自支撑型过渡金属磷化物电催化析氢反应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction
  • 作者:吕宪伟 ; 胡忠攀 ; 赵挥 ; 刘玉萍 ; 袁忠勇
  • 英文作者:Xianwei Lv;Zhongpan Hu;Hui Zhao;Yuping Liu;Zhongyong Yuan;Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),College of Chemistry,Nankai University;National Institute for Advanced M aterials,School of Materials Science and Engineering,Nankai University;National Institute for Advanced Materials,School of Materials Science and Engineering,Nankai University;
  • 关键词:电解水 ; 过渡金属磷化物 ; 析氢反应 ; 自支撑 ; 非贵金属
  • 英文关键词:electrolysis of water;;transition metal phosphides;;hydrogen evolution reaction;;self-supporting;;non-noble-metal
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:南开大学化学学院先进能源材料化学教育部重点实验室;南开大学材料科学与工程学院国家新材料研究院;
  • 出版日期:2018-07-24
  • 出版单位:化学进展
  • 年:2018
  • 期:v.30;No.219
  • 基金:国家自然科学基金项目(No.21421001,21573115);; 天津市自然科学基金项目(No.17JCYBJC17100)资助~~
  • 语种:中文;
  • 页:HXJZ201807007
  • 页数:11
  • CN:07
  • ISSN:11-3383/O6
  • 分类号:79-89
摘要
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。
        Hydrogen energy, a zero-carbon emission energy, is mainly produced by water electrolysis.Currently,precious metal Pt is the state-of-the-art electrocatalyst for hydrogen evolution reaction( HER).However,the high cost and scarcity of Pt limit its wide application. Thus developing non-noble-metal electrocatalysts with high activity and excellent durability in hydrogen evolution reaction is still a great challenge.Self-supporting transition metal phosphides have excellent catalytic activity and stability,which are expected to be an alternative to precious metal Pt-based catalyst for HER. In this paper,the research progress of self-supporting transition metal phosphides is presented in detail. The advantages and mechanism of these electrocatalysts are discussed emphatically :( 1) The self-supporting substrate's 3D integrated frame with strong conductivity provides lots of channels for transferring electron,thereby accelerating the catalytic reaction process.( 2) Comparing self-supporting catalysts with others,its greater specific surface and more active sites are critical for catalytic reaction.( 3) Self-supporting transition metal phosphides can be directly used as cathode for HER,and avoid the trouble that catalysts easily fall off from the glass carbon electrode in traditional coating method.Finally,the prospective and challenges for future development of self-supporting transition metal phosphides for water electrolysis are summarized.
引文
[1]Turner J A.Science,2004,305:972.
    [2]Walter M G,Warren E L,Mc Kone J R,Boettcher S W,Mi Q,Santori E A,Lewis N S.Chem.Rev.,2010,110:6446.
    [3]Shi H,Liang H,Ming F,Wang Z.Angew.Chem.Int.Ed.,2016,129:588.
    [4]Ma T Y,Ran J,Dai S,Jaroniec M,Qiao S Z.Angew.Chem.Int.Ed.,2015,54:4646.
    [5]Zou X X,Zhang Y.Chem.Soc.Rev.,2015,44:5148.
    [6]Trasatti.Encyclopedia of Electrochemical Power Sources.Amsterdam:Elsevier,2009.41.
    [7]Merki D,Hu X.Energy Environ.Sci.,2011,4:3878.
    [8]Chen M,Qi J,Zhang W,Cao R.Chem.Commun.,2017,53:5507.
    [9]Wang S,Zhang L,Li X,Li C,Zhang R,Zhang Y,Zhu H.Nano Res.,2017,10:415.
    [10]Chen G F,Ma T Y,Liu Z Q,Li N,Su Y Z,Davey K,Qiao S Z.Adv.Funct.Mater.,2016,26:3314.
    [11]Liu T,Yan X,Xi P,Chen J,Qin D,Shan,D,Lu X.INT.J.Hydrogen Energy,2017,42:14124.
    [12]Ledendecker M,Krick Calderón S,Papp C,Steinrück H P,Antonietti M,Shalom M.Angew.Chem.Int.Ed.,2015,127:12538.
    [13]Du H,Liu Q,Cheng N,Asiri A M,Sun X,Li C M.J.Mater.Chem.A,2014,2:14812.
    [14]Jin Z,Li P,Xiao D.Green Chem.,2016,18:1459.
    [15]Wang J,Yang W,Liu J.J.Mater.Chem.A,2016,4:4686.
    [16]Li Q,Xing Z,Asiri A M,Jiang P,Sun X.Int.J.Hydrogen Energy,2014,39:16806.
    [17]Yu X,Zhang S,Li C,Zhu C,Chen Y,Gao P,Zhang X.Nanoscale,2016,8:10902.
    [18]Wu Z,Wang J,Zhu J,Guo J,Xiao W,Xuan C,Wang D.Electrochimica Acta,2017,232:254.
    [19]Wang D,Shen Y,Zhang X,Wu Z.J.Mater.Sci.,2017,52:3337.
    [20]Ojha K,Sharma M,Kolev H,Ganguli A K.Catal.Sci.Technol.,2017,7:668.
    [21]Zhu W,Tang C,Liu D,Wang J,Asiri A M,Sun X.J.Mater.Chem.A,2016,4:7169.
    [22]Han A,Zhang H,Yuan R,Ji H,Du P.ACS Appl.Mater.Interfaces,2017,9:2240.
    [23]Liu R,Gu S,Du H,Li C M.J.Mater.Chem.A,2014,2:17263.
    [24]Yang X,Lu A Y,Zhu Y,Min S,Hedhili M N,Han Y,Li L J.Nanoscale,2015,7:10974.
    [25]McEnaney J M,Crompton J C,Callejas J F,Popczun E J,Read C G,Lewis N S,Schaak R E.Chem.Commun.,2014,50:11026.
    [26]Bj?rketun M E,Bondarenko A S,Abrams B L,Chorkendorff I,Rossmeisl J.Phys.Chem.Chem.Phys.,2010,12:10536.
    [27]N?rskov J K,Bligaard T,Logadottir A,Kitchin J R,Chen J G,Pandelov S,Stimming U.J.Electrochem.Soc.,2005,152:J23.
    [28]Greeley J,N?rskov J K,Kibler L A,El-Aziz A M,Kolb D M.Chem Phys Chem,2006,7:1032.
    [29]Kang D,Kim T W,Kubota S R,Cardiel A C,Cha H G,Choi K S.Chem.Rev.,2015,115:12839.
    [30]Parsons R.Trans.Faraday Soc.,1958,54:1053.
    [31]Zhao H,Yuan Z Y.Catal.Sci.Technol.,2017,7:330.
    [32]Liu Q,Asiri A M,Sun X.Electrochem.Commun.,2014,49:21.
    [33]Liu Y,Ren L,Zhang Z,Qi X,Li H,Zhong J.Sci.Rep.,2016,6:22516.
    [34]Luo Q,Peng M,Sun X,Asiri A M.Catal.Sci.Technol.,2016,6:1157.
    [35]Popczun E J,Read C G,Roske C W,Lewis N S,Schaak R E.Angew.Chem.Int.Ed.,2014,126:5531.
    [36]Zhu Y P,Liu Y P,Ren T Z,Yuan Z Y.Adv.Funct.Mater.,2015,25:7337.
    [37]Ren J T,Yuan G G,Weng C C,Yuan Z Y.Electrochim.Acta,2018,261:454.
    [38]Jiang N,You B,Sheng M,Sun Y.Angew.Chem.Int.Ed.,2015,127:6349.
    [39]Yan X Y,Devaramani S,Chen J,Shan D L,Qin D D,Ma Q,Lu X Q.New J.Chem.,2017,41:2436.
    [40]Li W,Gao X,Wang X,Xiong D,Huang P P,Song W G,Liu L.J.Power Sources,2016,330:156.
    [41]Bai N,Li Q,Mao D,Li D,Dong H.ACS Appl.Mater.Interfaces,2016,8:29400.
    [42]Guo P,Wu Y X,Lau W M,Liu H,Liu L M.Int.J.Hydrogen Energy,2017,42:26995.
    [43]Yuan C Z,Zhong S L,Jiang Y F,Yang Z K,Zhao Z W,Zhao S J,Xu A W.J.Mater.Chem.A,2017,5:10561.
    [44]Yang L,Qi H,Zhang C,Sun X.Nanotechnology,2016,27:23LT01.
    [45]Huang J,Li Y,Xia Y,Zhu J,Yi Q,Wang H,Zou G.Nano Res.,2017,10:1010.
    [46]Gu S,Du H,Asiri A M,Sun X,Li C M.Phys.Chem.Chem.Phys.,2014,16:16909.
    [47]Niu Z,Jiang J,Ai L.Electrochem.Commun.,2015,56:56.
    [48]Liu Q,Tian J,Cui W,Jiang P,Cheng N,Asiri A M,Sun X.Angew.Chem.Int.Ed.,2014,126:6828.
    [49]Liu P,Rodriguez J A,Asakura T,Gomes J,Nakamura K.J.Phys.Chem.B,2005,109:4575.
    [50]Wang X,Li W,Xiong D,Petrovykh D Y,Liu L.Adv.Funct.Mater.,2016,26:4067.
    [51]Ren J,Hu Z,Chen C,Liu Y,Yuan Z.J.Energy Chem.,2017,26:1196.
    [52]Wang X,Kolen'ko Y V,Bao X Q,Kovnir K,Liu L.Angew.Chem.Int.Ed.,2015,54:8188.
    [53]Cai Z X,Song X H,Wang Y R,Chen X.Chem Electro Chem,2015,2:1665.
    [54]Wu R,Dong Y,Jiang P,Wang G,Chen Y,Wu X.Prog.Nat.Sci.,2016,26:303.
    [55]Jiang P,Liu Q,Sun X.Nanoscale,2014,6:13440.
    [56]Liu Q,Gu S,Li C M.J.Power Sources,2015,299:342.
    [57]Xiao J,Lv Q,Zhang Y,Zhang Z,Wang S.RSC Adv.,2016,6:107859.
    [58]Lin S H,Kuo J L.Phys.Chem.Chem.Phys.,2015,17:29305.
    [59]Pu Z,Wang M,Kou Z,Amiinu I S,Mu S.Chem.Commun.,2016,52:12753.
    [60]Lin H,Shi Z,He S,Yu X,Wang S,Gao Q,Tang Y.Chem.Sci.,2016,7:3399.
    [61]Lu C,Tranca D,Zhang J,Rodríguez-Hern?ndez F,Su Y,Zhuang X,Feng X.ACS Nano,2017,11:3933.
    [62]Zou L,Qiao Y,Gu S,Huang Y,Zhong C,Long Z E.J.Alloy Compd.,2017,712:103.
    [63]Kokko M,Bayerk9hler F,Erben J,Zengerle R,Kurz P,Kerzenmacher S.Appl.Energy,2017,190:1221.
    [64]Zhang L F,Ou G,Gu L,Peng Z J,Wang L N,Wu H.RSC Adv.,2016,6:107158.
    [65]Huang Z,Luo W,Ma L,Yu M,Ren X,He M,Amine K.Angew.Chem.Int.Ed.,2015,127:15396.
    [66]Liu N,Yang L,Wang S,Zhong Z,He S,Yang X,Tang Y.J.Power Sources,2015,275:588.
    [67]Deng S,Zhong Y,Zeng Y,Wang Y,Yao Z,Yang F,Tu J.Adv.Mater.,2017,29:1700748.
    [68]Lai F,Yong D,Ning X,Pan B,Miao Y E,Liu T.Small,2017,13:1602866.
    [69]Zhuang M,Ding Y,Ou X,Luo Z.Nanoscale,2017,9:4652.
    [70]Dai C,Zhou Z,Tian C,Li Y,Yang C,Gao X,Tian X.J.Phys.Chem.C,2017,121:1974.
    [71]Vrubel H,Hu X.Angew.Chem.Int.Ed.,2012,124:12875.
    [72]Song Y J,Yuan Z Y.Electrochim.Acta,2017,246:536.
    [73]Deng C,Xie J,Xue Y,He M,Wei X,Yan Y M.RSC Adv.,2016,6:68568.
    [74]Deng C,Ding F,Li X,Guo Y,Ni W,Yan H,Yan Y M.J.Mater.Chem.A,2016,4:59.
    [75]Pu Z,Wei S,Chen Z,Mu S.Appl.Catal.B,2016,196:193.
    [76]Tian J,Liu Q,Cheng N,Asiri A M,Sun X.Angew.Chem.Int.Ed.,2014,53:9577.
    [77]Shi Y,Zhang B.Chem.Soc.Rev.,2016,45:1529.
    [78]Safizadeh F,Ghali E,Houlachi G.Int.J.Hydrogen Energy,2015,40:256.
    [79]Read C G,Callejas J F,Holder C F,Schaak R E.ACS Appl.Mater.Interfaces,2016,8:12798.
    [80]Hou C C,Chen Q Q,Wang C J,Liang F,Lin Z,Fu W F,Chen Y.ACS Appl.Mater.Interfaces,2016,8:23037.
    [81]Liang Y,Liu Q,Asiri A M,Sun X,Luo Y.ACS Catal.,2014,4:4065.
    [82]Pu Z,Amiinu I S,Mu S.Energy Technol.,2016,4:1030.
    [83]Pi M,Wu T,Zhang D,Chen S,Wang S.Nanoscale,2016,8:19779.
    [84]Jiang P,Liu Q,Liang Y,Tian J,Asiri A M,Sun X.Angew.Chem.Int.Ed.,2014,53:12855.
    [85]Zhang R,Tang C,Kong R,Du G,Asiri A M,Chen L,Sun X.Nanoscale,2017,9:4793.
    [86]Lado J L,Wang X,Paz E,Carbó-Argibay E,Guldris N,Rodríguez-Abreu C,Kolen'ko Y V.ACS Catal.,2015,5:6503.
    [87]Ma Z,Li R,Wang M,Meng H,Zhang F,Bao X Q,Wang X.Electrochim.Acta,2016,219:194.
    [88]Liang H,Gandi A N,Anjum D H,Wang X,Schwingenschl9gl U,Alshareef H N.Nano Lett.,2016,16:7718.
    [89]Tang C,Zhang R,Lu W,He L,Jiang X,Asiri A M,Sun X.Adv.Mater.,2017,29:1602441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700