液态钢渣在线重构技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of On-line Reconstruction Technology of Liquid Steel Slag
  • 作者:许莹 ; 王巧玲 ; 胡晨光 ; 张孜孜
  • 英文作者:Xu Ying;Wang Qiaoling;Hu Chenguang;Zhang Zizi;North China University of Science and Technology, College of Metallurgy and Energy, Hebei Key Laboratory of Modern Metallurgy Technology;
  • 关键词:钢渣 ; 在线重构 ; 胶凝活性 ; 体积安定性
  • 英文关键词:Steel slag;;On-line reconstruction;;Cementing activity;;Volume stability
  • 中文刊名:KCZL
  • 英文刊名:Multipurpose Utilization of Mineral Resources
  • 机构:华北理工大学冶金与能源学院河北省现代冶金技术重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:矿产综合利用
  • 年:2019
  • 期:No.216
  • 基金:国家自然科学基金资助项目(51574109)
  • 语种:中文;
  • 页:KCZL201902001
  • 页数:8
  • CN:02
  • ISSN:51-1251/TD
  • 分类号:6-13
摘要
钢渣在线重构是解决钢渣胶凝活性低、体积安定性差、化学波动大等问题,从而提高钢渣利用率的一种有效技术。本文简述了钢渣的的特性及存在的问题,并重点综述液态钢渣在线重构中调质组分、温度制度、冷却制度、气氛制度、均混制度、工艺设备以及热力学与动力学研究对重构钢渣胶凝活性和体积安定性的影响;最后针对于钢渣在线重构所存在的问题及钢铁行业中较先进的技术展望钢渣在线重构的发展趋势。
        The on-line reconstruction of steel slag is to solve the problems of low cementing activity, bad volume stability and high chemical fluctuation, so it is an effective technique to increase the utilization ratio of steel slag.The characteristics and existing problems of steel slag are briefly described in this paper. And the inflution of on online reconstruction in liquid steel slag temperature system, cooling system, air system, mixing system, process equipment and the research of thermodynamics and kinetics to slag cementitious activity and volume stability was focused. Finally, the problems existing in the on-line reconstruction of steel slag and the advanced technologies in the steel industry, and the trend of on-line reconstruction of steel slag is expected.
引文
[1]耿栋健.重构钢渣及性能与应用[D].济南:济南大学,2010.
    [2]孙鹏,郭占成.钢渣的胶凝活性及其激发的研究进展[J].硅酸盐通报,2014, 33(9):2230-2235.
    [3]Escalante-Garcia JI, Castro-Borges P, Gorokhovsky A, etal. Portland cement-blast furnace slag mortars activated using waterglass:Effect of temperature and alkali concentration[J].Construction and Building Materials. 2014, 66:323-328.
    [4]Wang Q,Yan P, Yang J,et al. Influence of steel slag on mechanical properties and durability of concrete[J].Construction and Building Materials, 2013, 47:1414-1420.
    [5]郭辉.钢渣重构及其组成、性能的基础研究[D].广州:华南理工大学,2010.
    [6]钟根.不同种类钢渣的重构与性能优化的基础研究[D].广州:华南理工大学,2010.
    [7]丁新榜,李建新,余其俊,等.钢渣胶凝性能的优化及其在线重构的研究[C]//全国水泥和混凝土化学及应用技术会议,2007.
    [8]J.Rawers,L.Iverson,K.Collins.Initial stages of coal slag interaction with high chromia sesquioxide refractories[J].Journal of Materials Science,2002(37):531-538.
    [9]Wang Hongming,Li Guirong,Dai Qixun.Effect of additives on visosity of LATS refining ladle slag[J].ISIJ Internation,2006(46):63 7-640.
    [10]Tatsuhito Takahashi,Kazuya Yabuta.New applications for iron and steelmaking slag[J].NKK Technical Review,2002(87):38-44.
    [11]Bisio G.Energy Recovery From Molten Slag and Exploitation of Recovered Energy[J].Energy,1997,22:501-516.
    [12]Kenny W F.Energy Conservation in Process Industries[M].Oralando:Academic Press,1984.
    [13]陈莹.高温钢渣余热回收系统的数值模拟研究[D].济南:山东大学,2014.
    [14]张智瑞.热焖钢渣的活性及改性技术研究[D].重庆:重庆大学,2013.
    [15]舒型武.钢渣特性及其综合利用技术[J].有色冶金设计与研究,2007,28(5):48-51.
    [16]Mason B.The Constitution of some open-heart Slag.Journal of Iron and steel institute. 1994,(11):69-80.
    [17]李建新.高温重构对钢渣组成、结构与性能影响的研究[D].广州:华南理工大学,2011.
    [18]李建新,余其俊,韦江雄.钢渣高温重构中RO相的转变规律[J].武汉理工大学学报,2012,(5):19-24.
    [19]李建新,余其俊,韦江雄.重构钢渣作为混凝土掺合料的研究[J].混凝土与水泥制品,2012,(8):22-25.
    [20]殷素红,郭辉,余其俊,等.还原铁法重构钢渣及其矿物组成[J].硅酸盐学报,2013, 41(7):966-971.
    [21]杨耀.钢渣中FeOx还原反应热力学、Fe还原回收效果及余渣性能的研究[D].广州:华南理工大学,2013.
    [22]甄云璞,宗燕兵,苍大强,等.熔融态下掺入粉煤灰对钢渣性质的影响研究[J].钢铁,2009, 44(12):91-94.
    [23]雷云波,张玉柱,邢宏伟,等.转炉渣掺粉煤灰高温熔融消解游离CaO的试验[J].河北冶金,2011(1):8-11.
    [24]赵海晋,余其俊,韦江雄,等.利用粉煤灰高温重构及稳定钢渣品质的研究[J].硅酸盐通报,2010, 29(3):572-576.
    [25]彭犇.热态钢渣改性及改性渣物理化学性质研究[D].北京:北京科技大学,2016.
    [26]林宗寿,陶海征,涂志厚.钢渣粉煤灰活化方法研究[J].武汉理工大学学报,2001,23(2):4-7.
    [27]李召峰.优化钢渣物相组成、控制MgO分布及其机理研究[D].济南:济南大学,2011.
    [28]饶以廷,仪名杰.转炉钢渣改性的试验研究[J].科技风,2014(6):125-125.
    [29]吴复忠,王轲轲.转炉钢渣改性的试验研究[J].贵州科学,2013, 31(1):35-38.
    [30]宫晨琛,余其俊,韦江雄.电炉还原渣对转炉钢渣的重构机理[J].硅酸盐学报,2010, 38(11):2193-2198.
    [31]张艺伯,朱桂林,孙树杉,等.重熔还原法处理转炉钢渣研究[J].环境工程,2014, 32(7):111-114.
    [32]黎载波,赵三银,赵旭光,等.复合组分调节材料对重构转炉钢渣胶凝性能的影响[J].硅酸盐通报,2013,(07):1352-1355+1360.
    [33]张作顺,连芳,廖洪强,等.利用铁尾矿高温改性钢渣的性能[J].北京科技大学学报,2012, 34(12):001379-1384.
    [34]张玉柱,邢宏伟,雷云波,等.高碱度钢渣添加铁尾矿消解f-CaO的机理研究[J].环境工程学报,2012, 6(5):1687-1692.
    [35]鲍继伟,张玉柱,龙跃,等.改性钢渣制备水泥的基础性能研究[J].矿产综合利用,2012(4):47-50.
    [36]杨旭.化学组成和反应条件对重构钢渣组成、性能及铁元素赋存状态的影响[D].广州:华南理工大学,2015.
    [37]代文彬.钢渣热态改质的工艺、装备及制备微晶玻璃的研究[D].北京:北京科技大学,2016.
    [38]杨景玲,张梅,卢忠飞,等.一种钢渣高温改性方法[P].中国:CN104016600A,2014.
    [39]Toshio MIZUOCHI,Tomohiro AKIYAMA,et al.Feasibility of Rotary Cup Atomizer for Slag Granulation[J].ISIJ Internati on,2001,41(12):1423-1428.
    [40]Mizuochi T,TagiJ.Granulation of Molten Slag for Heat Recovery[A].2002,37th Intersociety Energy Conversion Engineering Conference[c].Washinggton C:LEEE,2002,641-646.
    [41]单立福.重构条件对钢渣中MgO存在形式的影响[D].济南:济南大学,2009.
    [42]黄世烁,郭敏,张梅.酸性氧化物对转炉钢渣的改性作用[J].钢铁研究学报,2015, 27(11):38-42.
    [43]邓志豪,王珏,周云.转炉渣系矿物相研究[J].安徽工业大学学报:自科版,2011,28(3):201-204.
    [44]杨志杰,孙俊民,张战军,等.提高硅钙渣胶凝活性的热活化试验[J].环境工程学报,2015, 9(9):4526-4530.
    [45]胡天麒.重熔改性后钢渣成分与胶凝性能的研究[D].北京:中冶集团建筑研究总院,2013.
    [46]黎载波,赵三银,赵旭光,等.钢渣在线重构技术的工业试验研究[J].武汉理工大学学报,2013, 35(6):29-33.
    [47]卢翔,李宇,马帅,等.钢渣热态改质技术在电炉中的应用[J].工业炉,2016, 38(5).
    [48]Ohji T, Kanakala R, Matyas J, et al. Effects of Composition Changes on the Sintering Properties of Novel Steel Slag Ceramics[M]//Advances in Materials Science for Environmental and Energy Technologies V:Ceramic Transactions. John Wiley&Sons, Inc. 2016:45-51.
    [49]Zhao L, Li Y, Zhou Y, et al. Preparation of novel ceramics with high CaO content from steel slag[J]. Materials&Design,2014, 64(9):608-613.
    [50]Dai W B,Li Y,Cang D Q, et al. Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass[J].矿物冶金与材料学报,2014,21(5):494-502.
    [51]Cang D, Li Y, Dai W, et al. Device for online modification of thermal-state smelting slag:, wo/2015/131438[P]. 2015.
    [52]徐德龙,李辉,李玉祥,等.一种熔融钢渣调质改性处理方法[P].中国:102492792A,2012-06-13.
    [53]李明阳.钢渣处理工艺的设计思路[J].中国冶金,2014,24(5):1-4.
    [54]韦传稳,孙小建,程强,等.钢渣处理工艺分析[J].现代冶金,2013,41(5):39-41.
    [55]Bisio G.Energy Recovery from Molten slag and Exploitation of the Recovered Energy[J].Energy, 1997,22:501.
    [56]Toshio Mizuochi,Tomohiro Akiyama,Taihei Shimada.Feasibility of retory Cup.
    [57]卢翔,李宇,马帅,等.利用显热对熔渣进行直接改质的热平衡分析及试验验证[J].北京科技大学学报,2016,38(10):1386-1392.
    [58]彭犇,岳昌盛,黄世烁,等.热态钢渣CO_2改性及热力学性能研究[J].环境工程,2015, 33(4):100-102.
    [59]黄东阳.转炉钢渣碳热还原自粉化研究[D].安徽工业大学,2016.
    [60]钟强华,简淼夫.硅酸二钙固相反应的热分析过程模拟[J].非金属矿,2014(1):31-33.
    [61]高凡.钢渣还原重构过程中RO相变化及铁氧化物高温还原动力学研究[D].广州:华南理工大学,2016.
    [62]张瑞.水泥熟料烧成热力学及动力学的研究[D].北京:北京工业大学,2010.
    [63]Semykina A, Gorobets O, Shatokha V, et al. Cold Simulation of Particle Movement in a Conducting Liquid under Crossed Electric and Magnetic Fields. Magnetite Particles Separation from Molten Slags[J]. Steel Research International,2011, 82(4):362-368.
    [64]Semykina A S,Shatokha V I, Seetharaman S, et al.Physical Simulation of Magnetite Particle Motion in the Molten Steelmaking Slag[J]. Metallurgical&Mining Industry, 2011,3(3):82-86.
    [65]Semykina A. The Kinetics of Oxidation of Liquid FeOMnO-CaO-SiO_2, Slags in Air[J]. Metallurgical&Materials Transactions B,2012, 43(1):56-63.
    [66] Semykina A, Nakano J, Sridhar S,et al. Confocal Scanning Laser Microscopy Studies of Crystal Growth During Oxidation of a Liquid FeO-CaO-SiO_2, Slag[J]. Metallurgical&Materials Transactions B, 2011, 42(3):471-476.
    [67]Semykina A, Seetharaman S. Recovery of Manganese Ferrite in Nanoform from the Metallurgical Slags[J].Metallurgical&Materials Transactions B,2011,42(1):2-4.
    [68]Semykina A, Shatokha V,Iwase M, et al. Kinetics ofOxidation of Divalent Iron to Trivalent State in Liquid FeOCaO-SiO2, Slags[J]. Metallurgical&Materials Transactions B,2010,41(6):1230-1239.
    [69]Takei Takahiro,Kameshima Yoshikazu,Yasumori Atsuo,etal.Crystallization Kinetices of Mullite From Al_2O_3-SiO_2 Glasses Under Nonisothermal Conditions[J].J Eur Ceram Soc,2001,2(2):487.
    [70]Zhuang Yan-xin,Zhao De-qian,Zhang Yong.Kinetics of Glass Transition and Crystallization in Multicomponent Bulk Amorphous Alloys[J].science in China Series A-Mathmatic,2000,43(11):1195.
    [71]LI Fu-Kinetics and Induced magnetic Properties of Bulk(Fe,Co)-Zr-Nd-B Metallic Glass[J].Transaction of Nonferrous Metals Socitey of China,2004,(5):8.
    [72]Takei Takahiro,Kameshima Yoshikazu,Yasumori Atsuo,etal.Crystallization Kinetics of Mullite in Alumina-Silica Glass Fibers[J].J AM Ceram Soc,1999,82(10):2876.
    [73]戴晓天,郭培民,齐渊洪,等非.非晶态高炉渣的非等温析晶动力学研究[J].钢铁,2008, 43(10):17-20.
    [74]唐续龙,张梅,郭敏,等.矿物棉纤维的非等温析晶动力学研究[J].北京科技大学学报,2011,33(12):1523-1528.
    [75]龙跃.气淬液态钢渣粒化机理及应用研究[D].沈阳:东北大学,2011.
    [76]鲍继伟.气淬钢渣析晶动力学研究[D].唐山:河北联合大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700