A novel thermomechanically stable LaF_3–CsH_5(PO_4)_2 composite electrolyte with high proton conductivity at elevated temperatures over 150 °C
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A novel thermomechanically stable LaF_3–CsH_5(PO_4)_2 composite electrolyte with high proton conductivity at elevated temperatures over 150 °C
  • 作者:Jie ; Xiong ; Yunjie ; Huang ; Jing ; Li ; Liying ; Ma ; Guoxiao ; Xu ; Zhao ; Liu ; Weiwei ; Cai ; Hansong ; Cheng
  • 英文作者:Jie Xiong;Yunjie Huang;Jing Li;Liying Ma;Guoxiao Xu;Zhao Liu;Weiwei Cai;Hansong Cheng;Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan);College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University;
  • 英文关键词:Intermediate temperature fuel cell;;Hydrogen bond;;Cesium pentahydrogen diphosphate;;Lanthanum fluoride;;Thermomechanical stability
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan);College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.30
  • 基金:financially supported by the National Natural Science Foundation of China(Nos.21703211,21503197 and 21473164);; Fundamental Research Funds for the Central University,China University of Geosciences(Wuhan)(Nos.CUG150615 and CUG150627)
  • 语种:英文;
  • 页:TRQZ201903016
  • 页数:7
  • CN:03
  • ISSN:10-1287/O6
  • 分类号:122-128
摘要
A facile strategy is introduced to upgrade thermomechanical stability of the cesium pentahydrogen diphosphate(CPD), which is the most efficient inorganic electrolyte among all solid proton conductors,by constructing P–OH···F hydrogen bonds with lanthanum fluoride(LaF_3). The optimal combination of the LaF_3–CPD composite electrolyte is found to be 1:2 in a molar ratio(LaF_3–CPD-2). LaF_3–CPD-2 composite maintains robust solid state, even at a temperature up to 200 °C, which is 50 °C higher than the melting temperature of CPD. Meanwhile, the considerable proton conductivity of CPD is achieved in the LaF_3–CPD-2 composite electrolyte due to the synergistic effect of the P–OH···F hydrogen bonds and the intrinsic proton conductive property of CPD. Last but not least, the LaF_3–CPD-2 composite manifests excellent conductivity durability at 150 °C and low humidity condition with sizeable proton conductivity of0.0262 S cm~(-1) after 60 h operation, implying that the LaF_3–CPD composite could be a promising candidate for intermediate temperature proton conductors.
        A facile strategy is introduced to upgrade thermomechanical stability of the cesium pentahydrogen diphosphate(CPD), which is the most efficient inorganic electrolyte among all solid proton conductors,by constructing P–OH···F hydrogen bonds with lanthanum fluoride(LaF_3). The optimal combination of the LaF_3–CPD composite electrolyte is found to be 1:2 in a molar ratio(LaF_3–CPD-2). LaF_3–CPD-2 composite maintains robust solid state, even at a temperature up to 200 °C, which is 50 °C higher than the melting temperature of CPD. Meanwhile, the considerable proton conductivity of CPD is achieved in the LaF_3–CPD-2 composite electrolyte due to the synergistic effect of the P–OH···F hydrogen bonds and the intrinsic proton conductive property of CPD. Last but not least, the LaF_3–CPD-2 composite manifests excellent conductivity durability at 150 °C and low humidity condition with sizeable proton conductivity of0.0262 S cm~(-1) after 60 h operation, implying that the LaF_3–CPD composite could be a promising candidate for intermediate temperature proton conductors.
引文
[1]Z.Gao,L.V.Mogni,E.C.Miller,J.G.Railsback,S.A.Barnett,Energy Environ.Sci.9(2016)1602-1644.
    [2]M.H.Shojaeefard,G.R.Molaeimanesh,M.Nazemian,M.R.Moqaddari,Int.J.Hydrog.Energy 41(2016)20276-20293.
    [3]P.Zhang,G.Guan,D.S.Khaerudini,X.Hao,C.Xue,M.Han,Y.Kasai,A.Abudula,J.Mater.Chem.A 3(2015)22816-22823.
    [4]A.B.Papandrew,R.W.Atkinson Iii,R.R.Unocic,T.A.Zawodzinski,J.Mater.Chem.A 3(2015)3984-3987.
    [5]S.P.Jiang,J.Mater.Chem.A 2(2014)7637-7655.
    [6]J.Xiong,C.Jiao,M.Han,W.Yi,J.Ma,C.Yan,RSC Adv.5(2015)87477-87483.
    [7]J.Li,W.Cai,Y.Zhang,Z.Chen,G.Xu,H.Cheng,Electrochim.Acta 151(2015)168-176.
    [8]H.Zhang,P.K.Shen,Chem.Soc.Rev.41(2012)2382-2394.
    [9]Z.Sun,E.Fabbri,L.Bi,E.Traversa,PCCP 13(2011)7692-7700.
    [10]S.S.Araya,F.Zhou,V.Liso,S.L.Sahlin,J.R.Vang,S.Thomas,X.Gao,C.Jeppesen,S.K.K?r,Int.J.Hydrog.Energy 41(2016)21310-21344.
    [11]T.Anfimova,A.H.Jensen,E.Christensen,J.O.Jensen,N.J.Bjerrum,Q.Li,J.Electrochem.Soc.162(2015)F436-F441.
    [12]A.Ikeda,D.A.Kitchaev,S.M.Haile,J.Mater.Chem.A 2(2014)204-214.
    [13]Y.Huang,Q.Li,T.V.Anfimova,E.Christensen,M.Yin,J.O.Jensen,N.J.Bjerrum,W.Xing,Int.J.Hydrog.Energy 38(2013)2464-2470.
    [14]J.Yang,Q.Li,J.O.Jensen,C.Pan,L.N.Cleemann,N.J.Bjerrum,R.He,J.Power Sources 205(2012)114-121.
    [15]A.H.Jensen,Q.Li,E.Christensen,N.J.Bjerrum,J.Electrochem.Soc.161(2014)F72-F76.
    [16]A.Go?i-Urtiaga,D.Presvytes,K.Scott,Int.J.Hydrog.Energy 37(2012)3358-3372.
    [17]G.Qing,R.Kikuchi,Solid State Ionics 289(2016)133-142.
    [18]Y.Huang,Q.Li,A.H.Jensen,M.Yin,J.O.Jensen,E.Christensen,C.Pan,N.J.Bjerrum,W.Xing,J.Mater.Chem.22(2012)22452-22458.
    [19]A.Varga,N.A.Brunelli,M.W.Louie,K.P.Giapis,S.M.Haile,J.Mater.Chem.20(2010)6309-6315.
    [20]D.A.Boysen,T.Uda,C.R.I.Chisholm,S.M.Haile,Science 303(2004)68-70.
    [21]S.M.Haile,D.A.Boysen,C.R.I.Chisholm,R.B.Merle,Nature 410(2001)910-913.
    [22]S.L.Baranov AI,N.M.Shchagina,JETP Lett.36(1982)459-462.
    [23]T.Matsui,T.Noto,H.Muroyama,M.Iijima,K.Eguchi,J.Power Sources 196(2011)9445-9450.
    [24]G.V.Lavrova,E.B.Burgina,A.A.Matvienko,V.G.Ponomareva,Solid State Ionics177(2006)1117-1122.
    [25]N.Mohammad,A.B.Mohamad,A.A.H.Kadhum,K.S.Loh,J.Power Sources 322(2016)77-92.
    [26]J.Otomo,N.Minagawa,C.-J.Wen,K.Eguchi,H.Takahashi,Solid State Ionics156(2003)357-369.
    [27]J.Otomo,T.Ishigooka,T.Kitano,H.Takahashi,H.Nagamoto,Electrochim.Acta53(2008)8186-8195.
    [28]Q.Xie,Y.Li,J.Hu,X.Chen,H.Li,J.Membr.Sci.489(2015)98-105.
    [29]A.Goni-Urtiaga,K.Scott,S.Cavaliere,D.J.Jones,J.Roziere,J.Mater.Chem.A 1(2013)10875-10880.
    [30]M.W.Louie,S.M.Haile,Energy Environ.Sci.4(2011)4230-4238.
    [31]S.M.Haile,H.Liu,R.A.Secco,Chem.Mater.15(2003)727-736.
    [32]Y.-K.Taninouchi,T.Uda,Y.Awakura,A.Ikeda,S.M.Haile,J.Mater.Chem.17(2007)3182-3189.
    [33]B.Andriyevsky,M.Zdanowska-Fr?aczek,Solid State Ionics 207(2012)14-20.
    [34]G.V.Lavrova,V.G.Ponomareva,Solid State Ionics 179(2008)1170-1173.
    [35]G.Qing,R.Kikuchi,A.Takagaki,T.Sugawara,S.T.Oyama,J.Power Sources 306(2016)578-586.
    [36]G.Qing,R.Kikuchi,A.Takagaki,T.Sugawara,S.T.Oyama,J.Power Sources 272(2014)1018-1029.
    [37]H.Muroyama,T.Matsui,R.Kikuchi,K.Eguchi,J.Physic.Chem.C 112(2008)15532-15536.
    [38]R.Kikuchi,A.Ogawa,T.Matsuoka,A.Takagaki,T.Sugawara,S.T.Oyama,Solid State Ionics 285(2016)160-164.
    [39]T.Matsui,T.Kukino,R.Kikuchi,K.Eguchi,Electrochim.Acta 51(2006)3719-3723.
    [40]G.Kim,J.M.Griffin,F.Blanc,S.M.Haile,C.P.Grey,J Am Chem Soc 137(2015)3867-3876.
    [41]X.Chen,W.Wen,J.Hu,H.Su,H.Li,X.Kong,M.Boaventura,J.Electrochem.Soc.163(2016)F1309-F1316.
    [42]F.Fujara,D.Kruk,O.Lips,A.F.Privalov,V.Sinitsyn,H.Stork,Solid State Ionics179(2008)2350-2357.
    [43]V.Trnovcová,P.P.Fedorov,I.Furár,J.Rare Earths 26(2008)225-232.
    [44]B.Bae,T.Yoda,K.Miyatake,H.Uchida,M.Watanabe,Angew.Chem.Int.Ed.49(2010)317-320.
    [45]V.Ramani,H.R.Kunz,J.M.Fenton,J.Membr.Sci.232(2004)31-44.
    [46]S.Lu,D.Wang,S.P.Jiang,Y.Xiang,J.Lu,J.Zeng,Adv.Mater.22(2010)971-976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700