基于相对增益阵列方法的水电站多机水力耦合系统交互影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction Analysis of Hydro-Coupled Power Plants Based on Relative Gain Array Method
  • 作者:邹金 ; 赖旭
  • 英文作者:ZOU Jin;LAI Xu;State Key Laboratory of Water Resources and Hydropower Engineering Science (Wuhan University);
  • 关键词:水电站 ; 多机 ; 水力耦合 ; 相对增益阵列 ; 交互影响 ; 调速控制
  • 英文关键词:hydropower plants;;multiple units;;hydraulic coupling;;relative gain array(RGA);;interaction;;speed control
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:水资源与水电工程科学国家重点实验室(武汉大学);
  • 出版日期:2017-06-13 13:52
  • 出版单位:中国电机工程学报
  • 年:2017
  • 期:v.37;No.575
  • 基金:国家自然科学基金项目(51379159);; 高等学校博士学科点专项科研基金资助项目(20130141130001)~~
  • 语种:中文;
  • 页:ZGDC201712011
  • 页数:8
  • CN:12
  • ISSN:11-2107/TM
  • 分类号:91-97+314
摘要
水电站多机引水系统复杂供水方式下产生的水力耦合现象导致各机组交互作用,其对电站整体动态特性及调速系统参数整定具有重要影响。相对增益阵列(relative gain array,RGA)是多变量控制系统中各控制变量间交互影响的通用分析方法。该文针对水电站多机水力耦合系统各机组调速控制回路间的交互影响,采用RGA方法对其进行了定量分析。通过建立水电站多机耦合系统整体状态方程,求解系统各调速控制回路间的频域RGA矩阵,揭示了多机耦合系统机组间交互程度在频域内的变化规律,并分析了调压室、岔管等水力系统参数对这种交互的影响。系统时域仿真结果表明了RGA分析方法的可行性及有效性,其分析结果可为水电站多机协调控制策略设计提供依据。
        The complex water supply modes in the water diversion system of hydropower plants with multiple units cause interactions among the hydraulic coupling units, which change the dynamic behavior of whole hydro generation system, and have great effects on the control tuning of governors. The relative gain array(RGA) method provides a measure of interactions among control loops in a coupled system. In this paper, RGA method was applied to quantify the control interactions among different units in a hydro-coupled power plant. Based on the state space equation of the whole hydro-coupled generation system, RGA matrix of the coupled system was calculated in frequency domain. Distribution properties of the interactions in frequency domain had been analyzed and influences of the surge tank and the branch penstocks on the degree of such interactions had been proved. Time domain simulations indicate the practicability and effectiveness of the RGA method and these interaction analyses will provide basis for coordinated control design for multi-units in hydro-coupled power plants.
引文
[1]张江滨,李华,谢辉平.水电机组并网运行频率调节系统的稳定性[J].电网技术,2009,33(9):57-62.Zhang Jiangbin,Li Hua,Xie Huiping.Stability of frequency regulating system for hydropower units in grid-connected operation[J].Power System Technology,2009,33(9):57-62(in Chinese).
    [2]Furukawa K,Izena A,Shimojo T,et al.Governor control study at the time of a black start[C]//2004 IEEE Power and Energy Society General Meeting.Denver,CO,USA:IEEE,2004:1521-1526.
    [3]魏守平.水轮机调节系统一次调频及孤立电网运行特性分析及仿真[J].水电自动化与大坝监测,2009,33(6):27-39.Wei Shouping.Analysis and simulation on the primary frequency regulation and isolated grid operation characteristics of hydraulic turbine regulating systems[J].Hydropower Automation and Dam Monitoring,2009,33(6):27-39(in Chinese).
    [4]沈祖诒.水轮机调节[M].北京:水利水电出版社,1998.Shen Zuyi.Governor control of hydro turbine[M].Beijing:Water Resources and Electric Power Press,1998(in Chinese).
    [5]Hannett L,Fardanesh B.Field tests to validate hydro turbine governor model structure and parameters[J].IEEE Trans.on Power Systems,1994,9(4):1744-1751.
    [6]Johnson R,Chow J,Dillon M.Pelton turbine deflector over speed control for a small power system[C]//2003IEEE Power and Energy Society General Meeting.Toronto,ON,Canada:IEEE,2003:2171-2176.
    [7]Working Group on Prime Mover and Energy Supply.Hydraulic turbine and turbine control models for system dynamic studies[J].IEEE Trans.on Power Systems,1992,7(1):167-178.
    [8]刘启钊.水电站[M].北京:中国水利水电出版社,2010.Liu Qizhao.Hydropower station[M].Beijing:Water Resources and Electric Power Press,2010(in Chinese).
    [9]周建旭,张健,刘德有.双机共变顶高尾水洞系统水力干扰计算研究[J].河海大学学报:自然科学版,2004,32(6):661-664.Zhou Jianxu,Zhang Jian,Liu Deyou.Hydraulic turbulence calculation for tail water tunnel system with a sloping ceiling shared by two units[J].Journal of Hohai University:Natural Science,2004,32(6):661-664(in Chinese).
    [10]曾云,张立翔,郭亚昆,等.共用管段的水力解耦及非线性水轮机模型[J].中国电机工程学报,2012,32(14):103-108.Zeng Yun,Zhang Lixiang,Guo Yakun,et al.Hydraulic decoupling and nonlinear hydro turbine model with sharing common conduit[J].Proceedings of the CSEE,2012,32(14):103-108(in Chinese).
    [11]Wozniak L,Collier F,Foster J.Digital simulation of an impulse turbine:The Bradley lake project[J].IEEE Trans.on Energy Conversion,1991,6(1):39-46.
    [12]Vournas C D,Zaharakis A.Hydro turbine transfer functions with hydraulic coupling[J].IEEE Trans.on Energy Conversion,1993,8(3):527-532.
    [13]Hannett L,Feltes J,Fardanesh B,et al.Modeling and control tuning of a hydro station with units sharing a common penstock section[J].IEEE Trans.on Power Systems,1999,14(4):1407-1414.
    [14]Hernandez G,Jones D.MIMO generalized predictive control for a hydroelectric power station[J].IEEE Transactions on Energy Conversion,2006,21(4):921-929.
    [15]Mcavoy T J.Interaction analysis[M].America:USA Instrument Society of America,1983.
    [16]张鹏翔,曹一家,王海风,等.相对增益矩阵方法在柔性交流输电系统多变量控制器交互影响分析中的应用[J].中国电机工程学报,2004,24(7):14-17.Zhang Pengxiang,Cao Yijia,Wang Haifeng,et al.Application of relative gain array method to analyze interaction of multi-functional FACTS controllers[J].Proceedings of the CSEE,2004,24(7):14-17(in Chinese).
    [17]Skogestad S,Postlethwaite I.Multivariable feedback control[M].Chichester,U.K.:Wiley,2007.
    [18]Milanovic J V,Serrano D A C.Identification of electromechanical modes and placement of PSSs using relative gain array[J].IEEE Trans.on Power Systems,2004,19(1):410-417.
    [19]Bristol E.On a new measure of interaction for multivariable process control[J].IEEE Trans on Automation Control,1966,11(1):133-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700