    [5]Teng H Y,Settles G S.Cylindrical and Conical Upstream Influence Regimes of 3-D Shock/turbulent Boundary Layer Interactions[R].AIAA 82-0987.
    [6]Settles G S,Teng H Y.Cylindrical and Conical Flow Regimes of Three-Dimensional Shock/Boundary-Layer Interactions[J].AIAA Journal,1984,22(2):194-200.
    [7]Knight D D,Horstman C C,Settles G S.Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions Generated by a Sharp Fin at Mach 4[R].AIAA 91-0649.
    [8]Lu F K,Settles G S,Horstman C C.Mach Number Effects on Conical Surface Features of Swept Shock-Wave/Boundary-Layer Interactions[J].AIAA Journal,1990,28(1):91-97.
    [9]Dolling D S,Bogdonoff S M.Upstream Influence in Sharp Fin-Induced Shock Wave Turbulent Boundary-Layer Interaction[J].AIAA Journal,1983,21(1):143-145.
    [10]Settles G S.Experimental Research on Swept Shock Wave/Boundary Layer Interactions[R].Pennsylvania State University Park Dept of Mechanical Engineering,Report No.:PSU-ME-R-87/88-0031,1988.
    [11]岳连捷,叶青,徐显坤,等.三面压缩高超进气道附面层抽吸研究[J].航空动力学报,2012,27(2):372-378.
    [12]肖雅彬,岳连捷,龚鹏,等.三面压缩式高超声速进气道流动结构研究[J].实验流体力学,2008,22(2):64-67.
    [13]赵一龙,范晓樯,王翼,等.高超侧压进气道溢流方案的改进与分析[J].推进技术,2013,34(7):873-879.(ZHAO Yi-long,FAN Xiao-qiang,WANG Yi,et al.Spillage Amelioration and Analysis of SideCompression Hypersonic Inlet[J].Journal of Propulsion Technology,2013,34(7):873-879.)
    [14]曹学斌,朱守梅,满延进,等.考虑进气道喉道非均匀流场影响的隔离段直连试验[J].推进技术,2015,36(4):547-555.(CAO Xue-bin,ZHU Shou-mei,MAN Yan-jin,et al.Direction Connect Test on Isolator Considering Effects of Nonuniform Flow at Inlet Throat[J].Journal of Propulsion Technology,2015,36(4):547-555.)
    [15]李桦,贾地,范晓樯,等.高超侧压进气道前/后掠的数值分析和比较[J].推进技术,2007,28(1):65-68.(LI Hua,JIA Di,FAN Xiao-qiang,et al.Calculation and Comparison of Forward/Backward Swept Sidewall Compression Scramjet Inlets[J].Journal of Propulsion Technology,2007,28(1):65-68.)
    [16]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压进气道[J].推进技术,1998,19(1):20-24.(ZHANG Kun-yuan,XIAO Xu-dong,XU Hui.Hypersonic Sidewall Compression Inlet with Constant Spillage Angle Design at Non-Unoform Incoming Flow[J].Journal of Propulsion Technology,1998,19(1):20-24.)
    [17]Charwat A F,Redekeopp L G.Supersonic Interference Flow along the Corner of Intersecting Wedges[J].AIAA Journal,1967,5(3):480-488.
    [18]Marconi F.Supersonic,Inviscid,Conical Corner Flowfields[J].AIAA Journal,1980,18(1):78-84.
    [19]Yang Y,Wang C,Jiang Z L.Analytical and Numerical Investigations of the Reflection of Asymmetric Nonstation-Ary Shock Waves[J].Shock Waves,2012,22(54):435-449.
    [20]Xiang G X,Wang C,Teng H H,et al.Study on Mach Stems Induced by Interaction of Planar Shock Waves on Two Intersecting Wedges[J].Acta Mechanica Sinica,2016,32(3):362-368.
    [21]Xiang G X,Wang C,Teng H H,et al.Investigations of Three-Dimensional Shock/Shock Interactions over Symmetrical Intersecting Wedges[J].AIAA Journal,2016,54(5):1472-1481.
    [22]Xiang G X,Wang C,Hu Z M,et al.Theoretical Solutions to Three-Dimensional Asymmetrical Shock/shock interaction[J].Science China Technological Sciences,2016,59(8):1208-1216.
    [23]Xie P,Han Z Y,Takayama K.A Study of the Interaction Between Two Triple Points[J].Shock Waves,2005,14(1):29-36.
    [24]张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学报,1988,6(2):143-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700