安徽汞洞冲角砾岩型铅锌矿床成矿作用过程:来自矿床地质、流体包裹体和C、H、O、S同位素的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ore-forming process of Gongdongchong breccia type Pb-Zn deposit, Anhui: Evidences from geology, fluid inclusions and isotopes of C, H, O and S
  • 作者:吴皓然 ; 谢玉玲 ; 王爱国 ; 钟日晨 ; 王莹 ; 安卫军
  • 英文作者:WU Hao-ran;XIE Yu-ling;WANG Ai-guo;ZHONG Ri-chen;WANG Ying;AN Wei-jun;School of Civil and Environmental Engineering,University of Science and Technology Beijing;Nanjing Institute of Geology and Mineral Resource,Chinese Academy of Geological Sciences;
  • 关键词:汞洞冲 ; 隐爆角砾岩 ; 沸腾作用 ; 混合作用 ; 岩浆热液
  • 英文关键词:Gongdongchong;;cryptoexplosion breccia;;fluid boiling;;mixing;;magmatic hydrothermal
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:北京科技大学土木与资源工程学院;南京地质矿产研究所;
  • 出版日期:2018-07-15
  • 出版单位:中国有色金属学报
  • 年:2018
  • 期:v.28;No.232
  • 基金:国土资源部公益性行业基金项目(201011011);; 中国地质调查局项目(2014-01-020-010)~~
  • 语种:中文;
  • 页:ZYXZ201807017
  • 页数:24
  • CN:07
  • ISSN:43-1238/TG
  • 分类号:148-171
摘要
汞洞冲铅锌矿床位于大别成矿带的东段,是该区内重要的角砾岩型多金属矿床。矿体受角砾岩体控制,赋存于早古生代佛子岭岩群诸佛庵组云母石英片岩和千枚岩之中。矿床经历他形石英-绢云母-黄铁矿阶段(Ⅰ)、自形石英-铁锰镁碳酸盐-多金属硫化物阶段(Ⅱ)和方解石-绿泥石-黄铁矿阶段(Ⅲ),其中Ⅱ阶段为最主要的铅锌沉淀阶段。流体包裹体岩相学、显微测温、激光拉曼综合研究表明:Ⅰ阶段主要发育富CO_2包裹体(均一温度为307~354℃,盐度(NaCleq)为0.6%~5.6%(质量分数))和含子晶多相包裹体(均一温度为323~377℃,盐度为38.2%~45.3%);Ⅱ阶段主要发育气液相体积比变化很大的气液两相水溶液包裹体,及少量含CO_2的包裹体,均一温度为249~315℃,盐度(NaCleq)为2.9%~6.9%;Ⅲ阶段主要发育气液两相水溶液包裹体,均一温度为242~280℃,盐度为1.4%~5.0%,其中Ⅰ阶段流体发生了沸腾作用。H、O同位素测试结果表明:Ⅰ阶段硅化细粒石英流体包裹体显示岩浆水来源,而Ⅱ阶段晶簇石英的流体包裹体则存在有大气水混入的特征。成矿流体由中高温、高盐度、富CO_2的岩浆水向低温、低盐度、贫气富水的大气水方向演化。C-O同位素测试结果表明,与铅锌等金属共生的白云石中δ~(13)C_(V-PDF)值为-4.6×10~(-3)~-1.2×10~(-3)之间,相对变化较小,δ~(18)O_(SMOW)值为7.1×10~(-3)~10.2×10~(-3),显示岩浆碳酸岩来源。金属硫化物的δ~(34)S_(V-CDT)值变化范围很窄,在2.5×10~(-3)~4.5×10~(-3)之间,也显示深源硫的特征。综合分析表明:汞洞冲铅锌矿床为一热液隐爆角砾岩型矿床,成矿流体和成矿物质主要来自深部的岩浆热液,矿床经历了隐爆作用和减压过程,使得流体发生了沸腾作用,此时气液相开始分离,CO_2不断逃逸,成矿金属在残存的高盐度液相中富集,随后大气降水沿着隐爆作用所产生的裂隙加入热液中,流体混合使得体系盐度大幅降低,金属络合物失稳,最终铅锌大量沉淀。
        The Gongdongchong Pb-Zn deposit located in Jinzhai County, Anhui Province, China, is one of the important breccia type lead-zinc polymetallic deposits in the east end of Qinling-Dabie metallogenic belt. Ore bodies are controlled by the breccia, hosted in Early Palaeozoic mica-quartz schist and phyllite of Zhufo'an Formation, Foziling Group. The ore-forming processes of Gongdongchong deposit can be divided into three stages, namely the anhedral quartz-sericite-pyrite stage(Ⅰ), the euhedral quartz-carbonate-polymetal sulfides stage(Ⅱ) and the calcite-chlorite-pyrite stage(Ⅲ), among which, the stage(Ⅱ) is the major mineralization stage. Studies of fluid inclusions show that the fluid inclusions trapped in stage(Ⅰ) including two-phase inclusions, as evidenced by the coexistence of CO_2-rich(C-type)(Homogenization temperatures of 307-354 ℃, Salinity(NaCleq): 0.6%-5.6% and multi-phase(S-type) inclusions with daughter minerals(Homogenization temperature of 323-377 ℃, Salinity of 38.2%-45.3%. The fluid inclusions of stage(Ⅱ) are two-phase inclusions, as identified by the coexistence of L_1-and L_2-type fluid inclusions; L_1-type inclusions homogenized is 249-315 ℃, with salinities of 2.9%-6.9%. The fluid inclusions formed in stage(Ⅲ) are dominated by vapor-liquid two phase inclusions, with the homogenization temperatures ranging from 242 ℃ to 280 ℃ and salinities between 1.4% and 5.0%. The fluid-boiling is evidenced by divergent-phase homogenizations of fluid inclusions with contrasting salinities at similar temperatures in stage(Ⅰ). The hydrogen and oxygen isotopes composition in quartz grains from different stages show that ore-forming fluid for stage(Ⅰ) is of magmatic origin, and is mixd by the meteoric water in stage(Ⅱ). The ore-forming fluid is characterized by medium-high temperature, high salinity and CO_2-rich, and then evolved into low temperature, low salinity and CO_2-release from early to late stage. The carbon and oxygen isotope composition in the dolomite in the deposit range from-4.6×10~(-3) to 1.2×10~(-3) and from 7.1×10~(-3) to 10.2×10~(-3), respectively, which is similar to those in magmatic carbonatite. The values of δ~(34)S_(V-CDT) in major sulfides have narrow variable range, from 2.5×10~(-3) to 4.5×10~(-3), indicating that the sulfur is derived from the mantle. All the data presented show that Gongdongchong Pb-Zn deposit belongs to the cryptoexplosion breccia-type deposit. The ore forming fluid and metallogenic materials come from magma in depth. The fluids boiling after cryptoexplosion and decompression result in gas-release. The metallogenic elements, such as Pb, Zn and Cu, concentrated in the solution with high salinity. The ore-forming hydrothermal solution migrated upwards along the tensional cracks with the sharply salinity decreasing by mixture with meteoric water, finally ore-forming materials are precipitated.
引文
[1]OKAY A I,XU Shu-tong,SENGOR A M C.Coesite from the Dabie Shan eclogites,central China[J].European Journal of Mineralogy,1989,1(4):595-598.
    [2]HACKER B R,SCHBACHER L,WEBB L.U/Pb zircon ages const rain the architecture of the ultra high pressure Qinling-Dabie orogen,China[J].Earth and Planetary Science Letters,1998,161(1/4):215-231.
    [3]李曙光.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程[J].地学前缘,2004,11(3):63-70.LI Shu-guang.Exhumation mechanism of the ultrahigh–pressure metamorphic rocks in the Dabie mountains and continental collision process between the North and South China blocks[J].Earth Science Frontiers,2004,11(3):63-70.
    [4]李曙光,李秋立,侯振辉,杨蔚,王莹.大别超高压变质岩的冷却史及折返机制[J].岩石学报,2005,21(4):1117-1124.LI Shu-guang,LI Qiu-li,HOU Zhen-hui,YANG Wei,WANG Ying.Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie mountains,central China[J].Acta Petrologica Sinica,2005,21(4):1117-1124.
    [5]许志琴,戚学祥,杨经绥,曾令森,刘福来,梁凤华,唐哲民,蔡志慧.苏鲁高压-超高压变质地体的陆-陆碰撞深俯冲剥蚀模式[J].地球科学(中国地质大学学报),2006,31(4):427-436.XU Zhi-qin,QI Xue-xiang,YANG Jing-sui,ZENG Ling-sen,LIU Fu-lai,LIANG Feng-hua,TANG Zhe-min,CAI Zhi–hui.Deep subduction erosion model for continent–continent collision of the Sulu HP–UHP metamorphic terrain[J].Earth Science(Journal of China University of Geosciences),2006,31(4):427-436.
    [6]杨经绥,许志琴,张建新,张泽明,刘福来,吴才来.中国主要高压-超高压变质带的大地构造背静及俯冲/折返机制的探讨[J].岩石学报,2009,25(7):1529-1560.YANG Jing-sui,XU Zhi-qin,ZHANG Jian-xin,ZHANG Ze-ming,LIU Fu-lai,WU Cai–lai.Tectonic setting of main high–and ultrahigh–pressure metamorphic belts in China and adjacent region and discussion on their subduction and exhumation mechanism[J].Acta Petrologica Sinica,2009,25(7):1529-1560.
    [7]李毅,胡海珠,陈丽娟,白凤军,李红超.大别山北麓姚冲钼矿床地质特征及找矿标志[J].地质与勘探,2013,49(2):280,288.LI Yi,HU Hai-zhu,CHEN Li-juan,BAI Feng-jun,LI Hong-chao.Geological features and ore-searching indicators of the Yaochong Mo deposit in the northern Piedmont of the Dabie Shan[J].Geology and Prospecting,2013,49(2):280,288.
    [8]张怀东,王波华,郝越进,程松,项斌.安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息,矿床地质[J],2012,31(1):41-51.ZHANG Huai-dong,WANG Bo-hua,HAO Yue-jin,CHENG Song,XIANG Bing.Geological characteristics and comprehensive ore-prospecting information of Shapinggou porphyry-type molybdenum deposit in Anhui Province[J].Mineral Deposits,2011,30(3):457-468.
    [9]杨梅珍,付晶晶,王世峰,陆建培.桐柏山老湾金矿带右行走滑断裂控矿体系的构建及其意义[J].大地构造与成矿学,2014,38(1):94-107.YANG Mei-zhen,FU Jing-jing,WANG Shi-feng,LU Jian-pei.Establishment and significance of dextral strike-slip fault ore-controlling system of the Laowan gold belt,Tongbai Mountains[J].Geotectonica et Metallogenia,2014,38(1):94-107.
    [10]任志,周涛发,张达玉,袁峰,范裕,李先初,Noel WHITE.大别山地区沙坪沟斑岩型钼矿床蚀变及矿化特征研究[J].岩石学报,2015,31(9):2707-2723.REN Zhi,ZHOU Tao-Fa,ZHANG Da-Yu,YUAN Feng,FAN Yu,LI Xian-Chu,WHITE N.Characteristics of alteration and mineralization of Shapinggou porphyry molybdenum deposit,Dabie orogenic belt[J].Acta Petrologica Sinica,2015,31(9):2707-2723.
    [11]魏庆国,高昕宇,赵太平,陈伟,杨岳衡.大别北麓汤家坪花岗斑岩锆石LA-ICPMS U-Pb定年和岩石地球化学特征及其对岩石成因的制约[J].岩石学报,2010,26(5):1550-1562.WEI Qing-guo,GAO Xin-yu,ZHAO Tai-ping,CHEN Wei,YANG Yue-heng.Petrogenesis of Tangjiaping granite porphyry in northern Dabie:Evidence from Zircon LA-ICPMS U-Pb dating and geochemical characteristics[J].Acta Petrologica Sinica,2010,26(5):1550-1562.
    [12]杨泽强.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义[J].矿床地质,2007,26(3):289-295.YANG Ze-qiang.Re-Os isotopic ages of Tangjiaping molybdenum deposit in Shangcheng County,Henan and their geological significance[J].Mineral Deposits,2007,26(3):289-295.
    [13]高阳,叶会寿,李永峰,罗正传,李法岭,熊必康,孟芳.大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征[J].岩石学报,2014,30(1):49-63.GAO Yang,YE Hui-shou,LI Yong-feng,LUO Zheng-zhuan,LI Fa-ling,XIONG Bi-kang,MENG Fang.SHRIMP zircon U-Pb ages,Hf isotopic compositions and trace elements characterristics of the granites from the Qian’echong Mo deposit,Dabie Orogen[J].Acta Petrologica Sinica,2014,30(1):49-63.
    [14]刘清泉,邵拥军,张智慧,张宇,李冰,张驰.大别山姚冲花岗岩锆石U-Pb年龄、Hf同位素及地质意义[J].中国有色金属学报,2015,25(2):479-491.LIU Qing-quan,SHAO Yong-jun,ZHANG Zhi-hui,ZHANG Yu,LI Bing,ZHANG Chi.Zircon U-Pb ages,Hf isotope characteristics and its implication of granite from Yaochong,Dabie orogen,China[J].The Chinese Journal of Nonferrous Metals,2015,25(2):479-491.
    [15]孟祥金,徐文艺,吕庆田,屈文俊,李先初,史东方,文春华.安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J].地质学报,2012,86(3):486-494.MENG Xiang-jin,XU Wen-yi,LüQin-tian,QüWen-jun,LI Xian-chu,SHI Dong-fang,WEN Chun-hua.Zircon U-Pb dating of ore-bearing rocks and molybdenite Re-Os age in Shapinggou porphyry molybdenum deposit,Anhui Province[J].Acta Geologica Sinica,2012,86(3):486-494.
    [16]于文,倪培,王国光,商力,江来利,王波华,张怀东.安徽金寨县沙坪沟斑岩钼矿床成矿流体演化特征[J].南京大学学报(自然科学),2012,48(3):240-255.YU Wen,NI Pei,WANG Guo-guang,SHANG Li,JIANG Lai-li,WANG Bo-hua,ZHANG Huai-dong.Evolution of ore-forming fluids of the Shapinggou porphyry molybdenum deposit,Jinzhai,Anhui Province[J].Journal of Nanjing University(Natural Science),2012,48(3):240-255.
    [17]王玭,杨永飞,糜梅,李忠烈,王莉娟.河南省新县姚冲钼矿床流体包裹体研究[J].岩石学报,2013,29(1):107-120.WANG Pin,YANG Yong-fei,MEI Mei,LI Zhong-lie,WANG Li-juan.Fluid evolution of the Yaochong porphyry Mo deposit,Xinxian County,Henan Province,China[J].Acta Petrologica Sinica,2013,29(1):107-120.
    [18]安徽省地质矿产勘查局313地质队.安徽省金寨县汞洞冲铅锌矿普查地质报告(内部资料)[R].1987:1-17.No.313 Team of Anhui Bureau of Geology and Mineral Resources Exploration.Geological survey report of Gongdongchong lead-zinc deposit in Jinzhai County,Anhui Province[R].1987:1-17.
    [19]陆三明,徐晓春,彭智.北淮阳构造带东段隐爆角砾岩型多金属矿床的地质特征及成因[J].地质与勘探,2005,41(3):7-11.LU San-ming,XU Xiao-chun,PENG Zhi.Geologic feature and genesis of crypto-explosion breccia in the east part of north Huaiyang tectonic zone[J].Geology and Prospecting,2005,41(3):7-11.
    [20]彭智,陆三明,徐晓春.北淮阳构造带东段金-多金属矿床区域成矿规律[J].合肥工业大学学报(自然科学版),2005,28(4):364-368.PENG Zhi,LU San-ming,XU Xiao-chun.Regional metallogenetic regularity of gold-polymetallic deposits in the east of north Huaiyang tectonic belt[J].Journal of Hefei University of Technology(Natural Science),2005,28(4):364-368.
    [21]彭南海,邵拥军,刘忠法,汪程.山西义兴寨金矿田成矿机理研究:来自同位素和流体包裹体的证据[J].中国有色金属学报,2017,27(2):305-317.PENG Nan-hai,SHAO Yong-jun,LIU Zhong-fa,WANG Cheng.Metallogenic mechanism of Yixingzhai gold ore field in Fanshi county,Shanxi province:Evidences from isotopes and fluid inclusion[J].The Chinese Journal of Nonferrous Metals,2017,27(2):305-317.
    [22]鞠培姣,赖健清,莫青云,石坚,谭辉跃,陶诗龙.湖南双峰县包金山金矿成矿流体与矿床成因[J].中国有色金属学报,2016,26(12):2625-2639.JU Pei-jiao,LAI Jian-qing,MO Qing-yun,SHI Jian,TAN Hui-yue,TAO Shi-long.Ore-forming fluid characteristics and genesis of Baojinshan gold deposit in Shuangfeng County,Hunan Province,China[J].The Chinese Journal of Nonferrous Metals,2016,26(12):2625-2639.
    [23]熊瑛,朱自强,胡祥昭,鲁光银.海南省东方市踏王山金矿床流体包裹体特征及矿床成因[J].中国有色金属学报,2016,26(6):1281-1292.XIONG Ying,ZHU Zi-qiang,HU Xiang-zhao,LU Guang-yin.Characteristics of fluid inclusions and genesis of Tawangshan gold deposit in Dongfang County,Hainan Province,China[J].The Chinese Journal of Nonferrous Metals,2016,26(6):1281-1292.
    [24]熊伊曲,邵拥军,刘建平,隗含涛,赵睿成.锡田矿田石英脉型钨矿床成矿流体[J].中国有色金属学报,2016,26(5):1107-1119.XIONG Yi-qu,SHAO Yong-jun,LIU Jian-ping,WEI Han-tao,ZHAO Rui-cheng.Ore-forming fluid of quartz-vein type tungsten deposits,Xitian orefield,eastern Hunan,China[J].The Chinese Journal of Nonferrous Metals,2016,26(5):1107-1119.
    [25]徐方颖,赖健清,王雄军.铜陵老鸦岭铜矿床流体包裹体特征与成矿作用[J].中国有色金属学报,2015,25(10):2871-2882.XU Fang-ying,LAI Jian-qing,WANG Xiong-jun.Characteristic of fluid inclusions and metallization of Laoyaling copper deposit in Tongling,Anhui Province,China[J].The Chinese Journal of Nonferrous Metals,2015,25(10):2871-2882.
    [26]王清晨,林伟.大别山碰撞造山带的地球动力学[J].地学前缘(中国地质大学,北京),2002,9(4):257-265.WANG Qing-chen,LIN Wei.Geodynamics of the Dabieshan collisional orogenic belt[J].Earth Science Frontiers(China University of Geosciences Beijing),2002,9(4):257-265.
    [27]徐树桐,江来利,刘贻灿,张勇.大别山区(安徽部分)的构造格局和演化过程[J].地质学报,1992,66(1):1-14.XU Shu-tong,JIANG Lai-li,LIU Yi-can,ZHANG Yong.Tectonic framework and evolution of the Dabie mountains in Anhui,Eastern China[J].Acta Geologica Sinica,1992,66(1):1-14.
    [28]江来利,刘贻灿,吴维平,苏文.大别山超高压变质岩的变形历史及折返过程[J].地质科学,1999,34(4):432-441.JIANG Lai-li,LIU Yi-can,WU Wei-ping,SU Wen.The deformation history and exhumation process of the UHPM rocks in the Dabieshan[J].Scientia Geologica Sinica,1999,34(4):432-441.
    [29]王清晨,从柏林.大别山超高压变质带的大地构造框架[J].岩石学报,1998,14(4):481-492.WANG Qing-chen,CONG Bo-lin.Tectonic framework of the ultrahigh-pressure metamorphic zone from the Dabie mountains[J].Acta Petrologica Sinica,1998,14(4):481-492.
    [30]周建波,郑永飞,李龙,谢智.扬子板块俯冲的构造加积楔[J].地质学报,2001,75(3):338-352.ZHOU Jian-bo,ZHENG Yong-fei,LI Long,XIE Zhi.Accretionary wedge of the subduction of the Yangtze plate[J].Acta Geologica Sinica,2001,75(3):338-352.
    [31]王清晨.大别山造山带高压-超高压变质岩的折返过程[J].岩石学报,2013,29(5):1607-1620.WANG Qing-chen.Exhumation of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie orogenic belt[J].Acta Petrologica Sinica,2013,29(5):1607-1620.
    [32]安徽省地质矿产局.安徽省区域地质志[M].北京:地质出版社,1987:5-94.Bureau of Geology and Mineral Resources of Anhui Province.Regional geology of Anhui province[M].Beijing:Geological Publishing House,1987:5-94.
    [33]戴圣潜,徐家聪,石乾华,周存亭.北淮阳东段佛子岭群新认识[J].中国区域地质,1992(4):369-375.DAI Sheng-qian,XU Jia-cong,SHI Qian-hua,ZHOU Cun-ting.New recognition of the foziling group in the eastern part of northern Huaiyang[J].Regional Geology of China,1992(4):369-375.
    [34]陈跃志,桑宝梁.佛子岭群变质岩石学变质作用及时代的初步研究[J].中国区域地质,1995(3):280-288.CHEN Yue-zhi,SANG Bao-liang.Metamorphic petrology and metamorphism of the foziling group in northern Huaiyang and its age[J].Regional Geology of China,1995(3):280-288.
    [35]杜建国.大别造山带中生代岩浆作用与成矿地球化学研究[D].合肥:合肥工业大学,2000:14-36.DU Jian-guo.On researching of mesozoic magmatism and geochemsitry of mineralization in Dabie orogenic belt[D].Hefei:Hefei University of Technology,2000:14-36.
    [36]周泰禧,陈江峰,张巽,李学明.北淮阳花岗岩-正长岩地球化学特征及其大地构造意义[J].地质论评,1995,41(2):144-151.ZHOU Tai-xi,CHEN Jiang-feng,ZHANG Xun,LI Xue-ming.Geochemistry of the north Huaiyang granite-syenite zone and its tectonic implication[J].Geological Review,1995,41(2):144-151.
    [37]马昌前,杨坤光,许长海,李志昌,EHLERS CARL.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理[J].岩石学报,1999,15(3):379-395.MA Chang-qian,YANG Kun-guang,XU Chang-hai,LI Zhi-chang,EHLERS Carl.Mesozoic potassic magmatism in the Dabie Mountains:Implication for exhumation mechanism of ultrahigh-pressure metamorphic terranes[J].Acta Petrologica Sinica,1995,41(2):144-151.
    [38]续海金,叶凯,马昌前.北大别早白垩世花岗岩类Sm-Nd和锆石Hf同位素及其构造意义[J].岩石学报,2008,24(1):87-103.XU Hai-jin,YE Kai,MA Chang-qian.Early Cretaceous granitoids in the North Dabie and their tectonic implications:Sr-Nd and zircon Hf isotipic evidences[J].Acta Petrologica Sinica,2008,24(1):87-103.
    [39]刘晓强.大别造山带燕山期岩浆岩[D].合肥:合肥工业大学,2014:39-43.LIU Xiao-qiang.Mineralization and petrogenesis of Yanshanian magmatic rocks,Dabie orogen[D].Hefei:Hefei University of Technology,2014:39-43.
    [40]卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004:241-249.LU Huan-zhang,FAN Hong-rui,NI Pei,OU Guang-xi,SHEN KUN,ZHANG Wen-huai.Fluid inclusions[M].Beijing:Science Press,2004:241-249.
    [41]ROEDDER E.Fluid Inclusions:Reviews in mineralogy[M].Washington:Mineral Society of America,1984:1-644.
    [42]HALL D L,STERNER S M AND BODNAR R J.Freezing pointdepression of Na Cl-KCl-H2O solutions[J].Economic Geology,1988,83(1):197-202.
    [43]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:207-216.LIU Bin,SHEN Kun.Fluid inclusion thermodynamics[M].Beijing:Geological Publishing House,1999:207-216.
    [44]SHEPHERD T J,RANKIN A H,ALDERTON D H M.A Practical Guide to Fluid Inclusion Studies[M].New York:Chapman and Hall,1985:1-239.
    [45]HAAS J L.Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling Na Cl solution[M].Washington DC:Geological Survey Bulletin,1421-A,1976:1-73.
    [46]CLAYTON R N,O'NEIL J R AND MAYEDA T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research Atmospheres,1972,77(17):3057-3067.
    [47]BECKER S P,FALL A,BODNAR R J.Synthetic fluid inclusions:XVII.PVTX properties of high salinity H2O-Na Cl solutions(>30%Na Cl):Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits[J].Economic Geology,2008,103(3):539-554.
    [48]谢玉玲,李应栩,常兆山,COOKE D R,RYAN C G,LAIRD J,白劲松,刘云飞,李光明,张丽.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征[J].地质学报,2009,83(12):1870-1886.XIE Yu-ling,LI Ying-xu,CHANG Zhao-shan,COOKE D R,RYAN C G,LAIRD J,BAI Jin-song,LIU Yun-fei,LI Guang-ming,ZHANG Li.Magmatic evolution and characteristics of magmatic Fluid in the Qiagong porphyry
    [49]OHMOTO H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry,1986,16(1):491-559.
    [50]TAYLOR H P.Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[C]//BARNES H L.Geochemistry of Hydrothermal Ore Deposits(2nd ed).New York:Wiley,1979:236-277.
    [51]刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23(1):3-6.LIU Jia-jun,HE Ming-qin,LI Zhi-ming,LIU Yu-ping,LI Zhao-yang,ZHANG Qian,YANG Wei-guang,YANG Ai-ping.Oxygen and carbon isotopic geochemistry of Baiyangping silver-copper polymetallic ore concentration area in Lanping basin of Yunnan province and its significance[J].Mineral Deposits,2004,23(1):3-6.
    [52]毛景文,赫英,丁梯平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-128.MAO Jing-wen,HE Ying,DING Ti-ping.Mantle fluids involved in metallogenesis of jiaodong(east shandong)gold district:evidence of C,O and H isotopes[J].Mineral Deposits,2002,21(2):121-128.
    [53]HOEFS J.Stable Isotope Geochemistry[M].4th ed.Berlin:Springer-Verlag,1980:65-167.
    [54]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000:218-239.ZHENG Yong-fei,CHEN Jiang-feng.Stable isotope geochemistry[M].Beijing:Science Press,2000:218-239.
    [55]DEINES P,HARRIS J W,GURNEY J J.The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein Kimberlite,South Africa[J].Geochimica Et Cosmochimica Acta,1991,55(9):2615-2625.
    [56]MATTHEWS A,KATZ A.Oxygen isotope fractionation during the dolomitization of calcium carbonate[J].Geochimica Et Cosmochimica Acta,1977,41(10):1431-1438.
    [57]CLARK I,FRITZ P.Environmental isotopes in hydrogeology.New York:Lewis Publishers,1997:328.
    [58]成曦晖,徐九华,王建雄,禇海霞,肖星,张辉.厄立特里亚阿斯马拉VMS矿床S、Pb同位素对成矿物质来源的约束[J].中国有色金属学报,2017,27(4):795-810.CHENG Xi-hui,XU Jiu-hua,WANG Jian-xiong,CHU Hai-xia,XIAO Xing,ZHANG Hui.Sulfur and lead isotope constrains on source of ore-forming materials in Asmara VMS-type deposits,Eritrea[J].The Chinese Journal of Nonferrous Metals,2017,
    [59]席振,高光明,马德成,罗晗.厄瓜多尔Beroen金银矿床硫铅同位素地球化学[J].中国有色金属学报,2016,26(4):852-862.XI Zhen,GAO Guang-ming,MA De-cheng,LUO Han.Lead and sulfur isotope geochemistry of Ecuadorian Beroen gold-silver deposit[J].The Chinese Journal of Nonferrous Metals,2016,26(4):852-862.
    [60]张辰光,赖健清,曹勇华,刘印明,杨金明,韩永生.新疆铁克里克铜铅锌多金属矿床多因复成成矿作用[J].中国有色金属学报,2016,26(6):1293-1302.ZHANG Chen-guang,LAI Jian-qing,CAO Yong-hua,LIU Yin-ming,YANG Jin-ming,HAN Yong-sheng.Polygenetic compound mineralization of Tiekelike copper-lead-zinc deposit,Xinjiang[J].The Chinese Journal of Nonferrous Metals,2016,26(6):1293-1302.
    [61]杨立强,邓军,王中亮,张良,郭林楠,宋明春,郑小礼.胶东中生代金成矿系统[J].岩石学报,2014,30(9):2447-2467.YANG Li-qiang,DENG Jun,WANG Zhong-liang,ZHANG Liang,GUO Lin-nan,SONG Ming-chun,ZHENG Xiao-li.Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,2014,30(9):2447-2467.
    [62]OHMOTO H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,1972,67(5):551-578.
    [63]ZHENG Yong-fei,HOEFS J.Stable isotope geochemistry of hydrothermal mineralization in the Harz Mountains:Ⅱ.Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenetic models[J].Monograph Series on Mineral Deposits,1993,30:211-229.
    [64]FARQUHAR J,WU N P,CANFIELD D E,ODURO H.Connections between sulfur cycle evolution,sulfur isotopes,sediments,and base metal sulfide deposits[J].Economic Geology,2010,105(3):509-533.
    [65]SANGSTER D F.Sulfur and lead isotopes in strata-bound deposits[C]//WOLF K H,ed.Handbook of Strata-Bound and Stratiform Ore Deposits.Amsterdam:Elsevier,1976:219-266.
    [66]RYE R O,OHMOTO H.Sulfur and carbon isotopes and ore genesis:A review[J].Economic Geology,1974,69(6):826-842.
    [67]TAYLOR B E.Magmatic volatiles:Isotopic variation of C,H,and S[J].Reviews in Mineralogy and Geochemistry,1986,16(1):185-225.
    [68]COX S F,MUNROE S M.Breccia formation by particle fluidization in fault zones:Implications for transitory,rupture-controlled fluid flow regimes in hydrothermal systems[J].American Journal of Science,2016,316(3):241-278.
    [69]WILLIAMS-JONES A E,HEINRICH C A.100th Anniversary Special Paper:Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J].Economic Geology,2005,100(7):1287-1312.
    [70]ALLAN M M,MORRISON G W,YARDLEY B W D.Physicochemical evolution of a porphyry-breccia system:A laser ablation ICP-MS study of fluid inclusions in the Mount Leyshon Au deposit,Queensland,Australia[J].Economic Geology,2011,106(3):413-436.
    [71]COOKE D R,SIMMONS S F.Characteristics and genesis of epithermal gold deposits[J].Reviews in Economic Geology,2000,13(12):221-244.
    [72]HAYASHI K,SUGAKI A,KITAKAZE A.Solubility of sphalerite in aqueous sulfide solutions at temperatures between25 and 240℃[J].Geochimica Et Cosmochimica Acta,1990,54(3):715-725.
    [73]CRERAR D A,BARNES H L.Ore solution chemistry(V):Solubilities of chalcopyrite assemblages in hydrothermal solution at 200 to 350℃[J].Economic Geology,1976,71(4):772-794.
    [74]SEWARD T M.The stability of chloride complexes of silver in hydrothermal solutions up to 350℃[J].Geochimica Et Cosmochimica Acta,1976,40(11):1329-1341.
    [75]ROBB L.Introduction to ore-forming processes[M].London:Blackwell Pub,2005:149-151.
    [76]REED M H,PALANDRI J.Sulfide mineral precipitation from hydrothermal fluids[J].Reviews in Mineralogy and Geochemistry,2006,61:609-631.
    [77]张德会.关于成矿流体地球化学研究的几个问题[J].地质地球化学,1997(3):103-111.ZHANG De-hui.Some new advances in ore-forming fluid geochemistry[J].Geology-Geochemistry,1997(3):103-111.
    [78]BURNHAM C W,OHMOTO H.Late-state processes of felsic magmatism[J].Mining Geology,Special Issue,1980:1-11.
    [79]BURNHAM C W.Energy release in subvolcanic environments:implications for breccia formation[J].Economic Geology,1985,80(6):1515-1522.
    [80]谢玉玲,徐九华,何知礼,李树岩,李建平.太白金矿流体包裹体中黄铁矿和铁白云石等子矿物的发现及成因意义[J].矿床地质,2000,19(1):54-60.XIE Yu-ling,XU Jiu-hua,HE Zhi-li,LI Shu-yan,LI Jian-ping.The dicover of daughter minerals in fluid inclusions of the Taibai gold deposit and their genetic significance[J].Mineral Deposits,2000,19(1):54-60.
    [81]DRUMMOND S E,OHMOTO H.Chemical evolution and mineral deposition in boiling hydrothermal systems[J].Economic Geology,1985,80(1):126-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700