AP1000核电主管道均匀化加热热处理工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Homogenization Heating and Heat Treatment Technology of AP1000 Nuclear Power Pipeline
  • 作者:易吉豪 ; 王纪武 ; 康进武 ; 王想
  • 英文作者:YI Jihao;WANG Jiwu;KANG Jinwu;WANG Xiang;Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University;School of Mechanical, Electronic and Control Engineering,Beijing Jiaotong University;
  • 关键词:主管道 ; 热处理 ; 数值模拟 ; 温度场 ; 应力场
  • 英文关键词:primary piping;;heat treatment;;numerical simulation;;temperature field;;stress field
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:清华大学材料学院先进成形制造教育部重点实验室;北京交通大学机械与电子控制工程学院;
  • 出版日期:2019-02-03 07:04
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.504
  • 基金:国家绿色制造系统集成项目(2016-64)
  • 语种:中文;
  • 页:SJGY201902001
  • 页数:6
  • CN:02
  • ISSN:61-1133/TG
  • 分类号:8-13
摘要
针对AP1000核电主管道在热处理过程中产生的温度分布不均、薄壁处奥氏体晶粒粗大以及应力变形等问题提出了一种均匀化加热热处理的新工艺,在管道薄壁处覆盖网格状绝热材料,依据厚薄部位的壁厚关系调控薄壁部位受热面积,从而使管道整体升温均匀。采用数值模拟的方法验证该工艺的有效性。利用ANSYS软件对AP1000核电主管道在新工艺下的热处理加热阶段进行了热-力耦合数值模拟,将采用新工艺和传统工艺的温度场和应力场模拟结果进行了对比。结果表明,新工艺能显著降低工件厚薄部位中心的温差,最大温差从110℃下降到20℃,同时局部热应力较传统工艺大幅度下降,最大下降80%。因此,采用新工艺能够有效实现工件升温的均匀性,避免局部晶粒粗大,同时降低工件热应力。
        Aiming at the problems of uneven temperature distribution, coarse austenite grain at thin wall and stress deformation, in heat treatment of AP1000 nuclear power primary piping, a new uniform heating heat treatment process was proposed. The thin wall of pipeline was covered with reticulated insulation material, and the heating area of thin wall was regulated according to the relation of wall thickness of the thick and thin part, so that the whole pipeline is heated up evenly.The effectiveness of the process was verified by numerical simulation. The thermal-mechanical coupling numerical simulation of the heat treatment heating stage of the AP1000 nuclear power pipeline under the new process was carried out by using ANSYS software. The simulation results of the temperature field and the stress field using the new process and the traditional process were compared. The results show that, the new process can significantly reduce the temperature difference between the thick and thin parts of the workpiece, the maximum temperature difference decreases from 110 ℃ to 20 ℃, and the local thermal stress decreases by a large margin, and the maximum temperature difference decreases by 80% compared with that of the traditional process. Therefore, the new process can effectively realize the homogeneity during workpiece heating, avoid local coarse grain, and reduce the thermal stress during workpiece at the same time.
引文
[1]张磊,冯潇,李明权,等.核电主管道制造工艺发展[J].锻压技术,2014,39(6):1-8.
    [2]潘品李,钟约先,马庆贤,等.大型核电主管道制造技术的发展[J].锻压装备与制造技术,2011,46(1):13-17.
    [3]杜军毅,刘志颖.大型主管道不锈钢锻件晶粒控制与热处理[C]//压力容器先进技术-第八届全国压力容器学术会议论文集.北京:化学工业出版社,2013.
    [4] Shaikh H, Amirthalingam R, Anita T, et al.Evaluation ofstress corrosion cracking phenomenon in an AISI type 316LNstainless steel using acoustic emission technique[J].CorrosionScience,2007,49(2):740-765.
    [5] Kim D W.Influence of nitrogen-induced grain refinement onmechanical properties of nitrogen alloyed type 316LN stainlesssteel[J].Journal of Nuclear Materials,2012,420(1/3):473-478.
    [6] Klanica F, Rao G.Reactor coolant loop seamless forged andformed pipe fabrication specification:APP-PL01-Z0-200 Rev.3-2010[S].USA:Westinghouse Electric Company LLC,2010.
    [7]于孟,贾兵然,薛飒,等.钛镍形状记忆合金加热过程中的晶粒长大行为[J].热加工工艺,2017,46(22):238-241.
    [8]程卫鑫.ZL205A薄壁筒形件铸造过程变形及控制[D].哈尔滨:哈尔滨工业大学,2016.
    [9]上官浩龙.基于3D打印的镂空砂型研究[D].北京:清华大学,2018.
    [10]唐龙书,周贤良,华小珍,等.AP1000核电主管道加热过程温度场、应力场数值模拟[J].金属热处理,2014,39(11):137-140.
    [11]李超,周贤良,华小珍,等.AP1000核电主管道淬火过程温度和应力场数值模拟[J].金属热处理,2016,41(8):170-174.
    [12]何贝贝.选区激光熔化TiNi形状记忆合金热-力耦合数值模拟及实验研究[D].南京:南京航空航天大学,2016.
    [13]姚化山,史玉升,章文献,等.金属粉末选区激光熔化成形过程温度场模拟[J].应用激光,2007,27(6):456-460.
    [14] Sarjant R J, Slack M R.Internal temperature distribution inthe cooling and reheating of steel ingots[J].Journal Iron steelInst,1954,177:428-444.
    [15]谢甘霖.AP1000核电主管道316LN奥氏体不锈钢热变形过程的组织演变模拟[D].北京:北京科技大学,2015.
    [16]李雅莉.选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D].南京:南京航空航天大学,2015.
    [17]殷杰.激光微烧结金属粉末的温度场和应力场的数值模拟研究[D].武汉:华中科技大学,2014.
    [18] Andersen L F.Residual stresses and deformations in steelstructures[D].Denmark:Technical University of Denmark,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700