听神经锁相编码声电调幅信息的比较
详细信息    查看官网全文
摘要
通过听觉仿真模型研究声、电幅度调制信号在听神经产生动作电位序列锁相强度的区别。本文首先对输入的调幅信息进行系统地设计,并使用声刺激与电刺激模型分别仿真听神经产生的动作电位序列,然后用向量强度对动作电位序列中包含的相位锁定成分进行分析,研究锁相强度如何编码调幅信息。研究发现电刺激产生的发放序列的同步性远强于声刺激,同时电刺激序列的向量强度随着调制深度增加而增大,声刺激序列的向量强度随着调制频率的上升而下降。研究表明电刺激发放序列存在较大失真,编码策略改进时考虑这种失真可能对改善当前人工耳蜗效果有帮助。
The scope of the project was to investigate and compare the strength of phase-locked responses to amplitude-modulated stimulus in normal and electric hearings using computational modeling. Firstly, amplitude-modulated(AM) signals were systematically generated in terms of different modulation depths and modulation frequencies. These AM signals were then fed into the acoustic and electric stimulation models, to simulate spike responses of auditory nerves. Vector strength was used to quantify the strength of phase-locking response of the auditory nerves to AM signals with different modulation depths and frequencies. The results showed the phase-locked responses to electrical stimulation were much stronger than that to acoustic stimulation. Electrical stimulation of vector strength increases with the increase of the modulation depth. acoustic stimulation sequence vector strength decreased with the rise of modulation frequency. The research indicates that there is a distortion in the distribution sequence of electrical stimulation. It could be helpful in improving the current performance of cochlear implants by considering this distortion when improving the coding strategies.
引文
[1]Smith Z M,Delgutte B,Oxenham A J.Chimaeric sounds reveal dichotomies in auditory perception[J].Nature,2002,416(6876):87-90.
    [2]亓贝尔,刘博.人工耳蜗言语处理方案的研究进展[J].临床耳鼻咽喉头颈外科杂志,2012(1):44-47.
    [3]孟庆林,原猛,牟宏宇,等.包络调制率和载波频率对听觉时间调制检测能力的影响[J].物理学报,2012,61(16):164302-164302.
    [4]Shannon R V.Temporal modulation transfer functions in patients with cochlear implants[J].Journal of the Acoustical Society of America,1992,91(4 Pt 1):2156-64.
    [5]Brown A D,Stecker G C,Tollin D J.The Precedence Effect in Sound Localization[J].Journal of the Association for Research in Otolaryngology,2015,16(1):315-336.
    [6]Johnson J S,Yin P,O'Connor K N,et al.Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes:neurometric analysis.[J].Journal of Neurophysiology,2012,107(12):3325-41.
    [7]Zilany M S A,Bruce I C,Carney L H.Updated parameters and expanded simulation options for a model of the auditory periphery[J].Journal of the Acoustical Society of America,2014,135(1):283-6.
    [8]Zilany M S,Bruce I C,Nelson P C,et al.A phenomenological model of the synapse between the inner hair cell and auditory nerve:long-term adaptation with power-law dynamics.[J].Journal of the Acoustical Society of America,2009,126(5):2390-412.
    [9]Goldwyn J H,Shea-Brown E,Rubinstein J T.Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.[J].Journal of Computational Neuroscience,2010,28(3):405-24.
    [10]Goldwyn J H,Rubinstein J T,Shea-Brown E.A point process framework for modeling electrical stimulation of the auditory nerve.[J].Journal of Neurophysiology,2012,108(5):1430-52.
    [11]Vere-Jones,D.An introduction to the theory of point processes/[M].
    [12]Wallace M N,Shackleton T M,Palmer A R.Phase-locked responses to pure tones in the primary auditory cortex[J].Hearing Research,2002,172(1-2):160-171.
    [13]Joris P X,Schreiner C E,Rees A.Neural processing of amplitude-modulated sounds.[J].Physiological Reviews,2004,84(2):541-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700