乙烯低温燃烧反应机理模拟与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and analyses of mechanisms for ethylene combustion at low temperature
  • 作者:朱凯旋 ; 李东艳 ; 刘明夏 ; 谈宁馨
  • 英文作者:ZHU Kai-xuan;LI Dong-yan;LIU Ming-xia;TAN Ning-xin;College of Chemical Engineering,Sichuan Univisity;
  • 关键词:乙烯 ; 低温燃烧 ; 燃烧反应 ; 机理
  • 英文关键词:ethylene;;combustion at low temperature;;combustion reaction;;mechanism
  • 中文刊名:HXYJ
  • 英文刊名:Chemical Research and Application
  • 机构:四川大学化学工程学院;
  • 出版日期:2018-06-15
  • 出版单位:化学研究与应用
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金(批准号:91741201)资助
  • 语种:中文;
  • 页:HXYJ201806011
  • 页数:6
  • CN:06
  • ISSN:51-1378/O6
  • 分类号:72-77
摘要
为了研究乙烯这种高碳烃燃料燃烧裂解的重要中间体的燃烧特性,本文通过比较国际上公开的Aramco Mech2.0、UCSD核心机理,Glarborg乙烯氧化反应详细机理和Creck集总反应机理等四个低温燃烧动力学模型,模拟了乙烯低温(800K)点火延时、层流预混火焰传播速度和重要物种浓度变化等燃烧特性,并与实验数据进行比较。结合反应路径分析和层流火焰敏感度分析寻找不同机理中的关键反应。结果表明:C_2H_3+O_2对乙烯全温段的燃烧模拟有着重要作用,C_2H_4生成C_2H_5、C_2H_4OH和C_2H_4O_2H的反应以及进一步与氧气的加成反应是乙烯低温燃烧反应的重要通道,H-O体系和C_1参与的反应对火焰传播具有较强的敏感性。
        In order to investigate the combustion characteristic of ethylene which is one of the key intermediates in combustion and thermal cracking of higher hydrocarbon fuel,in this paper,some characteristics of ethylene combustion at low temperature( such as ignition delay time,flame propagation speed and the concentration profile of the important species) were simulated by AramcoMech2. 0,Creck,Glarborg and UCSD Mechanisms.In order to identify the significant reactions from these mechanisms,detailed reaction pathway and sensitivity analyses were performed.Finally,it demonstrates that the C_2H_3+O_2 reaction plays an important role at a wide temperature range during C_2H_4 combustion,while these addition reactions of C_2H_5,C_2H_4OH and C_2H_4O_2H with O_2 are important for C_2H_4 ignition process at low temperature.H-O system and those reactions involved C_1 are more sensitive to ethylene flame propagation.
引文
[1]邵菊香,谈宁馨,刘伟雄,等.空气污染组分H2O和CO2对乙烯燃烧性能的影响(Ⅱ)—反应机理和动力学模拟[J].物理化学学报.2010,26(2):270-276.
    [2]Chernov V,Thomson M J,Dworkin S B,et al.Soot formation with C1and C2fuels using an improved chemical mechanism for PAH growth[J].Combust Flame,2014,161(2):592-601.
    [3]Jiang R,Liu G,Zhang X.Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J].Energy Fuels,2013,27(5):2563-2577.
    [4]华晓筱,谈宁馨.热力学数据精度对正庚烷燃烧模拟结果的影响[J].化学研究与应用.2014(2):250-254.
    [5]Xu C,Konnov A A.Validation and analysis of detailed kinetic models for ethylene combustion[J].Energy,2012,43(1):19-29.
    [6]Kopp M M,Petersen E L,Metcalfe W K,et al.Oxidation of ethylene—air mixtures at elevated pressures,Part 2:chemical kinetics[J].J Propul Power,2014,30(3):799-811.
    [7]Penyazkov O G,Sevrouk K L,Tangirala V,et al.Highpressure ethylene oxidation behind reflected shock waves[J].Proc Combust Inst,2009,32(2):2421-2428.
    [8]Suzuki M,Moriwaki T,Okazaki S,et al.Oxidation of ethylene in shock-tube[J].Astronaut Acta,1973,18(5):359-365.
    [9]Cadman P,Bambrey R J,Box S K,et al.Ethylene com-bustion studied over a wide temperature range in high-temperature shock waves[J].Combust Sci Technol,2002,174(11-12):111-127.
    [10]梁金虎,胡弘浩,王苏,等.低稀释度条件下乙烯点火特性的激波管研究[J].力学学报.2014,46(1):155-159.
    [11]Jallais S,Bonneau L,Auzanneau M,et al.An Experi-mental and kinetic study of ethene oxidation at a high equivalence ratio[J].Ind Eng Chem Res,2002,41(23):5659-5667.
    [12]Zhou C W,Li Y,O'Connor E,et al.A comprehensive experimental and modeling study of isobutene oxidation[J].Combust Flame,2016,167:353-379.
    [13]Ranzi E,Frassoldati A,Grana R,et al.Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels[J].Prog Energy Combust Sci,2012,38(4):468-501.
    [14]Lopez J G,Rasmussen C L,Alzueta M U,et al.Experimental and kinetic modeling study of C2H4 oxidation at high pressure[J].Proc Combust Inst,2009,32(1):367-375.
    [15]Chemical-kinetic mechanisms for combustion applications,San Diego Mechanism web page,Mechanical and Aerospace Engineering(Combustion Research),University of California at San Diego(http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html).
    [16]Prince J C,Williams F A.Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane[J].Combust Flame,2012,159(7):2336-2344.
    [17]Kumar K,Mittal G,Sung C,et al.An experimental investigation of ethylene/O2/diluent mixtures:Laminar flame speeds with preheat and ignition delays at high pressures[J].Combust Flame,2008,153(3):343-354.
    [18]CHEMKIN-PRO 15092,Reaction design,San Diego,2009.
    [19]Park O,Veloo P S,Egolfopoulos F N.Flame studies of C2hydrocarbons[J].Proc Combust Inst,2013,34(1):711-718.
    [20]Jomaas G,Zheng X L,Zhu D L,et al.Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3hydrocarbons at atmospheric and elevated pressures[J].Proc Combust Inst,2005,30(1):193-200.
    [21]Hirasaw T,SGung C J,Joshi A,et al.Determination of laminar flame speeds using digital particle image velocimetry:binary fuel blends of ethylene,n-butane and toluene[J].Proc Combust Inst,2002,29:1427-1434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700