液压减振器橡胶气带性能测试与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Test and Analysis of Rubber Gas Belt for Hydraulic Shock Absorber
  • 作者:相翔 ; 倪文波 ; 周成佳
  • 英文作者:XIANG Xiang;NI Wen-bo;ZHOU Cheng-jia;Department of Railway Vehicle Engineering, Southwest Jiaotong University;
  • 关键词:液压减振器 ; 发泡橡胶 ; 回归分析 ; AMESim
  • 英文关键词:hydraulic shock absorber;;foam rubber;;regression analysis;;AMESim
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:西南交通大学机车车辆工程系;
  • 出版日期:2019-04-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.332
  • 基金:国家重点研发计划资助(2016YFB1200501)
  • 语种:中文;
  • 页:YYYQ201904004
  • 页数:5
  • CN:04
  • ISSN:11-2059/TH
  • 分类号:27-31
摘要
发泡橡胶具有较好的耐热老化性、耐油性和耐压缩永久变形性能,在液压减振器储油腔中采用发泡橡胶气带替代气腔,是解决减振器气穴现象和油液乳化现象的有效方法。发泡橡胶特性对减振器阻尼作用有很大的影响,通过发泡橡胶在液压油内压缩实验,用回归分析方法得到其压力-体积变化规律,进一步利用AMESim软件完成对采用橡胶气带减振器的仿真分析。减振器测试结果表明,发泡橡胶的压力-体积变化规律较好的反映了气带在减振器中的工作情况,对液压减振器用发泡橡胶气带的设计有一定的指导意义。
        A foam rubber has good heat-proof aging, oil resistance and low compression set. It is an effective method to solve the cavitation and emulsification of hydraulic shock absorber by replacing a gas chamber with a foam rubber gas belt. The characteristics of foam rubber have great influence on damping effect of shock absorber. Through compression test in the hydraulic oil and regression analysis, the pressure-volume variation of foam rubber is obtained, and simulation analysis of shock absorber with rubber gas belt is completed by the software AMESim. The test results indicate that the pressure-volume variation of foam rubber can reflect the working condition of gas belt in the shock absorber sufficiently. The conclusion has certain guiding significance for design of foam rubber gas belt of hydraulic shock absorber.
引文
[1] 严隽耄,傅茂海.车辆工程[M].北京:中国铁道出版社,2008.YAN Junmao,FU Maohai.Vehicle Engineering [M].Beijing:China Railway Publishing House,2008.
    [2] 罗天洪,金锐超,江礁,等.液压减振器液压模型与气穴异响研究[J].重庆交通大学学报(自然科学版),2014,33(1):153-156.LUO Tianhong,JIN Ruichao,JIANG Jiao,et al.Hydraulic Model and Cavitations of Hydraulic Buffer [J].Journal of Chongqing Jiaotong University,2014,33(1):153-156.
    [3] 安成光,曹阳,张建武.双筒式液压减振器节流孔气穴现象和噪声分析[J].上海交通大学学报,2018,52(3):297-304.AN Chengguang,CAO Yang,ZHANG Jianwu.Hydraulic Shock Absorber Orifice Cavitation and Noise Analysis [J].Journal of Shanghai Jiaotong University,2018,52(3):297-304.
    [4] 马治华.液压油乳化的原因分析、危害及对策[J].科技经济市场,2014,(8):122.MA Zhihua.Analysis,Harm and Countermeasures of Hydraulic Oil Emulsification [J].Science & Technology Economy Market,2014,(8):122.
    [5] 杨国帧,王福天.机车车辆液压减振器[M].北京:中国铁道出版社,2003.YANG Guozhen,WANG Futian.Hydraulic Shock Absorber for Railway Vehicle [M].Beijing:China Railway Publishing House,2003.
    [6] 陈永军,邹华,伍社毛,等.丁腈橡胶复合材料的制备与性能[J].机械工程材料,2017,41(9):61-67.CHEN Yongjun,ZOU Hua,WU Shemao,et al.Preparation and Poperties of Nitrile Rubber Composite [J].Materials for Mechanical Engineering,2017,41(9):61-67.
    [7] 费业泰.误差理论与数据处理[M].北京:机械工业出版社,2015.FEI Yetai.Error Theory and Data Processing [M].Beijing:China Machine Press,2015.
    [8] 戎红俊,彭宇明,李国华,等.基于AMESim的汽车液压减振器失效仿真[J].液压与气动,2016,(5):26-31.RONG Hongjun,PENG Yuming,LI Guohua,et al.Simulation Analysis of the Failure of Hydraulic Shock Absorber in AMESim [J].Chinese Hydrualics & Pneumatics,2016,(5):26-31.
    [9] 马天飞,崔泽飞,张敏敏.基于AMESim双筒叠加阀片式充气减振器建模与仿真[J].机械工程学报,2013,49(12):123-130.MA Tianfei,CUI Zefei,ZHANG Minmin.Modeling and Simulating of the Gas-precharged Dual-sleeve Shock Absorber with Multiple Valve Plates Using AMESim [J].Journal of Mechanical Engineering,2013,49(12):123-130.
    [10] 柳文健,丁渭平,杨明亮,等.基于AMESim的液压减振器异响分析与改进研究[J].液压与气动,2014,(3):109-112.LIU Wenjian,DING Weiping,YANG Mingliang,et al.Analysis of Abnormal Noise and Improvement for Hydraulic Danper Baesd on AMESim [J].Chinese Hydrualics & Pneumatics,2014,(3):19-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700