粉末冶金Ti-47Al-2Nb-2Cr-0.2W金属间化合物的高温动态力学行为(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic tensile behavior of PM Ti-47Al-2Nb-2Cr-0.2W intermetallics at elevated temperatures
  • 作者:欧阳思慧 ; 刘彬 ; 刘咏 ; 昝祥 ; 梁霄鹏 ; 李争
  • 英文作者:Si-hui OUYANG;Bin LIU;Yong LIU;Xiang ZAN;Xiao-peng LIANG;Zheng LI;State Key Laboratory of Powder Metallurgy, Central South University;School of Materials Science and Engineering, Hefei University of Technology;Yuanmeng Precision Technology (Shenzhen) Institute;
  • 关键词:TiAl金属间化合物 ; 变形机制 ; 粉末冶金 ; 动态变形 ; 霍普金森拉杆
  • 英文关键词:TiAl intermetallics;;deformation mechanism;;powder metallurgy;;dynamic deformation;;Split Hopkinson Bar
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学粉末冶金国家重点实验室;合肥工业大学材料科学与工程学院;圆梦精密技术研究院;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(51774335)supported by the National Natural Science Foundation of China;; Project(2017JJ2311)supported by the Natural Science Foundation of Hunan Province,China;; Project(KFJJ11-7M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China;; Project(HKHTZD20140702020004)supported by the Special Funds for Future Industrial Development of Shenzhen City,China
  • 语种:英文;
  • 页:ZYSY201906013
  • 页数:11
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:141-151
摘要
采用分离式霍普金森拉杆动态冲击变形实验研究粉末冶金Ti-47Al-2Nb-2Cr-0.2W (at.%)双态组织和近层片组织在高应变率下(800~1600 s~(-1))的动态力学行为和变形机理。结果表明,粉末冶金TiAl金属间化合物的韧性-脆性转变温度(DBTT)随应变速率增加而增大,动态加载下两种组织的高温强度均高于准静态加载下的高温强度;在高应变速率(800~1600s~(-1))和高温(650~850℃)条件下,粉末冶金TiAl金属间化合物的双态组织和近层片组织的加工硬化速率均对应变速率和温度不敏感。在动态加载条件下,堆垛层错及孪晶的形成是主要的变形机制。Zerilli-Armstrong模型能够恰当描述粉末冶金TiAl金属间化合物的高温动态变形行为。
        Split Hopkinson Tension Bar(SHTB) experiments were conducted to explore the dynamic mechanical behavior and deformation mechanism of powder metallurgical(PM) Ti-47 Al-2 Nb-2 Cr-0.2 W(at.%)intermetallics with near lamellar(NL) and duplex(DP)microstructures. Results show that,under dynamic loading,the high temperature strength of the PM TiAl intermetallics is higher than that under quasi-static loading, and the ductile to brittle transition temperature(DBTT) increases with the increase of strain rate. Formation of twinning and stacking faults is the main deformation mechanism during dynamic loading. The work hardening rates of the PM TiAl intermetallics are nearly insensitive to strain rate and temperature at high strain rates(800-1600 s-1)and high temperatures(650-850 ℃). Zerilli-Armstrong model is successfully used to describe the dynamic flowing behavior of the PM TiAl intermetallics. In general, the PM TiAl intermetallics are found to have promising impact properties, suitable for high-temperature and high-impact applications.
引文
[1]KIM Y W.Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J].Acta Metallurgica et Materialia,1992,40:1121-1134.
    [2]DIMIDUK D M.Systems engineering of gamma titanium aluminides:Impact of fundamentals on development strategy[J].Intermetallics,1998,6(7-8):613-621.
    [3]KUMPFERT J,KIM Y W,DIMIDUK D M.Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W[J].Materials Science and Engineering A,1995,192-193:465-473.
    [4]LIU B,LIU Y,LI Y P,ZHANG W,CHIBA A.Thermomechanical characterization of beta-stabilized Ti-45Al-7Nd-0.4W-0.15B alloy[J].Intermetallics,2011,19(8):1184-1190.
    [5]KEAR B H,THOMPSON E R.Aircraft gas turbine materials and processes[J].Science,1980,208(4446):847-856.
    [6]LASALMONIE A.Intermetallics:Why is it so difficult to introduce them in gas turbine engines?[J].Intermetallics,2006,14(10-11):1123-1129.
    [7]KOTHARI K,RADHAKRISHNAN R,WERELEY N M.Advances in gamma titanium aluminides and their manufacturing techniques[J].Progress in Aerospace Sciences,2012,55(5):1-16.
    [8]LUO X,LI C,YANG Y Q,XU H M,LI X Y,LI S,LI P T.Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforcedγ-TiAl matrix composites[J].Transactions of Nonferrous Metals Society of China,2016,26(5):1317-1325.
    [9]LAVERY N P,JARVIS D J,VOSS D.Emission mitigation potential of lightweight intermetallic TiAl components[J].Intermetallics,2011,19(6):787-792.
    [10]CLEMENS H,SMARSLY W.Light-weight intermetallic titanium aluminides-Status of research and development[J].Advanced Materials Research,2011,278:551-556.
    [11]JANSCHEK P.Wrought TiAl blades[J].Materials Today Proceedings,2015,2:s92-s97.
    [12]MALOY S A,GRAY G T.High strain rate deformation of Ti48Al2Nb2Cr[J].Acta Materialia,1996,44(5):1741-1756.
    [13]ZAN X,HE Y H,WANG Y,LU Z X,XIA Y M.Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures[J].Journal of Materials Science,2010,45(23):6446-6454.
    [14]LI J B,LIU Y,LIU B,WANG Y,CAO P,ZHOU C X,XIANG C J,HE Y H.High temperature deformation behavior of nearγ-phase high Nb-containing TiAl alloy[J].Intermetallics,2014,52:49-56.
    [15]ZHANG W,LIU Y,WANG L,LIU B.Numerical simulation and physical analysis for dynamic behaviors of P/M TiAl alloy in hot-packed forging process[J].Transactions of the Nonferrous Metals Society of China,2012,22(4):901-906.
    [16]LIU B,LIU Y,ZHANG W,HUANG J S.Hot deformation behavior of TiAl alloys prepared by blended elemental powders[J].Intermetallics,2011,19(2):154-159.
    [17]HUANG W,ZAN X,NIE X,GONG M,WANG Y,XIA Y M.Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures[J].Materials Science&Engineering A,2007,443(1-2):33-41.
    [18]ZHAN H Y,KENT D,WANG G,DARGUSCH M S.The dynamic response of aβtitanium alloy to high strain rates and elevated temperatures[J].Materials Science&Engineering A,2014,607:417-426.
    [19]LIN Y C,CHEN X M.A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel[J].Computational Materials Science,2010,49(3):628-633.
    [20]ARMSTRONG R W,ZERILLI F J.Dislocation mechanics aspects of plastic instability and shear banding[J].Mechanics of Materials,1994,17(2-3):319-327.
    [21]ZAN X,HE Y H,WANG Y,XIA Y M.Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures[J].Transactions of Nonferrous Metals Society of China,2011,21(1):45-51.
    [22]APPEL F,CLEMENS H,FISCHER F D.Modeling concepts for intermetallic titanium aluminides[J].Progress in Materials Science,2016,81:55-124.
    [23]APPEL F,WAGNER R.Microstructure and deformation of twophaseγ-titanium aluminides[J].Materials Science&Engineering R:Reports,1998,22(5):187-268.
    [24]YOO M H.Twinning and mechanical behavior of titanium aluminides and other intermetallics[J].Intermetallics,1998,6(7-8):597-602.
    [25]LIPSITT A,SHECHTMANN D,SCHAFRIK E.The deformation and fracture of TiAl at elevated temperatures[J].Metallurgical Transactions A,1975,6(11):1991-1996.
    [26]MALOY S A,GRAY G T.High strain rate deformation of Ti-48Al-2Cr-2Nb in the duplex morphology[R].Office of Scientific&Technical Information Technical Reports,1995.
    [27]HAO Y J,LIU J X,LI S K,LI J C,LIU X Z,FENG X Y.Effects of nano-twinning on the deformation and mechanical behaviours of TiAl alloys with distinct microstructure at elevated loading temperatures[J].Materials Science and Engineering A,2017,705:210-218.
    [28]BOLLING G F,RICHMAN R H.Continual mechanical twinning:Part I:Formal description[J].Acta Metallurgica,1965,13(7):709-722.
    [29]KANANI M,HARTMAIER A,JANISCH R.Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys[J].Acta Materialia,2016,106:208-218.
    [30]EDWARDS T E G,DI GIOACCHINO F,MU?OZ-MORENO R,CLEGG W J.The interaction of borides and longitudinal twinning in polycrystalline TiAl alloys[J].Acta Materialia,2017,140:305-316.
    [31]CERRETA E,CHEN S R,GRAY G T,POLLOCK T M.Dynamic deformation and damage in castγ-TiAl during Taylor cylinder impact:Experiments and model validation[J].Metallurgical and Materials Transactions A,2004,35(9):2557-2566.
    [32]BOUAZIZ O,GUELTON N.Modelling of TWIP effect on work-hardening[J].Materials Science and Engineering A,2001,319-321:246-249.
    [33]MORRIS M A.Dislocation mobility,ductility and anomalous strengthening of two-phase TiAl alloys:Effects of oxygen and composition[J].Intermetallics,1996,4(5):417-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700