纳米SiO_2改性热可逆自修复聚氨酯的修复行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Repairing Behavior of Thermo-Reversible Self-Healing Polyurethanes Modified with SiO_2 Nanoparticles
  • 作者:卞耀辉 ; 冯利邦 ; 于正洋 ; 史雪婷 ; 王彦平
  • 英文作者:Yaohui Bian;Libang Feng;Zhengyang Yu;Xueting Shi;Yanping Wang;School of Materials Science and Engineering, Lanzhou Jiaotong University;
  • 关键词:纳米SiO_2 ; Diels-Alder反应 ; 聚氨酯 ; 热可逆性 ; 自修复
  • 英文关键词:SiO_2 nanoparticles;;Diels-Alder reaction;;polyurethane;;thermal reversibility;;self-healing
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:兰州交通大学材料科学与工程学院;
  • 出版日期:2019-05-15
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51463010)
  • 语种:中文;
  • 页:GFZC201905008
  • 页数:7
  • CN:05
  • ISSN:51-1293/O6
  • 分类号:49-55
摘要
通过将纳米二氧化硅引入基于Diels-Alder (DA)反应的热可逆自修复聚氨酯中,成功合成了纳米SiO_2改性自修复聚氨酯(PU-DA-SiO_2)。利用红外光谱和差示扫描量热分析对其结构及热性能进行了表征。结果表明,纳米SiO_2的引入并未对PU-DA的结构和热可逆性产生明显影响。偏光显微镜定性观测表明,在120℃热处理时,聚氨酯薄膜中的裂缝逐渐缩小;当热处理时间达到15 min时,裂缝完全愈合。通过拉伸试验对PU-DA-SiO_2的修复性能进行了定量表征,结果表明,纳米SiO_2改性自修复聚氨酯具有良好的修复性能,其修复效率高达87.8%。相对于未添加纳米SiO_2的自修复聚氨酯,添加质量分数为4%的纳米SiO_2后,其修复效率提高了8%。而且,PU-DA-SiO_2可实现同一部位的多次损伤-修复,即使经过3次损伤-热处理后,其修复效率仍可达到42.7%。研究表明,纳米SiO_2改性热可逆自修复聚氨酯的修复是通过热可逆Diels-Alder反应和纳米SiO_2的迁移2种作用共同实现的。
        SiO_2-modified self-healing polyurethane(PU-DA-SiO_2) was synthesized successfully by introducing SiO_2 nanoparticles into the self-healing polyurethane(PU-DA) which is based on thermo-reversible Diels-Alder(DA) reaction. Thestructure and thermal properties of resultant PU-DA-SiO_2 were characterized by FT-IR and DSC. Results show that the introduction of SiO_2 nanoparticles has no influence on the structure and thermal reversibility of PU-DA. The self-healing process of cracks in PU-DA-SiO_2 film was investigated by polarized optical microscope(POM), and the results reveal that the cracks become shallower and narrower gradually when heat treated at 120 ℃. The cracks have disappeared completely when the heat treatment time reaches 15 min. Meanwhile, the healing property was examined by the tensile test. The results show that PU-DA-SiO_2 has an excellenthealing performance, and the healing efficiency can achieve 87.8%. As compared to that of the polyurethane without SiO_2 nanoparticles, the healing efficiency of polyurethane containing 4% of SiO_2 nanoparticles increases 8%. Moreover, the multiple cut-repair at the same site in the PU-DA-SiO_2 films can be realized. The healing efficiency can still reach 42.7% even after three cycles of cut-repair.
引文
[1] Tsou C H,Lee H T,Tsai H A,et al.Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender [J].Polym.Degrad.Stab.,2013,98:643-650.
    [2] Hood M A,Wang B B,Sands J M,et al.Morphology control of segmented polyurethanes by crystallization of hard and soft segments [J].Polymer,2010,51:2191-2198.
    [3] Song H X,Wang M,Wang Y F,et al.Waterborne polyurethane/grapheme oxide nanocomposites with enhanced properties [J].Sci.Adv.Mater.,2017,9:1-10.
    [4] Youngblood J P,Sottos N R.Bioinspired materials for self-cleaning and self-healing [J].Mater.Res.Soc.,2008,33:732-741.
    [5] 马埸浩,杜晓渊,胡仁伟,等.微脉管型自修复复合材料研究进展 [J].高分子材料科学与工程,2018,34(1):166-172.Ma Y H,Du X Y,Hu R W,et al.Development of self-healing composite materials with microvascular networks [J].Polymer Materials Science & Engineering,2018,34(1):166-172.
    [6] Feng L B,Yu Z Y,Bian Y H,et al.Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains [J].Polymer,2017,124:48-59.
    [7] Du P F,Liu X X,Zheng Z,et al.Synthesis and characterization of liner self-healing polyurethane based on thermally reversible Diels-Alder reaction [J].R.Soc.Chem.Adv.,2013,3:15475-15482.
    [8] Yu S,Zhang R C,Wu Q,et al.Bio-inspired high-performance and recyclable cross-linked polymers [J].Adv.Mater.,2013, 25:4912-4917.
    [9] Laita H,Boufi S,Gandini A.The application of the Diels-Alder reaction to polymers bearing furan moieties.1.Reactions with maleimides [J].Eur.Polym.J.,1997,33(8):1203-1211.
    [10] Du P F,Wu M Y,Liu X X,et al.Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels-Alder bonds [J].New J.Chem.,2014,38:770-776.
    [11] Zhong Y T,Wang X L,Zheng Z,et al.Polyether-maleimide-based crosslinked self-healing polyurethane with Diels-Alder bonds [J].J.Appl.Polym.Sci.,2015,132:DOI:10.1002/app.41944.
    [12] Tyagi S,Lee J Y,Buxton G A,et al.Using nanocomposite coatings to heal surface defects [J].Macromolecules,2004,37:9160-9168.
    [13] Lee J Y,Buxton G A,Balazs A C.Using nanoparticles to create self-healing composites [J].J.Chem.Phys.,2004,121:5531-5540.
    [14] Glogowski E,Tangirala R,Russell T P,et al.Functionalization of nanoparticles for dispersion in polymers and assembly in fluids [J].J.Polym.Sci.Polym.Chem.,2006,44:5076-5086.
    [15] Girard J,Brunetto P S,Braissant O,et al.Development of polystyrene sulfonate/silver nanocomposite with self-healing properties for biomaterial applications [J].C.R.Chim.,2013,16:550-556.
    [16] Xing L,Li Q,Zhang G,et al.Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities [J].Adv.Funct.Mater.,2016,26:3524-3531.
    [17] Wei B,Song S H,Cao H L.Strengthening of basalt fibers with nano-SiO2-epoxy composite coating [J].Mater.Des.,2011,32:4180-4186.
    [18] 于正洋,冯利邦,柴昌盛,等.基于Diels-Alder反应的自修复聚氨酯的结构与修复行为 [J].高分子学报,2016(11):1579-1586.Yu Z Y,Feng L B,Chai C C,et al.Structure and healing behavior of self-healing polyurethane based on Diels-Alder reaction [J].Acta Polymerica Sinica,2016(11):1579-1586.
    [19] Postiglione G,Turri S,Levi M.Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction [J].Prog.Org.Coat.,2015,78:526-531.
    [20] Rivero G,Nguyen L T T,Hillewaere X K,et al.One-pot thermo-remendable shape memory polyurethanes [J].Macromolecules,2014,47:2010-2018.
    [21] Gupta S,Zhang Q L,Emrick T,et al.Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures [J].Nat.Mater.,2006,5:229-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700