盐渍土壤孔隙结构及分形特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Pore Structure and the Fractal Characteristics of Saline Soil
  • 作者:洪明海 ; 徐驰 ; 曾文治 ; 黄介生 ; 伍靖伟 ; 宋一潇 ; 董彩琴 ; 王雪扬
  • 英文作者:HONG Ming-hai;XU Chi;ZENG Wen-zhi;HUANG Jie-sheng;WU Jing-wei;SONG Yi-xiao;DONG Cai-qin;WANG Xue-yang;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;Changjiang Institute of Survey,Planning,Design and Research;Yancheng Third People's Hospital;
  • 关键词:CT扫描 ; 盐渍土 ; ImageJ ; 孔隙结构 ; 分形维数
  • 英文关键词:CT scanning;;salinized soil;;ImageJ software;;soil pore characteristics;;fractal dimension
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;长江水利委员会长江勘测规划设计研究院;江苏省盐城市第三人民医院;
  • 出版日期:2017-07-15
  • 出版单位:中国农村水利水电
  • 年:2017
  • 期:No.417
  • 基金:国家自然科学基金项目“考虑补偿效应的盐渍农田作物水氮吸收规律研究与模拟”(51609157);“基于作物生长模拟的盐渍农田水肥生产函数研究”(51379151)
  • 语种:中文;
  • 页:ZNSD201707012
  • 页数:5
  • CN:07
  • ISSN:42-1419/TV
  • 分类号:60-64
摘要
为了探明盐分对土壤孔隙特征及分形特征的影响,采用CT(computed tomography)扫描技术获取了6个盐分处理(ECe:S1=8.52 d S/m,S2=21.89 d S/m,S3=24.78 d S/m,S4=25.71 d S/m,S5=26.36 d S/m,S6=33.26 d S/m)的土壤分层剖面图像,并结合Image J软件提取分析了土壤孔隙数目、孔隙面积等参数在土壤剖面上的分布特征,同时,采用杨培岭模型计算了土壤分形维数。结果表明:盐分影响土壤孔隙结构的形成和分布,具体而言,从S1到S6,随着盐分的增加,土壤孔隙度先减小后增加,S1盐分处理(ECe=8.52 d S/m)的孔隙度明显大于其他盐分处理,并且,S1盐分处理的孔隙度波动也大于其余5个盐分处理,S4(ECe=25.71 d S/m)盐分处理的孔隙度最小;此外,土壤孔隙数也表现为先减少后增加的趋势,S4(ECe=25.71 d S/m)总孔隙数最少(481)。在本次土样深度分析范围(6.3~44.1 mm)内,土壤孔隙结构随深度并无明显的关系。土壤分形维数计算结果表明,盐分影响土壤的分形维数,随着盐分的增加,分形维数先减小后增大,S4最小(2.58),同盐分对土壤孔隙的影响规律一致,进一步说明盐分影响土壤的物理性质,同时壤土(S1和S6)的分形维数大于粉质壤土(S2~S5),说明土壤质地变细,分形维数有增大的趋势。同时,和其他获取土壤孔隙结构特征的方法相比,CT结合Image J的方法可以快速准确地获取土壤孔隙的大小、数目等几何参数,处理过程方便快捷,操作简单,更能批量处理。
        To find out the influence of salts on the soil pore characteristics and fractal feature,CT( computed tomography) scanning technology was used for the six salt treatments( ECe: S1 = 8.52 d S/m,S2 = 21.89 d S/m,S3 = 24.78 d S/m,S4 = 25.71 d S/m,S5 =26.36 d S/m,S6 = 33.26 d S/m). Soil profile images,combined with Image J software extraction of the soil parameters such as pore number,pore size distribution on soil profile were analyzed,with using Yang-model to compute soil fractal dimension. Results show that the salt affects the formation and distribution of soil pore structure,in particular,from S1 to S6,with the increase of salinity,soil porosity increase after decrease first,soil porosity of S1 salt treatment( ECe= 8.52 d S/m) is significantly greater than other salt treatments,the same time,the soil porosity volatility of S1 salt treatment is greater than the rest of the five salt treatments,S4( ECe= 25.71 d S/m) salt treatment with the minimal porosity; In addition,the soil pore numbers also show a trend of increase the first,the total pore number of S4( ECe= 25.71 d S/m)is minimum( 481). In the depth of the soil sample analysis within the range( 6. 3 to 44. 1 mm),soil pore structure and has no obvious relation with depth. Soil fractal dimension calculation results show that the soil salt influences fractal dimension,with the increase of salinity,fractal dimension,and increase with the decrease of the first,and S4 has the minimum( 2.58),which is the same as soil porosity,further illustrate salt affects the physical properties of soil,loam( S1 and S6) of the fractal dimension is greater than the silty loam( S2 ~ S5),shows that the soil texture and fractal dimension has a tendency to increase. Besides,compared with other access methods of soil pore structure characteristics,CT combined with Image J method can quickly and accurately obtain the soil pore size,number,geometric parameters,such as process convenient and quick,easy operation,better batch processing.
引文
[1]Sariyildiz T.Influence of sea salts on drainage water and soil chemistry of two different soil types:Soil leaching experiments under laboratory conditions[J].Journal of Environmental Biology,2004,25(3):343-350.
    [2]Chang C W,Laird D A.Near-infrared reflectance spectroscopic analysis of soil C and N[J].Soil Science,2002,167(2):110-116.
    [3]Metternicht G I,Zinck J A.Remote sensing of soil salinity:potentials and constraints[J].Remote Sensing of Environment,2003,85(1):1-20.
    [4]周虎,吕贻忠,李保国.土壤结构定量化研究进展[J].土壤学报,2009,(3):501-506.
    [5]程亚南,刘建立,张佳宝.土壤孔隙结构定量化研究进展[J].土壤通报,2012,(4):988-994.
    [6]Radulovich R,Solorzano E,Sollins Phillip.Soil macropore size distribution from water breakthrough curves[J].Soil Science Society of America Journal,1989,53(2):556-559.
    [7]Moreau E.,Velde B,Terribile F.Comparison of 2D and 3D images of fractures in a Vertisol[J].Geoderma,1999,92(1-2):55-72.
    [8]Scott GJT,Webster R,Nortcliff S.Teh topology of pore structure in cracking clay soil.1.the estimation of numerical density[J].Journal of Soil Science,1988,39(3):303-314.
    [9]Vogel H J,Kretzschmar A.Topological characterization of pore space in soil-Sample preparation and digital image-processing[J].Geoderma,1996,73(1-2):23-38.
    [10]李德成,Velde B,张桃林.利用土壤的序列数字图像技术研究孔隙小尺度特征[J].土壤学报,2003,(4):524-528.
    [11]洪明海,黄介生,曾文治,等.基于CT成像技术的盐渍土壤孔隙结构识别与分析[J].中国农村水利水电,2016,(9):1-4.
    [12]周虎,李文昭,张中彬,等.利用X射线CT研究多尺度土壤结构[J].土壤学报,2013,(6):1 226-1 230.
    [13]Ferreira Tiago,Rasband Wayne.Image J user guide[J].IJ1.46r.Natl.Inst.Health,Bethesda,MD.http:∥rsb.info.nih.gov/ij/docs/guide/user-guide.pdf,2012.
    [14]白光红,张义荣,刘弋菊,等.Image J图象处理软件在测量玉米子粒大小中的应用[J].玉米科学,2009,(1):147-151.
    [15]Lamb Jonathan C,Meyer Julie M,Corcoran Blake,et al.Distinct chromosomal distributions of highly repetitive sequences in maize[J].Chromosome Research,2007,15(1):33-49.
    [16]Ohto Masa-aki,Fischer Robert L,Goldberg Robert B,et al.Control of seed mass by APETALA2[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(8):3 123-3 128.
    [17]Cunniff Jennifer,Osborne Colin P,Ripley Brad S,et al.Response of wild C(4)crop progenitors to subambient CO(2)highlights a possible role in the origin of agriculture[J].Global Change Biology,2008,14(3):576-587.
    [18]Tyler S W,Wheatcraft S W.Fractal processes in soil-water retention[J].Water Resources Research,1990,26(5):1 047-1 054.
    [19]Mandelbrot B.How long is the coast of britain?Statistical selfsimilarity and fractional dimension.[J].Science(New York,N.Y.),1967,156(3775):636-638.
    [20]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,(20):1 896-1 899.
    [21]Bartoli F.,Philippy R.,Doirisse M.,et al.Structure and self‐similarity in silty and sandy soils:the fractal approach[J].Journal of Soil Science,1991,42(2):167-185.
    [22]Turcotte D.L.Fractals and fragmentation[J].Journal of Geophysical Research:Solid Earth,1986,91(B2):1 921-1 926.
    [23]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,(2):162-167.
    [24]刘建国,聂永丰.非饱和土壤水力参数预测的分形模型[J].水科学进展,2001,(1):99-106.
    [25]贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,(3):518-525.
    [26]缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,(9):1 987-1 993.
    [27]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,(1):71-74.
    [28]Kanzari Sabri,Hachicha Mohamed,Bouhlila Rachida,et al.Simulation of Water and Salts Dynamics in Bouhajla(Central Tunisia):Exceptional Rainfall Effect[J].Soil and Water Rrsearch,2012,7(1):36-44.
    [29]Hachicha M,Mansour M,Rejeb S,et al.Applied research for the utilization of Brackish/Saline water in center of Tunisia:water use[C]∥Salinity evolution and crop response:Proceedings of International Salinity Forum,Riverside,2005.
    [30]郭中领,符素华,王向亮,等.北京地区表层土壤分形特征研究[J].水土保持通报,2010,(2):154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700