UV-B辐射增强对马铃薯叶片结构及光合参数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of enhanced UV-B radiation on potato leaf structure and photosynthetic parameters
  • 作者:李俊 ; 杨玉皎 ; 王文丽 ; 郭华春
  • 英文作者:LI Jun;YANG Yujiao;WANG Wenli;GUO Huachun;College of Agronomy and Biotechnology,Yunnan Agricultural University;Institute of Tropical Eco-agricultural Sciences,Yunnan Academy of Agricultural Sciences;
  • 关键词:马铃薯 ; UV-B辐射 ; 形态适应 ; 地方品种
  • 英文关键词:Potato;;UV-B radiation;;morphological adaptation;;landraces
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:云南农业大学农学与生物技术学院;云南省农业科学院热区生态农业研究所;
  • 出版日期:2017-03-27 08:24
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(31260342);; 国家马铃薯产业体系(CARS-10-P21);; 云南省马铃薯种业重大专项(2013ZA007)
  • 语种:中文;
  • 页:STXB201716012
  • 页数:14
  • CN:16
  • ISSN:11-2031/Q
  • 分类号:109-122
摘要
叶片作为植物进行光合作用的主要器官,在长期进化过程中形成了对不同光照环境条件的形态可塑性和相应的适应机制,以保证植物能在变化的、非适宜环境下的生存与繁衍。随着大气臭氧层衰减引起地表UV-B辐射增强,其对植物叶片结构和光合作用的影响显著,但这种气候变化趋势对马铃薯叶片形态结构、光合作用的影响尚不明确。设置增强UV-B辐射2.5 kJm~(-2)d~(-1)(T1)、5.0 kJm~(-2)d~(-1)(T2)、自然光(CK)3个处理,以6个马铃薯品种(系)为材料,研究增强辐射对不同基因型马铃薯叶片结构和光合参数的影响。结果表明:增强的UV-B辐射使马铃薯叶片解剖结构不同程度增厚,叶片厚度增加;叶片气孔和非腺毛的密度增加明显,腺毛有增多倾向。扫描电镜显示处理后的近轴面叶片角质层厚度增加,蜡质晶体增多,但表皮细胞变小且失水萎缩,细胞轮廓模糊;气孔、腺毛及非腺毛附属结构受胁迫影响呈萎缩状态。透射电镜显示处理后的叶肉细胞中基粒类囊体肿胀,结构层次紊乱,胁迫引起细胞质壁分离,细胞壁扭曲并有较多的沉淀物;部分品种过氧化物酶体可见清晰的过氧化氢酶晶体。叶片缩小增厚、腺毛增多、角质层和蜡质增厚、胞内积累过氧化氢酶的形态适应和生理响应并未能有效减少UV-B辐射对光合参数和光合效率的影响,合作88、丽薯6号、师大6号的净光合速率、气孔导度等参数均受到抑制,光能利用效率明显降低,属于UV-B辐射敏感型品种;剑川红21-3、21-1和转心乌3个品种(系)的相关光合特性几乎不受影响,显示云南地方品种具有较强的UV-B辐射耐受性,有待于进一步从生理生化和分子水平探究更多的适应机制。
        Plant leaves are important organs due to their autotrophism,and plants have evolved diversified leaf protection mechanisms to ensure their survival under unstable and sub-optimal environmental conditions. Leaf morphological plasticity and alterations to leaf structure are commonly observed following exposure to different light illuminations. There has been extensive research on the enhanced UV-B radiation increase at the earth's surface due to ozone and its deleterious effects to leaf structure and crop photosynthesis,but few studies have investigated the effect on potato. In this study,six potato varieties( lines) were grown under 0,2.5,and 5.0 kJm~(-2)d~(-1)of biologically effective UV-B radiation in pots under field conditions to evaluate the general effects of enhanced UV-B radiation on the leaf structure and photosynthesis of different potato genotypes. The results showed that the leaves of most varieties became incrassate to varying degrees,which,with the exception of one variety,led to an increase in total leaf thickness. The stomata,non-glandular and glandular trichomedensities significantly increased. The thickness of the cuticle and wax layer on the adaxial surface appeared to have obvious incrassation based on the scanning electron microscope images,and all these morphological responses have been widely recognized as effective ways of improving tolerance or resistance to UV-B radiation. However,the inhibitive and damaging effects of elevated UV-B radiation to epidermal cells have also been observed. These include smaller cell size,an undefined cellular profile,and an atrophic shape due to dehydration. Constitutive stomata and trichome cells showed similar symptoms.The transmission electron microscope images showed that grana thylakoids in mesophyll cells were swollen in shape and the layers had a disordered appearance. Induced plasmolysis and sediments on twisted cell walls were observed in some cells under UV-B radiation stress. In addition,some catalase paracrystalline inclusions were found in some peroxisomes of a few treated cells,but none were found in the control cells,which suggested that accumulated catalase could alleviate the oxidative stress caused by UV-B radiation. However,these adaptations to leaf anatomy and ultrastructure,and changes in physiological responses could not ameliorate all the destructive effects of enhanced UV-B radiation on the leaves of the treated potato varieties. The six varieties showed distinct interspecific differences in their photosynthetic parameters,such as light use efficiency. Half of them( ‘Hezuo 88',‘Lishu 6',and‘Shida 6') suffered significant photosynthesis inhibition,which led to a serious decline in photosynthetic efficiency. However, the other half( ‘21-1', ‘21-3 ', and‘Zhuanxinwu') seemed entirely unaffected. Given that the latter three varieties( lines) are landraces in Yunnan Province,they should be more adaptive and tolerant to the locally high UV-B radiation levels that occur in this low-latitude plateau region. Future research needs to investigate underlying adaptive mechanisms at the physiological and molecular levels.
引文
[1]Caldwell M M,Bj9rn L O,Bornman J F,Flint S D,Kulandaivelu G,Teramura A H,Tevini M.Effects of increased solar ultraviolet radiation on terrestrial ecosystems.Journal of Photochemistry and Photobiology B:Biology,1998,46(1/3):40-52.
    [2]Caldwell M M,Bornman J F,BallaréC L,Flint S D,Kulandaivelu G.Terrestrial ecosystems,increased solar ultraviolet radiation,and interactions with other climate change factors.Photochemical&Photobiological Sciences,2007,6(3):252-266.
    [3]BallaréC L,Caldwell M M,Flint S D,Robinson S A,Bornman J F.Effects of solar ultraviolet radiation on terrestrial ecosystems.Patterns,mechanisms,and interactions with climate change.Photochemical&Photobiological Sciences,2011,10(2):226-241.
    [4]徐佳妮,雷梦琦,鲁瑞琪,赵杨阳,黄萱.UV-B辐射增强对植物影响的研究进展.基因组学与应用生物学,2015,34(6):1347-1352.
    [5]Reboredo F,Lidon F J C.UV-B radiation effects on terrestrial plants-A perspective.Emirates Journal of Food and Agriculture,2012,24(6):502-509.
    [6]陈慧泽,韩榕.植物响应UV-B辐射的研究进展.植物学报,2015,50(6):790-801.
    [7]Robson T M,Klem K,Urban O,Jansen M A K.Re-interpreting plant morphological responses to UV-B radiation.Plant,Cell&Environment,2015,38(5):856-866.
    [8]Breznik B,Germ M,Kreft I,Gaber2cˇik A.Crop Responses to Enhanced UV-B Radiation//Singh S N ed.Climate Change and Crops.Berlin Heidelberg:Springer,2009:269-281.
    [9]Lidon F J C,Reboredo F H,Leit2o A E,Silva M M A,Duarte M P,Ramalho J C.Impact of UV-B radiation on photosynthesis-An overview.Emirates Journal of Food and Agriculture,2012,24(6):546-556.
    [10]Kataria S,Jajoo A,Guruprasad K N.Impact of increasing Ultraviolet-B(UV-B)radiation on photosynthetic processes.Journal of Photochemistry and Photobiology B:Biology,2014,137:55-66.
    [11]Kakani V G,Reddy K R,Zhao D,Sailaja K.Field crop responses to ultraviolet-B radiation:a review.Agricultural and Forest Meteorology,2003,120(1/4):191-218.
    [12]Reddy K R,Prasad P V V,Singh S K.Effects of ultraviolet-B radiation and its interactions with climate change factors on agricultural crop growth and yield//Gao W,Schmoldt D,Slusser J R eds.UV Radiation in Global Climate Change.Berlin Heidelberg:Springer,2010:395-436.
    [13]Vogelmann T C,Gorton H L.Leaf:light capture in the photosynthetic organ//Hohmann-Marriott M F ed.The Structural Basis of Biological Energy Generation.Netherlands:Springer Science+Business Media,2014:363-377.
    [14]Jacobs J F,Koper G J M,Ursem W N J.UV protective coatings:A botanical approach.Progress in Organic Coatings,2007,58(2/3):166-171.
    [15]Lee S B,Suh M C.Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species.Plant Cell Reports,2015,34(4):557-572.
    [16]Liakopoulos G,Stavrianakou S,Karabourniotis G.Trichome layers versus dehaired lamina of Olea europaea leaves:differences in flavonoid distribution,UV-absorbing capacity,and wax yield.Environmental and Experimental Botany,2006,55(3):294-304.
    [17]包龙丽,何永美,祖艳群,李元,高国兴,何玉忠.大田条件下增强UV-B辐射对元阳梯田2个地方水稻品种叶片形态解剖结构的影响.生态学杂志,2013,32(4):882-889.
    [18]李林玉,黄群策,张书艮,赵帅鹏.低能离子束与UV-B增强对水稻光合及蒸腾速率的影响.农业工程学报,2013,29(15):136-144.
    [19]战莘晔,殷红,李雪莹,乔媛,岳元,汪贵彬.UV-B辐射增强对粳稻光合特性及保护酶活性的影响.沈阳农业大学学报,2014,45(5):513-517.
    [20]吴蕾,娄运生,孟艳,王卫清,崔合洋.UV-B增强下施硅对水稻抽穗期生理特性日变化的影响.应用生态学报,2015,26(1):32-38.
    [21]娄运生,韩艳,刘朝阳,孟艳,吴蕾.UV-B增强下施硅对大麦抽穗期光合和蒸腾生理日变化的影响.中国农业气象,2013,34(6):668-672.
    [22]娄运生,黄岩,李永秀,张晶,曹畅,朱婷婷,蒋铭皓,康汉锦.UV-B辐射增强对不同大麦品种生理特性的影响.生态与农村环境学报,2011,27(4):51-55.
    [23]张海静,姚晓芹,黄亚群,赵永锋,祝丽英,陈景堂.玉米不同自交系幼苗光合对UV-B辐射增强的响应.华北农学报,2013,28(4):105-109.
    [24]Shen X F,Zhou Y Y,Duan L S,Li Z H,Eneji A E,Li J M.Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation.Journal of Plant Physiology,2010,167(15):1248-1252.
    [25]郑有飞,徐卫民,吴荣军,张金恩,刘瑞娜,姚娟,胡会芳.地表臭氧浓度增加和UV-B辐射增强及其复合处理对大豆光合特性的影响.生态学报,2012,32(8):2515-2524.
    [26]Ichiro T,Hiroki O,Takashi F,Riichi O.Light environment within a leaf.II.Progress in the past one-third century.Journal of Plant Research,2016,129(3):353-363.
    [27]Potters G,Pasternak T P,Guisez Y,Palme K J,Jansen M A K.Stress-induced morphogenic responses:growing out of trouble?Trends in Plant Science,2007,12(3):98-105.
    [28]Jansen M A K,Coffey A M,Prinsen E.UV-B induced morphogenesis:Four players or a quartet?Plant Signaling&Behavior,2012,7(9):1185-1187.
    [29]孙会婷,江莎,刘婧敏,郭亚娇,沈广爽,古松.青藏高原不同海拔3种菊科植物叶片结构变化及其生态适应性.生态学报,2015,36(6):1559-1570.
    [30]Hectors K,Jacques E,Prinsen E,Guisez Y,Verbelen J P,Jansen M A K,Vissenberg K.UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.Journal of Experimental Botany,2010,61(15):4339-4349.
    [31]Adedeji O,Ajuwon O Y,Babawale O O.Foliar epidermal studies,organographic distribution and taxonomic importance of trichomes in the family Solanaceae.International Journal of Botany,2007,3(3):276-282.
    [32]Lyshede E B.The ultrastructure of the glandular trichomes of Solanum tuberosum.Annals of Botany,1980,46(5):519-526.
    [33]Tingey W M.Potato glandular trichomes:defensive activity against insect attack.ACS Symposium Series.American Chemical Society,1991,(449):126-135.
    [34]Lai A,Cianciolo V,Chiavarini S,Sonnino A.Effects of glandular trichomes on the development of Phytophthora infestans infection in potato(S.tuberosum).Euphytica,2000,114(3):165-174.
    [35]Horgan F G,Quiring D T,Lagnaoui A,Pelletier Y.Variable responses of tuber moth to the leaf trichomes of wild potatoes.Entomologia Experimentalis et Applicata,2007,125(1):1-12.
    [36]Pelletier Y,Horgan F G,Pompon J.Potato resistance to insects.The Americas Journal of Plant Science and Biotechnology,2011,5(S1):37-52.
    [37]李好勋,王国栋.植物腺毛次生代谢产物生物合成的研究进展.中国科学:生命科学,2015,45(6):557-568.
    [38]Skaltsa H,Verykokidou E,Harvala C,Karabourniotis G,Manetas Y.UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex.Phytochemistry,1994,37(4):987-990.
    [39]Manetas Y.The importance of being hairy:the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation.New Phytologist,2003,158(3):503-508.
    [40]Yan A,Pan J B,An L Z,Gan Y B,Feng H Y.The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana.Journal of Photochemistry and Photobiology B:Biology,2012,113:29-35.
    [41]顾俊,王飞,张鹏,胡梁斌,徐朗莱.植物叶表皮蜡质的生物学功能.江苏农业学报,2007,23(2):144-148.
    [42]于海宁,田英,方媛,彭励.植物角质膜的结构、组成和生物学功能研究进展.生命科学,2010,22(8):729-735.
    [43]Yeats T H,Rose J K C.The formation and function of plant cuticles.Plant Physiology,2013,163(1):5-20.
    [44]Shepherd T,Griffiths W D.The effects of stress on plant cuticular waxes.New Phytologist,2006,171(3):469-499.
    [45]Long L M,Patel H P,Cory W C,Stapleton A E.The maize epicuticular wax layer provides UV protection.Functional Plant Biology,2003,30(1):75-81.
    [46]Skórska E,Szwarc W.Influence of UV-B radiation on young triticale plants with different wax cover.Biologia Plantarum,2007,51(1):189-192.
    [47]Hollósy F.Effects of ultraviolet radiation on plant cells.Micron,2002,33(2):179-197.
    [48]Kratsch H A,Wise R R.The ultrastructure of chilling stress.Plant,Cell&Environment,2000,23(4):337-350.
    [49]Fidalgo F,Santos A,Santos I,Salema R.Effects of long-term salt stress on antioxidant defence systems,leaf water relations and chloroplast ultrastructure of potato plants.Annals of Applied Biology,2004,145(2):185-192.
    [50]Santos I,Fidalgo F,Almeida J M,Salema R.Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation.Plant Science,2004,167(4):925-935.
    [51]Tenberge K B,Ruholl C,Heinze M,Eising R.Purification and immuno-electron microscopical characterization of crystalline inclusions from plant peroxisomes.Protoplasma,1997,196(3/4):142-154.
    [52]Xu C P,Natarajan S,Sullivan J H.Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents.Environmental and Experimental Botany,2008,63(1/3):39-48.
    [53]Bohnert H J,Sheveleva E.Plant stress adaptations-making metabolism move.Current Opinion in Plant Biology,1998,1(3):267-274.
    [54]秦玉芝,陈珏,邢铮,何长征,熊兴耀.低温逆境对马铃薯叶片光合作用的影响.湖南农业大学学报:自然科学版,2013,39(1):26-30.
    [55]王婷,海梅荣,罗海琴,郭华春,达布希拉图.水分胁迫对马铃薯光合生理特性和产量的影响.云南农业大学学报,2010,25(5):737-742.
    [56]张新永,郭华春,戴华峰.增强UV-B辐射对彩色马铃薯叶片中相关保护酶活性的影响.西北植物学报,2009,29(5):968-974.
    [57]张新永,郭华春,艾星梅,张雅琼,王晓宇.增强UV-B辐射对彩色马铃薯相关生理生化特性的影响.生态环境学报,2009,18(2):664-668.
    [58]李俊,牛金文,杨芳,肖继坪,郭华春.不同马铃薯品种(系)对增强UV-B辐射的形态响应.中国生态农业学报,2016,24(6):770-779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700