高分子囊泡在药物释放体系的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Application of Polymersomes in Drug Delivery System
  • 作者:曹文杰 ; 熊向源 ; 龚妍春 ; 李资玲 ; 李玉萍
  • 英文作者:CAO Wen-jie;XIONG Xiang-yuan;GONG Yan-chun;LI Zi-ling;LI Yu-ping;School of Pharmacy,Jiangxi Normal University of Science and Technology;School of Life Sciences,Jiangxi Normal University of Science and Technology;
  • 关键词:高分子囊泡 ; 药物释放体系 ; 两亲性嵌段共聚物 ; 控释 ; 靶向
  • 英文关键词:Polymersomes;;Drug delivery system;;Amphiphilic block copolymer;;Controlled release;;Target
  • 中文刊名:SWGJ
  • 英文刊名:China Biotechnology
  • 机构:江西科技师范大学药学院;江西科技师范大学生命科学学院;
  • 出版日期:2019-06-15
  • 出版单位:中国生物工程杂志
  • 年:2019
  • 期:v.39;No.327
  • 基金:国家自然科学基金(21664007);; 江西省主要学科学术和技术带头人培养计划(20153BCB22009);; 江西省高等学校科技落地计划(KJLD13071)资助项目
  • 语种:中文;
  • 页:SWGJ201906009
  • 页数:11
  • CN:06
  • ISSN:11-4816/Q
  • 分类号:68-78
摘要
高分子囊泡作为一种新型的纳米药物载体,具有生物可降解性、稳定性、生物相容性及可修饰的多功能化等特点。改变聚合物种类和亲水-疏水嵌段的比例,可以制备具有不同形态和膜特性的高分子囊泡。经过修饰后的高分子囊泡,可赋予其更多的功能,从而实现药物的控释和药物靶向的能力。对高分子囊泡的结构、组成和制备方法以及在药物释放体系的应用等方面进行了较为详细的综述,目的是了解高分子囊泡最新研究进展以及未来科学家们亟须解决的重要问题。
        As a novel kind of nano-drug carrier, the polymersomes have the characteristics of biodegradability,stability,biocompatibility and modifiable multi-functionalization and so on. Polymersomes can be prepared by changing polymer type and the ratio of hydrophilic-hydrophobic block,which possess different morphological and membrane properties. After modifiing polymersomes,more functions can be given to realize the ability of controlling drug release and targeting drugs. The structure,composition,preparation methods and the application of drug delivery system about polymersomes have been reviewed in detail. The purpose is to know the latest research progress of polymersomes and some important problems in this field need to be solved by scientists in the future.
引文
[1]Zhu Y,Yang B,Chen S,et al.Polymer vesicles:Mechanism,preparation,application,and responsive behavior.Progress in Polymer Science,2017,64:1-22.
    [2]Palivan C G,Goers R,Najer A,et al.Bioinspired polymer vesicles and membranes for biological and medical applications.Chemical Society Reviews,2016,45(2):377-411.
    [3]Che H,van Hest J C M.Stimuli-responsive polymersomes and nanoreactors.Journal of Materials Chemistry B,2016,4(27):4632-4647.
    [4]Krishnamoorthy B,Karanam V,Chellan V R,et al.Polymersomes as an effective drug delivery system for glioma--a review.Journal of Drug Targeting,2014,22(6):469-477.
    [5]Lee J S,Feijen J.Polymersomes for drug delivery:design,formation and characterization.Journal of Control Release,2012,161(2):473-483.
    [6]Martin C,Aibani N,Callan J F,et al.Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.Therapeutic Delivery,2016,7(1):15-31.
    [7]Muller L K,Landfester K.Natural liposomes and synthetic polymeric structures for biomedical applications.Biochemical and Biophysical Research Communications,2015,468(3):411-418.
    [8]Massignani M,Lomas H,Battaglia G.Polymersomes:A synthetic biological approach to encapsulation and delivery.Advances in Polymer Science,2010,229:115-154.
    [9]Gerasimov O V,Marquita J A B,Qualls M M,et al.Cytosolic drug delivery using pH-and light-sensitive liposomes.Advanced Drug Delivery Review,1999,38(3):317-338.
    [10]Allen T M,Cullis P R.Liposomal drug delivery systems:From concept to clinical applications.Advanced Drug Delivery Reviews,2013,65(1):36-48.
    [11]Peer D,Karp J M,Hong S.Nanocarriers as an emerging platform for cancer therapy.Nature Nanotechnology,2007,2(12):751-760.
    [12]Kim Y J,Kim B,Hyun D C.Photocrosslinkable poly(ε-caprolactone)-b-hyperbranched polyglycerol(PCL b-hbPG)with improved biocompatibility and stability for drug delivery.Macromolecular Chemistry and Physics,2015,216(11):1161-1170.
    [13]Alibolandi M,Ramezani M,Abnous K,et al.Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs.Journal of Nanoparticle Research,2015,17(2):76-92.
    [14]Pippa N,Merkouraki M,Pispas S,et al.DPPC:MPOx chimeric advanced drug delivery nano systems(chiaDDnSs):physicochemical and structural characterization,stability and drug release studies.Internationa Journal of Pharmaceutics,2013,450(1-2):1-10.
    [15]Bermudez H,Brannan A K,Hammer D A,et al.Molecular weight dependence of polymersome membrane structure,elasticity,and stability.Macromolecules,2002,35(21):8203-8208.
    [16]Qin J,Liu Q,Zhang J,et al.Rationally separating the corona and membrane functions of polymer vesicles for enhanced T(2)MRI and drug delivery.ACS Applied Materials Interfaces,2015,7(25):14043-14052.
    [17]Wuytens P,Parakhonskiy B,Yashchenok A,et al.Pharmacological aspects of release from microcapsules from polymeric multilayers to lipid membranes.Current Opinion in Pharmacology,2014,18:129-140.
    [18]Craciun I,Belluati A,Cornelia G,et al.Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers.Nanomedicine,2017,12(7):811-817.
    [19]Yewle J,Wattamwar P,Tao Z,et al.Progressive saturation improves the encapsulation of functional proteins in nanoscale polymer vesicles.Pharmaceutical Research,2016,33(3):573-589.
    [20]Iyisan B,Kluge J,Formanek P,et al.Multifunctional and dualresponsive polymersomes as robust nanocontainers:design,formation by sequential post-conjugations,and pH-controlled drug release.Chemistry of Materials,2016,28(5):1513-1525.
    [21]Nahire R,Haldar M K,Paul S,et al.Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells.Biomaterials,2014,35(24):6482-6497.
    [22]Chiang W H,Huang W C,Chang C W,et al.Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging.Journal of Control Release,2013,168(3):280-288.
    [23]Du J,O’Reilly R K.Advances and challenges in smart and functional polymer vesicles.Soft Matter,2009,5(19):3544-3561.
    [24]Messager L,Gaitzsch J,Chierico L,et al.Novel aspects of encapsulation and delivery using polymersomes.Current Opinion in Pharmacology,2014,18:104-111.
    [25]Zhang L F,Eisenberg A.Multiple morphologiesof“crew-cut”aggregates of polystyrene-b-poly(acrylicacid)block copolymers.Science,1995,268(5218):1728-1731.
    [26]Kui Y,Eisenberg A.Multiple morphologies in aqueous solutions of aggregates of polystyrene-block poly(ethylene oxide)diblock copolymers.Macromolecules,1996,29(19):6359-6361.
    [27]Zhang L F,Eisenberg L.Multiple morphologies and characteristics of“crew-cut”micelle-like aggregates of polystyrene-b-poly(acrylic acid)diblock copolymers in aqueous solutions.Journal of the American Chemical Society,1996,118(13):3168-3181.
    [28]Zhang L F,Bartels C,Yu Y S,et al.Mesosized crystal-like structure of hexagonally packed hollow hoops by solution selfassembly of diblock copolymers.Physical Review Letters,1997,79(25):5034-5037.
    [29]Yu Y S,Zhang L F,Eisenberg L.Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers.Macromolecules,1998,31(4):1144-1154.
    [30]Shen H W,Eisenberg A.Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O.Macromolecules,2000,33(7):2561-2572.
    [31]Discher D E,Eisenberg A.Polymer vesicles.Science,2002,297(5583):967-73.
    [32]Li S L,Byme B,Welsh J E,Palmer A F.Self-assembled poly(butadiene)-b-poly(ethylene oxide)polymersomes as paclitaxel carriers.Biotechnology Progress,2007,23(1):278-285.
    [33]Mai Y,Eisenberg A.Self-assembly of block copolymers.Chemical Society Reviews,2012,41(18):5969-5985.
    [34]Zhu D,Wu S,Hu C,et al.Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma.Acta Biomaterialia,2017,58:399-412.
    [35]Laskar P,Dey J.Ghosh S K,Spontaneously formed redox-and p H-sensitive polymersomes by m PEG based cytocompatible random copolymers.Journal of Colloid Interface Science,2017,501:122-133.
    [36]Laskar P,Dey J,Banik P,et al.In vitro drug and gene delivery using random cationic copolymers forming stable and pH-sensitive polymersomes.Macromolecular Bioscience,2017,17(4):1-14.
    [37]Sanchez-Purra M,Ramos V,Petrenko V A,et al.Doubletargeted polymersomes and liposomes for multiple barrier crossing.International Journal of Pharmaceutics,2016,511(2):946-956.
    [38]Li X,Yang W,Zou Y,et al.Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes.Journal of Control Release,2015,220:704-714.
    [39]Meng F H,Zhong Y N,Cheng R,et al.pH-sensitive polymeric nanoparticles for tumor-targeting Doxoubicin delivery:concept and recent advances.Nanomedicine,2014,9(3):487-499.
    [40]Danafar H,Rostamizadeh K,Davaran S,et al.PLA-PEG-PLAcopolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs:preparation and evaluation with atorvastatin and lisinopril.Drug Development and Industrial Pharmacy,2014,40(10):1411-1420.
    [41]Chen C Y,Wang H L.Dual thermo-and pH-responsive zwitterionic sulfobataine copolymers for oral delivery system.Macromolecular Rapid Communications,2014,35(17):1534-1540.
    [42]Li G,Guo L,Wen Q,et al.Thermo-and pH-sensitive ioniccrosslinked hollow spheres from chitosan-based graft copolymer for5-fluorouracil release.International Journal of Biological Macromolecules,2013,55:69-74.
    [43]He C,Zhuang X,Tang Z,et al.Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery.Advanced Healthcare Materials,2012,1(1):48-78.
    [44]Wang Y,Gao S,Ye W H,et al.Co-delivery of drugs and DNAfrom cationic core-shell nanoparticles self assembled from a biodegradable copolymer.Nature Materials,2006,5(10):791-796.
    [45]Xiong X Y,Li Q H,Li Y P,et al.Pluronic P85/poly(lactic acid)vesicles as novel carrier for oral insulin delivery.Colloids and Surfaces B:Biointerfaces,2013,111:282-288.
    [46]Chu B,Zhang L,Qu Y,et al.Synthesis,characterization and drug loading property of monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(D,L-lactide)(MPEG-PCLA)copolymers.Scientific Reports,2016,6:34069.
    [47]Kang S W,Li Y,Park J H,et al.pH-triggered unimer/vesicletransformable and biodegradable polymersomes based on PEG-bPCL-grafted poly(β-amino ester)for anti-cancer drug delivery.Polymer,2013,54(1):102-110.
    [48]Oliveira H,Perez-Andres E,Thevenot J,et al.Magnetic field triggered drug release from polymersomes for cancer therapeutics.Journal of Control Release,2013,169(3):165-170.
    [49]Car A,Baumann P,Duskey J T,et al.pH-responsive PDMS-bPDMAEMA micelles for intracellular anticancer drug delivery.Biomacromolecules,2014,15(9):3235-3245.
    [50]Photos P J,Bacakova L,Discher B,et al.Polymer vesicles in vivo:correlations with PEG molecular weight.Journal of Controlled Release,2003,90(3):323-334.
    [51]Lin T,Fang Q,Peng D,et al.PEGylated non-ionic surfactant vesicles as drug delivery systems for gambogenic acid.Drug Delivery,2013,20(7):277-284.
    [52]Yassin M A,Appelhans D,Wiedemuth R,et al.Overcoming concealment effects of targeting moieties in the PEG corona:controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells.Small,2015,11(13):1580-1591.
    [53]Liu F T,Eisenberg A.Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block polystyrene-block-poly(4-vinyl pyridine).Journal of the American Chemical Society,2003,125(49):15059-15064.
    [54]Bollhorst T,Rezwan K,Maas M.Colloidal capsules:nano-and microcapsules with colloidal particle shells.Chemical Society Reviews,2017,46(8):2091-2126.
    [55]Thambi T,Park J H,Lee D S.Stimuli-responsive polymersomes for cancer therapy.Biomaterial Science,2016,4(1):55-69.
    [56]Brinkhuis R P,Rutjes F P J T,van Hest J C M.Polymeric vesicles in biomedical applications.Polymer Chemistry,2011,2(7):1449-1462.
    [57]Gref R,Lu M,Quellec P,et al.‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol(PEG):influences of the corona(PEG chain length and surface density)and of the core composition on phagocytic uptake and plasma protein adsorption.Colloids and Surfaces B:Biointerfaces,2000,18(3-4):301-313.
    [58]Kim P,Kim D H,Kim B,et al.Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion.Nanotechnology,2005,16(10):2420-2426.
    [59]Jia L,Cui D,Bignon J,et al.Reduction-responsive cholesterolbased block copolymer vesicles for drug delivery.Biomacromolecules,2014,15(6):2206-2217.
    [60]Kumar A,Lale S V,Aji Alex M R,et al.Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy:In vitro and in vivo studies.Colloids Surf B Biointerfaces,2017,149:369-378.
    [61]Liu Q,Song L,Chen S,et al.A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery.Biomaterials,2017,11:423-433.
    [62]Zhu J,Xu X,Hu M,et al.Co-encapsulation of combretastatinA4 phosphate and doxorubicin in polymersomes for synergistic therapy of nasopharyngeal epidermal carcinoma.Journal of Biomedical Nanotechnology,2015,11(6):997-1006.
    [63]Wang H,Zhao Y,Wu Y,et al.Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.Biomaterials,2011,32(32):8281-8290.
    [64]Sun H,Meng F,Cheng R,et al.Reduction and pH dualbioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis.Acta Biomaterials,2014,10(5):2159-2168.
    [65]Kashyap S,Jayakannan M.Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs.Journal of Materials Chemistry B,2014,2(26):4142-4152.
    [66]Yan Q,Yuan J Y,Cai Z N,et al.Voltage-responsive vesicles based on orthogonal assembly of two homopolymers.Journal of the American Chemical Society,2010,132(27):9268-9270.
    [67]Yang H,Zhang C,Li C,et al.Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex.Biomacromolecules,2015,16(4):1372-1381.
    [68]Chen W,Du J.Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery.Scientific Report,2013,3:2162.
    [69]Lee J S,Deng X,Han P,et al.Dual stimuli-responsive poly(beta-amino ester)nanoparticles for on demand burst release.Macromolecular Bioscience,2015,15(9):1314-1322.
    [70]Nguyen D H,Lee J S,Bae J W,et al.Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice.International Journal of Pharmaceutics,2015,495(1):329-335.
    [71]Xiong X Y,Tao L,Qin X,et al.Novel folated Pluronic/poly(lactic acid)nanoparticles for targeted delivery of paclitaxel.RSC Advances,2016,6(58):52729-52738.
    [72]Xiong X Y,Guo L,Gong Y C,et al.In vitro&in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid)nanoparticles through biotin-avidin interaction.European Journal of Pharmaceutical Sciences,2012,46(5):537-544.
    [73]Webster D M,Sundaram P,Byrne M E.Injectable nanomaterials for drug delivery:carriers,targeting moieties,and therapeutics.European Journal of Pharmaceutics and Biopharmaceutics,2013,84(1):1-20.
    [74]Yu G,Yu W,Shao L,et al.Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy.Advanced Functional Materials,2016,26(48):8999-9008.
    [75]Alibolandi M,Alabdollah F,Sadeghi F,et al.Dextran-b-poly(lactide-co-glycolide)polymersome for oral delivery of insulin:In vitro and in vivo evaluation.Journal of Control Release,2016,227:58-70.
    [76]Yang J,Hou Y,Ji G,et al.Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats.European Journal of Pharmaceutical Sciences,2014,52:180-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700