拮抗青枯劳尔氏菌的荧光假单胞菌SN15-2分离鉴定及其生防能力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation and identification of bacterium strain SN15-2 against Ralstonia solanacearum and analysis on its bio-control ability
  • 作者:娄海博 ; 王晓冰 ; 陈俊 ; 王伟
  • 英文作者:Lou Haibo;Wang Xiaobing;Chen Jun;Wang Wei;National Key Lab of biological reactor engineering, East China University of Science and Technology;
  • 关键词:青枯劳尔氏菌 ; 荧光假单胞菌 ; 拮抗作用 ; 定殖能力 ; 生防效果
  • 英文关键词:Ralstonia solanacearum;;Pseudomonas fluorescens;;antagonistic effect;;colonization;;bio-control efficiency
  • 中文刊名:ZBJS
  • 英文刊名:China Plant Protection
  • 机构:华东理工大学生物反应器工程国家重点实验室;
  • 出版日期:2019-03-25
  • 出版单位:中国植保导刊
  • 年:2019
  • 期:v.39;No.315
  • 基金:国家重点研发计划(2017YFD0200400);; 上海市科技兴农重点攻关项目(沪农科创字(2018)第2-5号)
  • 语种:中文;
  • 页:ZBJS201903002
  • 页数:7
  • CN:03
  • ISSN:11-5173/S
  • 分类号:13-19
摘要
为了筛选出对番茄青枯病具有较好防效的生防菌,采用皿内测定法从上海地区的番茄青枯病自然衰退土壤中,分离到一株对番茄青枯病有很强抑制作用的菌株SN15-2,并进行了分子鉴定和对荧光假单胞菌SN15-2产抗生素能力和定殖能力测定。结果表明,菌株SN15-2为荧光假单胞菌(Pseudomonas fluorescens)。其菌株能产生2,4-二乙酰基间苯三酚(2,4-DAPG)、硝吡咯菌素(PRN)、藤黄绿脓菌素(PLT)。同时,可以产生HCN、噬铁素,能够形成生物膜。SN15-2在施入番茄根际后的前20 d定殖数量减少,20 d后基本稳定,60 d时,在干土中的定殖数量可达3.67×105cfu/g。盆栽防效分析表明,荧光假单胞菌SN15-2对番茄青枯病防效达到46.58%。
        To select bio-controlling bacterium with better controlling efficiency against tomato bacterial wilt, SN15-2 was isolated by in-vessel test methods from natural decayed soil of tomato bacterial wilt collected in Shanghai area. SN15-2 was identified as Pseudomonas fluorescens by molecular method, and its antibiotic production and colonization ability were determined. The results showed that it could produce 2,4-two acetyl benzene three phenol(2,4-DAPG), pyrrolnitrin(PRN), pyoluteorin(PLT), HCN, siderophore and biofilm. The number of P. fluorescens SN15-2 colonization decreased in the first 20 days and then remained stable. At the time of 60 days, the colonization numbers of P. fluorescens SN15-2 in the tomato rhizosphere was still 3.67×105 CFU/g(dry soil). The results indicated that P. fluorescens SN15-2 had a good ability of rhizosphere colonization. In green house experiment, the bio-control efficiency of P. fluorescens SN15-2 against tomato bacterial wilt was 46.58%.
引文
[1]Hayward A C.Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J].Annual Review of Phytopathology,1991,29(1):65-87.
    [2]Li S,Yu Y,Chen J,et al.Evaluation of the antibacterial effects and mechanism of action of protocatechualdehyde against Ralstonia solanacearum[J].Molecules,2016,21(6):754.
    [3]Raza W,Ling N,Yang L,et al.Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9[J].Scientific Reports,2016,6:24856.
    [4]孙广正,姚拓,赵桂琴,等.荧光假单胞菌防治植物病害研究现状与展望[J].草业学报,2015,24(4):174-190.
    [5]Ganeshan G,Manoj Kumar A.Pseudomonas fluorescens,a potential bacterial antagonist to control plant diseases[J]Journal of Plant Interactions,2005,1(3):123-134.
    [6]东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [7]Mavrodi O V,McSpadden Gardener B B,Mavrodi D V,et al.Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp.[J].Phytopathology,2001,91(1):35-43.
    [8]Raaijmakers J M,Weller D M,Thomashow L S.Frequency of antibiotic-producing Pseudomonas spp.in natural environments[J].Applied&Environmental Microbiology,1997,63(3):881-887.
    [9]Mavrodi D V,Bonsall R F,Delaney S M,et al.Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from PAO1[J].Journal of the Chemical Society Perkin Transactions,1965,70(5):6960-6964.
    [10]Ramette A,Frapolli M,Défago G,et al.Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability[J].Molecular Plant-Microbe Interactions,2003,16(6):525-535.
    [11]姚协丰,郭坚华.生防细菌M2对茄青枯劳尔氏菌的室内毒力测定与生防效果[J].贵州农业科学,2014(12):161-164.
    [12]Xue Q Y,Chen Y,Li S M,et al.Evaluation of the strains of acinetobacter and enterobacter as potential biocontrol agents against ralstonia wilt of tomato[J].Biological Control,2009,48(3):252-258.
    [13]Mouchka M E,Hewson I,Harvel C D,et al.Coral-associated bacterial assemblages:Current knowledge and the potential for climate-driven impacts[J].Integrative and Comparative Biology,2010,50(4):662-674.
    [14]张竹青,罗宽,高必达,等.七株抗青枯病菌生防菌的初步鉴定[J].湖南农业大学学报(自科版),2002,28(6):512-513.
    [15]徐进,何礼远,冯洁,等.0702和GP7-13对植物细菌性青枯病的防治和增产作用[J].中国生物防治学报,2004,20(2):138-140.
    [16]Guo J H,Qi H Y,Guo Y H,et al.Biocontrol of tomato wilt by plant growth-promoting rhizobacteria[J].Biological Control,2004,29(1):66-72.
    [17]Liu H X,Li S M,Luo Y M,et al.Biological control of Ralstonia wilt,Phytophthora blight,Meloidogyne rootknot on bell pepper by the combination of Bacillus subtilis AR12,Bacillus subtilis SM21 and Chryseobacterium sp.R89[J].European Journal of Plant Pathology,2014,139(1):107-116.
    [18]Yang W,Xu Q,Liu H X,et al.Evaluation of biological control agents against Ralstonia wilt on ginger[J].Biological Control,2012,62(3):144-151.
    [19]范志航,李波,于侦云,等.微生物肥“宁盾"对番茄青枯病的生防效果[J].安徽农业科学,2015(24):87-88.
    [20]徐玲.多粘类芽孢杆菌HY96-2对番茄青枯病生防机制的研究[D].上海:华东理工大学,2005.
    [21]Haas D,Défago G.Biological control of soil-borne pathogens by fluorescent pseudomonads[J].Nature Reviews Microbiology,2005,3(4):307-319.
    [22]张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(3):9-11.
    [23]Barahona E,Navazo A,Martínez-Granero F,et al.Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens[J].Applied and Environmental Microbiology,2011,77(15):5412-5419.
    [24]魏海雷,王烨,张力群,等.生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析[J].植物病理学报,2004,34(1):80-85.
    [25]张清霞,吴小刚,张力群,等.荧光假单胞菌2P24调控基因突变体定殖能力和生防效果分析[J].中国生物防治学报,2008,24(1):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700