响应土壤阴离子类型的盐碱土古细菌群落多样性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity characteristic of archaeal community responding to soil anion in saline-alkali soil
  • 作者:俞冰倩 ; 杨赛 ; 朱琳 ; 高凤 ; 曾椿淋 ; 柳参奎 ; 崔恒林 ; 魏巍
  • 英文作者:YU Bing-qian;YANG Sai;ZHU Lin;GAO Feng;ZENG Chun-lin;LIU Shen-kui;CUI Heng-lin;WEI wei;Jiangsu Provincial Key Laboratory of Modern Agricultural Equipment and Technology;School of Food Bioengineering, Jiangsu University;Alkali Soil Natural Environmental Science Center, Northeast Forestry University;
  • 关键词:盐碱土 ; 土壤阴离子 ; 高通量测序 ; 古细菌群落
  • 英文关键词:saline-alkali soil;;soil anion;;high-throughput sequencing;;archaeal community
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:江苏大学农业装备工程学院;江苏大学食品与生物工程学院;东北林业大学盐碱地生物资源环境研究中心;
  • 出版日期:2018-05-18 10:11
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(41503068,31770543);; 江苏省自然科学基金资助项目(BK20150496,BK20150497);; 江苏省高校自然科学基金(15KJB180002)
  • 语种:中文;
  • 页:ZGHJ201807051
  • 页数:9
  • CN:07
  • ISSN:11-2201/X
  • 分类号:333-341
摘要
为初步解析我国黑龙江苏打盐碱地(HA)、新疆荒漠盐碱地(XD)、山西平原盐碱地(SY)、江苏滨海盐碱地(JD)和天津滨海盐碱地(TB)5个地区的土壤古细菌群落结构多样性,以及其响应土壤不同阴离子类型的分布特征,采用基于Illumin-Hiseq平台的高通量测序技术获得489~604个古细菌可操纵分类单元(OTU).OTU多样性分析结果表明XD的古细菌群落物种丰富度最高,SY和HA分别具有最高和最低的古细菌群落多样性和均匀度;OTU的物种注释结果表明HA以奇古菌门(Thaumarchaeota)为优势菌门,其他土壤均以广古菌(Euryarchaeota)为优势;综合5个样品古细菌群落结构、优势古细菌属和土壤阴离子进行的典范对应分析(CCA)结果显示,XD古细菌群落结构和Haloterrigena属(XD中最优势,相对丰度20.2%)明显的响应土壤SO_4~(2-)浓度;HA古细菌群落结构和Nitrososphaera属(HA中最优势,62.3%)明显的响应土壤HCO_3~-/CO_3~(2-)浓度和pH;JD、SY和TB古细菌群落结构、Halorubrum属(JD和TB中最优势,24.4%和15.6%),和Natronomonas属(SY和JD中第二优势,8.1%和9.2%)明显的响应土壤Cl~-浓度.研究结果说明我国不同地域分布的盐碱土受其土壤阴离子类型及其浓度的影响,呈现不同的古细菌群落结构和分布特征.研究结果为我国不同类型盐碱土古细菌资源的挖掘提供依据,也为揭示我国不同类型盐碱土古细菌群落的生态功能提供参考.
        To investigate the community structure of soil archaea in saline-alkaline land and their distribution characters responding to soil anion, the saline-alkaline land soils were collected from different area in China, including Heilongjiang soda saline-alkaline soil(HA), Xinjiang desert saline-alkaline soil(XD), Shanxi plain saline-alkaline soil(SY), Jiangsu coastal saline-alkaline soil(JD) and Tianjin coastal saline-alkaline soil(TB). The high-throughput sequencing technology based on Illumina-Hiseq was used, and 489~604 archaeal operational taxonomic units(OTUs) were obtained. The results of OTU diversity analysis showed that the species richness of archaeal community in XD was the highest. The diversity and evenness of archaeal community in SY and HA was highest and lowest, respectively. The OTU species annotation results showed the Thaumarchaeota was the predominant phylum in HA, and Euryarchaeota was dominant phylum in the other four soil samples. Based on the archaeal community structure, dominant archaeal genus and soil anion of five samples, the Canonical Correspondence Analysis(CCA) showed that the archaeal community structure in XD and Haloterrigena(the most dominant in XD, 20.2%) responsed to the concentration of SO_4~(2-), the archaeal community structure in HA and Nitrososphaera(the most dominant in HA, 62.3%) responsed to the concentration of HCO_3~-/CO_3~(2-)and p H value; the archaeal community structure of JD、SY and TB and Halorubrum(the most dominant in JD and TB, 24.4% and 15.6%) and Natronomonas(the second dominant in SY and JD, 8.1% and 9.2%) responsed to the concentration of Cl~-. Thus, the archaeal community structure and distribution characteristics in saline-alkaline soils in China were affected by the types of anions and their concentrations. The results of this study contribute to not only the resources excavation of archaeal strains, but also the revealing of the ecological functions of archaeal communities in the different types of saline-alkaline soil in China.
引文
[1]俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):158-159.
    [2]熊毅.中国盐渍土分区[J].土壤学报,1957,5(1):50-60.
    [3]陈义光,李汇明,李沁元,等.一平浪盐矿古老岩盐沉积中可培养细菌的系统发育多样性研究[J].微生物学报,2007,47(4):571-577.
    [4]王爽.大庆盐碱土可培养嗜盐细菌与古菌多样性及多相分类研究[D].哈尔滨:哈尔滨工业大学,2011.
    [5]Woese C R,Kandler O,Wheelis M L.Towards a natural system of organisms:proposal for the domains Archaea,Bacteria,and Eucarya.[J].Proceedings of the National Academy of Sciences of the United States of America,1990,87(12):4576-4579.
    [6]Poli A,Di D P,Abbamondi G R,et al.Synthesis,production,and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea[J].Archaea-an International Microbiological Journal,2011,11:1472-3646.
    [7]Jain D,Pancha I,Mishra S K,et al.Purification and characterization of haloalkaline thermoactive,solvent stable and SDS-induced protease from Bacillus sp.:A potential additive for laundry detergents[J].Bioresource Technology,2012,115:228-236.
    [8]Kirk J L,Beaudette L A,Hart M,et al.Methods of studying soil microbial diversity[J].Journal of Microbiological Methods,2004,58(2):169-188.
    [9]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用[J].生态学杂志,2003,22(5):131-136.
    [10]Wang C,Wang G,Wang Y,et al.Fire Alters Vegetation and Soil Microbial Community in Alpine Meadow[J].Land Degradation&Development,2016,27(5):1379-1390.
    [11]Dong X,Reddy G B.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresour Technol,2010,101(4):1175-1182.
    [12]Burns K N,Bokulich N A,Cantu D,et al.Vineyard soil bacterial diversity and composition revealed by 16S r RNA genes:Differentiation by vineyard management[J].Soil Biology&Biochemistry,2016,103:337-348.
    [13]De G V,Eudoxie G,Hickey W J.Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing[J].Bioresource Technology,2013,133(2):573-580.
    [14]朱琳,曾椿淋,李雨青,等.基于高通量测序的大豆连作土壤细菌群落多样性分析[J].大豆科学,2017,36(3):419-424.
    [15]Peng M,Jia H,Wang Q.The effect of land use on bacterial communities in saline-alkali Soil[J].Current Microbiology,2017,74(3):325.
    [16]李新,焦燕,代钢,等.内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J].中国环境科学,2016,36(1):249-260.
    [17]李海云,牛世全,孔维宝,等.河西走廊石羊河下游地区盐碱土中放线菌多样性——以民勤县为例[J].中国环境科学,2015,35(6):1805-1813.
    [18]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [19]杨春霞,李彩虹,赵银宝.离子色谱法测定土壤中无机阴阳离子含量[J].理化检验:化学分册,2012,48(10):001199-1202.
    [20]Degnan P H,Ochman H.Illumina-based analysis of microbial community diversity[J].Isme Journal,2012,6(1):183.
    [21]Haas B J,Gevers D,Earl A M,et al.Chimeric 16S r RNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Research,2011,21(3):494.
    [22]Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
    [23]Youssef N,Sheik C S,Krumholz L R,et al.Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S r RNA Gene-Based Environmental Surveys[J].Applied&Environmental Microbiology,2009,75(16):5227-5236.
    [24]Caporaso J G,Kuczynski J,Stombaugh J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335.
    [25]李秋华,韩博平.基于CCA的典型调水水库浮游植物群落动态特征分析[J].生态学报,2007,27(6):2355-2364.
    [26]Madigan M T.Brock Biology of Microorganisms[J].2014,11(2008).
    [27]Oren A.Taxonomy of halophilic Archaea:current status and future challenges[J].Extremophiles Life Under Extreme Conditions,2014,18(5):825-834.
    [28]崔恒林.嗜盐古菌分类学研究进展[J].微生物学通报,2016,43(5):1113-1122.
    [29]张玥,孔强,郭笃发,等.黄河三角洲土壤古菌群落结构对盐生植被演替的响应[J].中国环境科学,2016,36(7):2162-2168.
    [30]楼骏.中国纬度地带性土壤古菌微生物群落结构多样性[D].福州:福建农林大学,2014.
    [31]罗剑飞,林炜铁,Luo Jian-fei,等.氨氧化古菌研究进展[J].广州:华南理工大学学报(自然科学版),2013,(12):107-114.
    [32]刘晶静,吴伟祥,丁颖,等.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报,2010,21(8):2154-2160.
    [33]K?nneke M,Bernhard A E,De La Torre J R,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon[J].Nature,2005,437:543-546.
    [34]于少兰.黄东海泥质区沉积物氨氧化古菌和氨氧化细菌amo A基因的空间分布[D].青岛:中国海洋大学,2015.
    [35]Tourna M,Freitag T E,Nicol G W,et al.Growth,activity and temperature responses of ammonia-oxidizing archae and bacteria in soil microcosms[J].Environmental Microbiology,2008,10(5):1357-1364.
    [36]申卫收,尹睿,林先贵,等.绰墩山遗址古水稻土细菌与古菌群落的PCR-DGGE分析[J].生态学报,2008,28(6):2916-2924.
    [37]孟祥伟,茆振川,陈国华,等.西藏米拉山土壤古菌16S r RNA及amo A基因多样性分析[J].微生物学报,2009,49(8):994-1002.
    [38]秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报,2011,51(4):445-457.
    [39]蔡言安,李冬,毕学军,等.基于不同测序技术的生物群落结构及功能菌分析[J].中国环境科学,2016,36(6):1830-1834.
    [40]夏围围,贾仲君.高通量测序和DGGE分析土壤微生物群落的技术评价[J].微生物学报,2014,54(12):1489-1499.
    [41]牛世全,龙洋,李海云,等.应用Illumina Mi Seq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J].微生物学通报,2017,(9):2067-2078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700