测量设备无关的经典-量子信号共纤传输方案
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber
  • 作者:程康 ; 周媛媛 ; 王欢
  • 英文作者:Cheng Kang;Zhou Yuanyuan;Wang Huan;School of Electronic Engineering,Naval University of Engineering;
  • 关键词:量子光学 ; 测量设备无关 ; 拉曼散射 ; 经典-量子信号
  • 英文关键词:quantum optics;;measurement-device-independence;;Raman scattering;;classical-quantum signal
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:海军工程大学电子工程学院;
  • 出版日期:2018-11-13 10:55
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.643
  • 语种:中文;
  • 页:JGDJ201908027
  • 页数:7
  • CN:08
  • ISSN:31-1690/TN
  • 分类号:225-231
摘要
提出了一种基于测量设备无关协议的经典-量子信号共纤传输方案。推导了自发拉曼散射噪声计数率公式,分析了经典信号入射功率、量子信号复用路数和量子信号平均光子数对量子密钥分配性能的影响。数值仿真结果表明,当经典信号入射功率为0dBm(即通信容量为84.8Gbit/s)时,所提方案量子密钥分配的最大安全传输距离可达141km;当入射功率增加到11dBm(即通信容量为1.068Tbit/s)时,仍然可达100km。相比于现有的最优传输方案,所提方案量子密钥分配的最大安全传输距离延长了26km;虽然随着经典信号入射功率的增加,量子密钥分配性能有所下降,但是可以通过采用多路量子信号复用和优化量子信号的平均光子数来进行性能补偿。
        A scheme of classical-quantum signal transmission in a shared fiber is proposed based on a measurementdevice-independent protocol.The counting rate formula of spontaneous Raman scattering noise is deduced and the effects of the incident power of classical signals,channel number of quantum signals and average photon numbers of quantum signals on the quantum key distribution(QKD)performances are analyzed.The numerical simulation results show that the maximum safe transmission distance for the QKD by the proposed scheme is up to 141 km when the incident power of classical signals is 0 dBm(i.e.,the communication capacity of 84.8 Gbit/s).Even when the incident power increases to 11 dBm(i.e.,the communication capacity of 1.068 Tbit/s),it is still up to 100 km.Compared with the existing optimal transmission scheme,the maximum safe transmission distance of the QKD by the proposed scheme is extended by 26 km.Although the QKD performance decreases with the increase of the incident power of classical signals,the performance can be compensated by the multiplexing channels of quantum signals and the optimization of the average photon numbers of quantum signals.
引文
[1] Wang L J,Zou K H,Sun W,et al.Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J].Physical Review A,2017,95(1):012301.
    [2] Mao Y Q,Wang B X,Zhao C X,et al.Integrating quantum key distribution with classical communications in backbone fiber network[J].Optics Express,2018,26(5):6010.
    [3] Luo J W,Li Y X,Shi L,et al.Co-fiber-transmission technology for quantum signal and classical optical signal based on mode division multiplexing in fewmode fiber[J].Laser &Optoelectronics Progress,2017,54(2):022702.罗均文,李云霞,石磊,等.基于少模光纤模分复用的量子信号-经典光信号共纤同传技术[J].激光与光电子学进展,2017,54(2):022702.
    [4] Luo J W,Li Y X,Meng W,et al.Quantum private communication system based on wavelength-mode division co-multiplexing[J]. Acta Optica Sinica,2017,37(9):0927001.罗均文,李云霞,蒙文,等.基于波长-模式双复用的量子保密通信系统[J].光学学报,2017,37(9):0927001.
    [5] Townsend P D.Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength-division multiplexing[J].Electronics Letters,1997,33(3):188-190.
    [6] Nweke N I, Toliver P, Runser R J,et al.Experimental characterization of the separation between wavelength:multiplexed quantum and classical communication channels[J].Applied Physics Letters,2005,87(17):174103.
    [7] Chapuran T E,Toliver P,Peter N A,et al.Optical networking for quantum key distribution and quantum communications[J].New Journal of Physics,2009,11(10):105001.
    [8] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J].Physical Review Letters,2002,88(5):057902.
    [9] Scarani V,Acín A,Ribordy G,et al.Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations[J].Physical Review Letters,2004,92(5):057901.
    [10] Ma X F,Qi B,Zhao Y,et al.Practical decoy state for quantum key distribution[J].Physical Review A,2005,72(1):012326.
    [11] Tamaki K,Lo H K,Fung C H F,et al.Phase encoding schemes for measurement-deviceindependent quantum key distribution with basisdependent flaw[J].Physical Review A,2012,85(4):042307.
    [12] Yin H L,Chen T Y,Yu Z W,et al.Measurementdevice-independent quantum key distribution over a404km optical fiber[J].Physical Review Letters,2016,117(19):190501.
    [13] Peng C Z,Pan J W.Quantum science experimental satellite“Micius”[J].Bulletin of Chinese Academy of Sciences,2016,31(9):1096-1104.彭承志,潘建伟.量子科学实验卫星:“墨子号”[J].中国科学院院刊,2016,31(9):1096-1104.
    [14] Poppe A,Peev M, Maurhart O.Outline of the SECOQC quantum-key-distribution network in vienna[J].International Journal of Quantum Information,2008,6(2):209-218.
    [15] Chen G,Zhang L J,Zhang W H,et al.Achieving Heisenberg-scaling precision with projective measurement on single photons[J].Physical Review Letters,2018,121(6):060506.
    [16] Hwang W Y.Quantum key distribution with high loss:Toward global secure communication[J].Physical Review Letters,2003,91(5):057901.
    [17] Sun Y,Zhao S H,Dong C.Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J].Acta Optica Sinica,2016,36(3):0327001.孙颖,赵尚弘,东晨.基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J].光学学报,2016,36(3):0327001.
    [18] Tang Y L,Yin H L,Chen S J,et al.Publisher′s note:Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters,2015,114(6):069901.
    [19] Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J].Physical Review A,2012,86(6):062319.
    [20] Mao Q P,Zhao S M,Wang L,et al.Measurementdevice-independent quantum key distribution based on wavelength division multiplexing technology[J].Chinese Journal of Quantum Electronics,2017,34(1):46-53.毛钱萍,赵生妹,王乐,等.基于波分复用技术的测量设备无关量子密钥分发[J].量子电子学报,2017,34(1):46-53.
    [21] Agrawal G P.Fiber-optic communication systems[M].Jia D F,Xin X J,Transl.4th ed.Beijng:Publishing House of Electronics Industry,2016:60.Agrawal G P.光学与光电子学:光纤通信系统[M].贾东方,忻向军,译.4版.北京:电子工业出版社,2016:60.
    [22] Aleksic S,Hipp F,Winkler D,et al.Perspectives and limitations of QKD integration in metropolitan area networks[J].Optics Express,2015,23(8):10359.
    [23] Wang L J. Experimental study of multiplexing quantum key distribution and classical optical communications[D].Hefei:University of Science and Technology of China,2016.王留军.量子密钥分发与经典光通信融合的实验研究[D].合肥:中国科学技术大学,2016.
    [24] Wang Y S,Li Y X,Shi L,et al.The analysis of the noise in multiplexed classical and quantum transmission system based on DWDM[J]. Acta Sinica Quantum Optica,2014,20(4):296-301.王宇帅,李云霞,石磊,等.基于DWDM的经典-量子信息共信道同传系统噪声分析[J].量子光学学报,2014,20(4):296-301.
    [25] Zhu F,Zhang C H,Liu A P,et al.Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J].Physics Letters A,2016,380(16):1408-1413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700