碳汇交易背景下呼伦贝尔草地土壤碳汇核算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon sequestration accounting for grassland soils in HULUNBEIER under carbon sequestration trade
  • 作者:纪翔 ; 马欣 ; 王玉涛 ; 张雪艳 ; 尹忠东 ; 赵运成 ; 韩耀杰
  • 英文作者:JI Xiang;
  • 关键词:碳层划分 ; 土壤有机碳 ; 碳汇潜力 ; 碳汇交易 ; DAYCENT模型
  • 中文刊名:LMMT
  • 英文刊名:Inner Mongolia Coal Economy
  • 机构:喀什大学生命与地理科学学院/叶尔羌绿洲生态与生物资源研究高校重点实验室;中国农业科学院农业环境与可持续发展研究所;中国科学院地理科学与资源研究所/中国科学院农业政策中心;北京林业大学水土保持学院;
  • 出版日期:2018-11-15
  • 出版单位:内蒙古煤炭经济
  • 年:2018
  • 期:No.266
  • 基金:国家重点研发计划“区域草地生态产业与可持续管理模式研发与示范”(2016YFC0500508);; 喀什大学研究生科研创新活动基金(XJGRI2017134)
  • 语种:中文;
  • 页:LMMT201821014
  • 页数:6
  • CN:21
  • ISSN:15-1115/F
  • 分类号:30-35
摘要
草地土壤碳汇是全球碳汇减排的重要组成部分。我国草地资源丰富,碳汇量大,但是由于草地土壤异质性等原因,估算难度较大,开发程度低,提高对草地土壤有机碳的模拟精度以符合草地碳汇交易开发,能够促进草地的保护以及合理开发。本研究通过对呼伦贝尔草地的合理划分研究区域来提高模型对总有机碳含量模拟的准确性,根据土壤、植被、人为干扰将呼伦贝尔草地划分为76个碳层,利用DAYCENT模型对呼伦贝尔草地土壤有机碳进行模拟,对未来碳汇潜力进行预估。结果表明,对76个碳层土壤有机碳模拟发现,2002-2030年在人为干扰的影响下,呼伦贝尔草地年均增加198.84万吨CO_2,到2030年累积碳储量约为5169.73万吨CO_2e。综上所述,通过土壤有机碳的主要影响因素划分碳层,可以提高土壤有机碳的模拟精度;呼伦贝尔草地土壤有机碳含量整体呈现东多西少;呼伦贝尔草地碳汇潜力大,有良好的碳汇交易前景。
        
引文
[1]联合国气候变化新闻[EB/OL].http://bigpicture.unfccc.int/#content-the-paris-agreemen.2016-11-04.
    [2]联合国气候变化大会《国家自主贡献INDC》缔约方报告[EB/OL].http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx.2015-6-30.
    [3]Schuma GE,Janzen HH,Herrick JE.Soil carbon dynamics and potential carbon sequestration by rangelands[J].Environmental Pollution,2002,116(3):391-396.
    [4]FANG Jing Yun,YANG Yuanhe,MA Wen Hong,et al.Ecosystem carbon stocks and their changes in China's grasslands[J].SCIENTIA SINICA Vitae,2010,53(7):757.
    [5]Rubey W W.Geological history of sea water:an attempt to state the problem[J].Geological Society of America Bulletin,1951,62:1111-1148.
    [6]XIE Zu Bin,ZHU Jian Guo,LIU Gang,Cadich ceorg.Soil organic carbon stocks in China and changes from 1980s to2000s[J].Global Change Biol,2007,(13):1989-2007.
    [7]Schlesinger W H.Evidence from chronosequence studies for a low carbon-storage potential of soils[J].Nature,1990,34(8):232-234.
    [8]YANG Yuanhe,FANG Jingyun,MA Wenhong,et al.Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s[J].Global Change Biol,2010,doi:10.1111/j.1365-2486.2009.02123.x
    [9]Huajun Tang,Jianjun Qiu,Eric Van Ranst,Changsheng Li.Estimations of soil organic carbon storage in cropland of China based on DNDC model[J].Geoderrma,2006,134:200-206.
    [10]Kerang LI,Wang S,Cao M.Vegetation and soil carbon storage in China[J].Science in China,2004,47(1):49-57.
    [11]Grosso S J D,Ogle S M,Parton W J,et al.Estimating uncertainty in N2O emissions from U.S.cropland soils[J].Global Biogeochemical Cycles,2010,24(1).
    [12]EPA.,2011.Inventory of U.S.greenhouse gas emissions and sinks.Off.of Atmos.Programs,Washington,DC.A-vailable online at http://www.epa.gov/climatechange/emissions/usinventoryreport.html(verified February 24,2011,1990-2009.
    [13]U.S.Department of Agriculture,2011.U.S.Agriculture and Forestry Greenhouse Gas Inventory:1990e2008.In:Del Grosso,S.J.,Eve,M.(Eds.),Technical bulletin1930.Available online at http://www.usda.gov/oce/global_change/AFGG.
    [14]Xu Z,Li Z,Liu H,et al.Soil organic carbon in particle-size fractions under three grassland types in Inner Mongolia,China[J].Journal of Soils&Sediments,2018,(S4):1-10.
    [15]包萨茹.基于CENTURY模型的呼伦贝尔草原ANPP估算及其对气候变化的响应研究[D].内蒙古大学,2016.
    [16]Wint,W.,Robinson,T.,2007.Gridded Livestock of the World 2007.FAO,Rome,pp.131.
    [17]Han Q,Luo G,Li C,et al.Modeling the grazing effect on dry grassland carbon cycling with Biome-BGC model[J].Ecological Complexity,2014,17(1):149-157.
    [18]Parton,W.J,Schime DS,Cole CV,et al.1987.A-nalysis of factors controlling soil organic matter levels in Great Plains Grasslands[J].Soil Science Society of America Journal,1987,51:1173-1179.
    [19]於琍,朴世龙.IPCC第五次评估报告对碳循环及其他生物地球化学循环的最新认识[J].气候变化研究进展,2014,10(1):33-36.
    [20]可持续草地管理温室气体减排计量与监测方法学.版本号AR-CM-004-V01.
    [21]Estimation of carbon stocks and change in carbon stocks of trees and shrubs in A/R CDM project activities.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-14-v3.0.0.
    [22]戴尔阜,等.内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J].地理学报,2016,71(1):21-34.
    [23]Del Grosso,Stephen-Steve,Parton,William,Keough,Cynthis,Reyes-fox,Melissa.Special Features of the Day Cent Modeling Package and Additional Procedures for Parameterization,Calibration,Validation,and Applications[J].Met.
    [24]张璇,等.Daycent模型模拟不同农作管理措施下华北地区土壤有机碳的变化[J].应用生态学报,2016,27(2):539-548.
    [25]张永强,等.青藏高原草地生态系统土壤有机碳动态特征[J].中国科学(D辑):地球科学,2006,(12):1140-1147.
    [26]郭灵辉,等.1981-2010年内蒙古草地土壤有机碳时空变化及其气候敏感性[J].环境科学研究,2016,29(7):1050-1058.
    [27]张清雨.草地退化对土壤有机碳储量估算影响-以内蒙古草地为例[D].中国科学院大学,2013.
    [28]Abdalla M,Hastings A,Chadwick D R,et al.Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands[J].Agriculture Ecosystems&Environment,2018,253:62-81.
    [29]闫瑞瑞,等.不同放牧梯度下呼伦贝尔草甸草原土壤碳氮变化及固碳效应[J].生态学报,2014,34(6):1587-1595.
    [30]杨勇,等.不同干扰方式对内蒙古典型草原土壤有机碳和全氮的影响[J].生态环境学报,2015,24(2):204-210.
    [31]高鲁鹏,等.利用CENTURY模型研究东北黑土有机碳的动态变化Ⅰ.自然状态下土壤有机碳的积累[J].应用生态学报,2004,(5):772-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700