生物动力系统中的持续生存
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物数学的研究起始于Lotka-Voltcrra年代:20世纪70年代May的《理论生态学》、Smith的《生态学模型》等专著的出版推动了生物数学的迅速发展:近些年来生物数学的研究范围也得以扩展,已经应用于很多领域,例如:种群动力学、传染病动力学、药代动力学、化学反应模型、微生物培养等领域.生物种群、微生物及化学反应物的浓度是否持续生存是生物数学研究的一个重要方面.本文应用泛函微分方程理论、常微分方程定性理论、脉冲微分方程理论来研究种群动力学模型、微生物培养模型及化学反应模型的一些动力学性质.
     全文共分五章,基本内容概要如下:
     前两章分别介绍了阶段结构比率依赖种群模型、微生物培养模型、化学分子反应模型的研究背景和有关泛函微分方程、脉冲微分方程的一些基本概念理论等.
     第三章主要考虑具有时滞比率依赖的阶段结构捕食模型.第一节考虑一类食饵分散捕食者具有阶段结构的比率依赖的Holling-Ⅲ类功能反应的捕食模型.应用泛函微分方程的理论得到了系统持续生存的充分条件,也得到了系统成年捕食者趋于灭绝的充分条件.通过应用Gaines和Mawhin的重合度理论得到了系统存在正周期解的充分条件并给出了数值模拟.第二节我们考虑了一类捕食者具有阶段结构食饵具有脉冲投放的比率依赖Holling-Ⅲ类功能反应的捕食模型.应用泛函微分方程和脉冲微分方程的相关理论得到了系统捕食者灭绝剧期解的全局吸引的充分条件,同时这个充分条件也是系统不带脉冲效应的捕食者灭绝周期解的全局吸引的充分条件.我们也获得了系统持续生存的充分条件.
     第四章讨论状态脉冲在微生物培养方面的应用.我们建立了一类具有Beddington-DeAnglis吸收功能和脉冲状态控制的恒化器模型,应用常微分方程定性理论研究了系统不带脉冲控制部分的定性特征.获得了系统全局渐近稳定的充分条件.由脉冲微分方程的有关定理得到了该脉冲系统阶一周期解的存在性和稳定性的充分条件,也对系统阶二周期解的存在可能性进行了分析.通过数值模拟进一步证实了我们的理论结果.
     第五章研究了脉冲微分方程在化学分子反应模型中的应用.第一节研究一类具有脉冲输入的三分子反应模型,应用常微分方程定性理论对模型进行了简单分析,得到了系统全局渐近稳定的充分条件.应用脉冲微分方程的理论对具有脉冲输入的模型进行了分析,也得到了脉冲三分子反应系统持续生存的充分条件.通过数值模拟展示了系统的丰富的动力行为.第二节考虑一类具有脉冲输入的饱和三分子反应模型.我们应用常微分方程定性理论对不带脉冲输入的饱和三分了反应模型进行简单的定性分析,获得了有极限环的充分条件,应用脉冲微分方程的理论对脉冲输入的饱和三分子反应模型进行了分析,得到了脉冲饱和三分子反应模型周期解渐近稳定性的充分条件:应用脉冲微分方程分支理论得到了脉冲输入的饱和三分子反应模型存在稳定的非平凡正周期解的条件.我们通过数值模拟进一步证实了我们的结论也展示这个模型的丰富动力行为.
The research of Biomathematics dated from the Lotka-Volterra age, and the pub-lication of monographs such as May's"theoretical ecology", Smith's "ecological model" promoted the rapid development of Biomathematics in 1970's. The research's range of Biomathematics has been expended and applied in many domains such as population dy-namics, epidemic dynamics, pharmacokinetics, chemical reaction model, microbiological culture and so on. The research of permanence for biological populations, microorganisms and chemical reactants is the important aspect of the biomathematics'research. Based on the theory of functional differential equations, ordinary differential equations and im-pulsive differential equations, we study the kinetic properties of the population dynamics, microbial culture models and chemical reaction models.
     The dissertation has five chapters and the main results of the dissertation are sum-marized as follows:
     The first two chapters introduce the biological backgrounds of the ratio-dependent population model with stage structure, microbial culture model, the chemical reaction model and the relevant theories and concepts of functional differential equations, impulsive differential equations, respectively.
     In Chapter 3. the ratio-dependent population models with stage structure are con-sidered. We discuss a delayed ratio-dependent prcdator-prcy with prey dispersal and stage structure for predator in Section 3.1. Using the theory of functional differential equations, we obtain sufficient conditions for permanence of the system and sufficient condition for adult predators of the system tending to extinct. By Gaines and Mawhin's coincidence degree theory, we obtain sufficient conditions that the system exists posi-tive periodic solutions. The theoretical results are verified by numerical simulations. In Section 3.2, we consider a delayed ratio-dependent Holling-Ⅲpredator-prey system with stage-structured and impulsive stocking on prey and continuous harvesting on predator. Using the theory of functional differential equations and impulsive differential equations, we obtain sufficient conditions of the global attractivity of predator-extinction periodic solution, while the sufficient conditions are also sufficient conditions of the global attrac-tivity of predator-extinction periodic solution of the system without impulsive input. We also obtain sufficient conditions for permanence of the system.
     In Chapter 4, we discuss the application of state control impulsive equations in mi- crobiological culture. We establish a chemostat model with Bcddington-DcAnglis uptake function and impulsive state feedback control. By the qualitative theory of ordinary differ-ential equations, we sufficient conditions of the global asymptotic stability of the system without impulsive input. Using the relevant theory of impulsive differential equations, we obtain sufficient conditions for existence and stability of order one periodic solutions of impulsive system, and also analyze the existence of order two periodic solutions. The numerical simulation further confirms our theoretical results.
     In Chapter 5, we consider applications of impulsive differential equations in chemical reaction models. Section 5.1 studies a trimolecular response model with impulsive input. By qualitative theory of ordinary differential equations and a simple analysis of the system without impulsive input, sufficient conditions for global asymptotic stability are obtained. By the theory of impulsive differential equations, we obtain conditions for permanence of the trimolecular response model with impulsive input. By numerical analysis, we demonstrate complex phenomena such as limit cycles, periodic solutions, and chaos. In Section 5.2, we consider a irreversible three molecular reaction model with impulsive effect. By qualitative theory of ordinary differential equations, we obtain sufficient conditions that the system without impulsive input exists a limit cycle by a simple analysis of the system. Using the theory of impulsive differential equations, we obtain sufficient conditions for asymptotic stability of system with impulse effect. By bifurcation theory of impulsive differential equations, we obtain sufficient conditions that the system with impulse effect exists a stable positive periodic solutions. We further confirm our results and also show that the system has rich dynamic behaviors by numerical simulations.
引文
(1]徐克学.生物数学[M].北京:科学出版社,1999.
    [2]陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [3]陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社:1988.
    [4]LOTKA A J. Elements of physical biology[M]. Baltimore:Williams and Wilkins Co,1925.
    [5]VOLTERRA V. Variazioni e fluttuazioni del numero d'individui in specie animali con-viventi[J]. Mem. Acad. Lincei Roma,1926,2:31-113.
    [6]马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1996.
    [7]马知恩,王稳地,周义仓,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
    [8]陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学出版社,2003.
    [9]陈兰荪,孟新柱,焦建军.生物动力学[M].北京:科学出版社,2009.
    [10]MARK K. Elements of Mathematical Ecology[M]. Cambridge:Cambridge University Press,2001.
    [11]陈兰荪,王东达,杨启昌.阶段结构种群动力学模型[J].北华大学学报(自然科学版),2000,l(3):185-191.
    [12]陈兰荪.脉冲微分方程与生命科学[J].平顶山师专学报,2002,17(2):1-8.
    [13]PRIGOGINE I. Introduction to thermodynamics of irreversible processes[M]. New York: Interscience,1967.
    [141马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2001.
    [15]张芷芬,丁同仁:黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.
    [16]PRIGOGINE I, NICOLIS G. On symmetry-breaking instabilities in dissipative system [J]. J. Chem. Phys.,1967,46:3542.
    [17]PRIGOGINE I, LEFEVER R. Symmetry breaking instabilities in dissipative systems[J]. J. Chem. Phys.,1968,48:1695.
    [18]陈均平,赵家凤,金十歧.几类生化反应机理模型的定性研究[J].重庆大学学报:1993:16:22-29.
    [19]TOGNETTI K. The two stage stochastic model[J]. Math. Biosci.,1975,16:22-29.
    [201 BARCLAY H J, DRIESSCHE P. A model for a single species with two life history stages and added moratlity[J]. Ecol. Model,1980.21:157-166.
    [21]WOOD S N. BLYTHE S P. GURNEY W S C, et al. Instability in mortality estimation schemes related to stage-structured population model[J]. Math. Med. Biol..1989,6:47-68.
    [22]AIELLO W G, FREEDMAN H I. Analysis of a model representing stage-structured pop-ulation growth stage-dependent time delay [J]. SIAM J. Appl. Math.,1992,52:855-869.
    [23]CAO Y L, FAN J Q, THOMOS C G. The effects of stage-dependent time delay on a stage-structured population growth model [J]. Nonliear Analysis:TMA,1992,19:95-105.
    [24]ZAGHROUT A A S, ATTALAH S H. Analysis of a model of stage-structured population dynamics growth with time stage-dependent time delay[J]. Appl. Math. Comput.,1996, 77:185-194.
    [25]LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differ-ential Equations[M]. Singapore:World scientific.1989.
    [26]BAINOV D, SIMEONOV P. Impulsive differential equations:periodic solutions and ap-plications [M]. Essex, England:Longman Scientific & Technical,1993.
    [27]BAINOV D D, SIMEONOV P S. Systems with impulse effect:stability, theory and appIication[M]. England:Ellis Horwood Limited,1989.
    [28]BALLINGER G, LIU X. Existence and uniqueness results for impulsive delay differential equations [J]. Dyn. Contin. Disc. Impul. Syst.,1999,5:267-270.
    [29]LIU X Z, BALLINGER G. Existence and continuability of solutions for differential equa-tions with delays and state dependent impulses [J]. Nonlinear Analysis:TMA,2002,51: 633-647.
    [30]BAINOV D D, SIMEONOV P S. DISHLIE A B. Oscillatory of the solutions of a class of impulsive differential equations with a deviating argument [J]. J. Appl. Math. Stochastic Anal.,1998,11:95-102.
    [31]BEREZANSKY L, BRAVERMAN E. Linearized oscillation theroy for a nonlinear delay impulsive equations[J]. J. Comput. Appl. Math.,2003.161:477-495.
    [32]YAN J R. Oscillation of nonlinear delay impulsive differential equations and inequalities [J]. J. Math. Anal. Appl.,2002,265:332-342.
    [33]KULEV G K, BAINOV D D. On the asymptotic stablity of systems with impulses by the direct method of Lyapunov[J]. J. Math. Anal. Appl.,1989,140:324-340.
    [34]PAVIDIS T. Stability of systems described by differential equations containing impulses [J]. IEEE, Trans. Automatic Control,1967, AC-2:43-45.
    [35]SIMEONOV P S. BAINOV D D. Stability with respect to part of the variables in system with impulsive effect [J]. J. Math. Anal. Appl.,1986,117:247-263.
    [36]FU X L, QI J G, LIU Y S. The existence of periodic orbits for nonlinear impulsive differential systems[J]. Commun. Nonlinear Sci. Numer. Simul.,1999,4:50-53.
    [37]QI J G, FU X L. Existence of limit cycle of impulsive differential equations with impulses at variable times[J]. Nonlinear Analysis:TMA,2001,44:345-353.
    [38]JIN Z, HAN M A, LI G. The persistence in a Lotka-Voltcrra competition systems with impulsive[J]. Chaos, Solitons & Fractals,2005,24(4):1105-1117.
    [39]ZHANG X Y, SHUAI Z S, WANG K. Optimal impulsive harvesting policy for single population[J]. Nonlinear Analysis:RWA,2003,4:639-651.
    [40]ABDELKADER L, OVIDE A. Nonlinear mathematical model of pulsed-theraph of Het-erogeneous Tumors[J]. Nonlinear Analysis:RWA,2001,2:455-465.
    [41]LI Z X, CHEN L S. Dynamical behaviors of a trimolecular response model with impulsive input[J]. Nonlinear Dyn.,2010,62:167-176.
    [42]SUN M J, CHEN L S. Analysis of the dynamical behavior for cnzymc-catalyzcd reactions with impulsive input[J]. J. Math. Chem..2008,43:447-456.
    [43]KUANG Y. Delay differential equations:with applications in population dynamics[M]. Boston:Academic Press.1993.
    [44]HALE J. Theory of Functional Differeiential Equations[M]. New York:Springer-Verlag. 1977.
    [45]SMITH H L. Monotone Dynamical System. Mathematical Surveys and Monographs[M]. V41. Am. Math. Soc., Providence, RI.1995.
    [46]XIAO Y N, CHEN L S. Modeling and analysis of a prcdator-prcy model with disease in the prey[J]. Math. Biosci.,2001,171:59-82.
    [47]SONG X Y, CHEN L S. Optimal harvesting and stability for a two-species competitive system with stage structure [J]. Math. Biosci.,2001,170(2):173-186.
    [48]WANG W D. FERGOLA P, TENNERIELLO C. Global atrctivity of periodic solutions of population modcls[J]. J. Math. Anal. Appl.,1997,211:498-511.
    [49]LAKMECHE A, ARINO O. Bifurcation of nontrivial periodic solutions of impulsive differ-ential equations arising chemotherapeutic treatment [J]. Dyn. Contin. Disc. Impul. Syst., 2000.7:265-287.
    [50]HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulations [J]. Mem. Entomol. Soc. Can..1965,45:1-60.
    [51]AIELLO W G, FREEDMAN H I. A time-delay model of single-species growth with stage structure[J]. Math. Biosci.,1990.101:139-153.
    [52]GOURLEY S A, KUANG Y. A stage structured prcdator-prcy model and its dependence on through-stage delay and death rate[J]. J. Math. Biol.,2004,49:188-200.
    [53]HASTINGS A. Delay in recruitment at different trophic levels, effects on stability [J]. J. Math. Biol.,1984,21:35-44.
    [54]HUI J, ZHU D M. Dynamic complexities for prey-dependent consumption intgrated pest management models with impulsive effects [J]. Chaos, Solitons & Fractals,2006,29:233-251.
    [55]SONG X Y, CUI J A. The stage-structured predator-prey system with delay and harvest-ing[J]. Appl. Anal.,2002,81:1127-1142.
    [56]ARDITI R, GINZBURG L R, AKCAKAYA H R. Variation in plankton densities among lakes:a case for ratio-dependent models[J]. Am. Nat.,1991.138:1287-1296.
    [57]ARDITI R, PERRIN N. SAIAH H. Functional response and heterogeneities:an experi-ment test with cladocerans[J]. OIKOS,1991,60:69-75.
    [58]ARDITI R, SAIAH H. Empirical evidence of the role of heterogeneity in ratio-dependent comsumption[J]. Econogy,1992,73:1544-1551.
    [59]GUTIERREZ A P. The physiological basis of ratio-dependeent predator-prey theory:a metabolic pool model of Nicholson's blowflies as an example[J]. Econogy,1992.73:1552-1563.
    [60]HASTINGS I. The fuctional response of predator:worries about scale[J]. TREE,1991.6: 141-142.
    [61]XU R, CHAPLAIN M A J, DAVIDSON F A. Permanence and periodicty of a delayed ratio-dependent predator-prey model with stage structure and prey dispersal[J]. Appl. Math. Comput.,2004,159:823-846.
    [62]XU R, CHAPLAIN M A J, DAVIDSON F A. Permanence and periodicity of a delayed ratio-dependent predator-prey model with stage structure[J]. J. Math. Anal. Appl.,2005, 303:602-621.
    [63]BERETTA E. KUANG Y. Global analysis in some delayed ratio-dependent predator-prey systems [J]. Nonlinear Analysis:TMA.1998,32:381-408.
    [64]BEREZOVSKAYA F, KAREV G, ARSITI R. Parametric analysis of the ratio-dependent predator-prey model[J]. J. Math. Biol.,2001,43:221-246.
    [65]FAN M, WANG K. Periodicity in a delayed ratio-dependent predator-prey system [J]. J. Math. Anal. Appl.,2001,262:179-190.
    [66]HSU S B, HWANG T W, KUANG Y. A ratio-dependent food chain model and its appli-cations to biological control [J]. Math. Biosci.,2003,181:55-83.
    [67]JOST C, ARINO O, ARDITI R. About deterministic extinction in ratio-dependent predator-prey models[J]. Bull. Math. Biol.,1999,61:19-32.
    [68]HALE J K. LUNEL S M V. Introduction to functional differential equations[M]. New York:Springer-Verlag,1993.
    [69]WANG W D, CHEN L S. A predator-prey system with stage-structure for predator [J]. Comput. Math. Anal. Appl.,2001,262:499-528.
    [70]XIAO D M, RUAN S G. Stability and bifurcation in a delayed ratio-dependent predator-prey system [J]. Proc. Edinbugh Math. Soc.,2002,45:205-220.
    [71]XU R, CHEN L S. Persistence and global stability for n-species ratio-dependet predator-prey system with time delays[J]. J. Math. Anal. Appl.,2002,275:27-43.
    [72]AILLO W G, FREEDMAN H I. A time delay model of single-species growth with stage structure [J]. Math. Biosci.,1990.101:139-153.
    [73]FREEDMAN H I, WU J H. Persistence and global asymptotic stability of single species dispersal models with stage structure [J]. Quart. Appl. Math.,1991,49:351-371.
    [74]GAINES R E. MAWHIN J L. Coincidence degree and nonlinear differential cquations[M]. Berlin:Springer-Verlag,1977.
    [75]LIU S Q, CHEN L S, LIU Z J. Extinction and permanence in nonautonomous competitive system with stage structure[J]. J. Maht. Anal. Appl.,2002,274:667-684.
    [76]LIU S Q, CHEN L S, AGARWAL R. Recent progress on stage-structured population dynamics[J]. Math. Comput. Modelling,2002,36:1319-1360.
    [77]SONG X Y, CHEN L S. Modelling and analysis of a single species system with stage structure and harvesting[J]. Math. Comput. Modelling.2002,36:67-82.
    [78]HASTINGS A. Dynamics of a single species in a spatially varying environment:the stabilizing role of high dispersal rates[J]. J. Math. Biol.,1985,28:181-208.
    [79]TAKEUCHI Y. Diffusion-mediated persistence in two-species competition Lotka-Volterra model[J]. Math. Biosci.,1989,95:65-83.
    [80]LEVIN S A. Dispersion and population interactions [J]. Am. Nat.,1974,108:207-228.
    [81]LEVIN S A, SEGEL L A. Hypothesis to explain the origin of planktonic patchness[J]. Nature,1976,259:659.
    [82]CUSHING J M. Periodic time-dependent predator-prey system [J]. SIAM J. Appl. Math., 1977.32:82-95.
    [83]LI Y, KUANG Y. Periodic solutions of periodic Lotka-Volterra equations and systems[J]. J. Math. Anal. Appl.,2001,255:260-280.
    [84]JIAO J J, PANG G P. CHEN L S, LUO G L. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator [J]. Appl. Math. Comput.,2008,195:316-325.
    [85]JIAO J J, CHEN L S, CAIS H. A delayed stage-structured Holling-Ⅱ predator-prey model with mutual interference and impulsive perturbations on predator[J]. Chaos, Solitons & Frachals,2009,40:1946-1955.
    [86]MENG X Z, JIAO J J, CHEN L S. The dynamics of an age structured predator-prey model with disturbing pulse and time delayed[J]. Nonlinear Analysis:RWA,2008,9:547-561.
    [87]ZHANG H. CHEN L S, NIRTO J J. A delayed epidemic model with stage-structure and pulse for pest management strategy[J]. Nonlinear Analysis:RWA,2008.9:1714-1726.
    [88]ZHANG H, CHEN L S. A model for two species with stage structure and feedback con-trol [J]. Int. J. Biomath.,2008,1:267-286.
    [89]MENG X Z, CHEN L S. Permanence and global stability in an impulsive Lotka-Volterra N-Species competitive system with both discrete delays and continuous delays [J]. Int. J. Biomath.,2008,1:179-196.
    [90]JIAO J, CHEN L S, CAI S H. An SEIRS epidemic model with two delays and pulse vaccination[J]. J. Syst. Sci. Complexity,2008,21:217-225.
    [91]AKHMET M U, BEKLIOGLU M B, ERGENC T, et al. An impulsive ratio-dependent predator-prey system with diffusion. Nonlinear analysis:RWA,2006,7:1255-1267.
    [92]MURRAY J D. Mathematical Biology[M]. New York:Springer-Verlag. Berlin Heidelberg, 1989.
    [93]FREEDMAN H I, GOPALSAMY K. Global stability in time-delayed single species dy-namics[J]. Bull. Math. Biol.,1986,48:485.
    [94]CULL P. Global stability for population models[J]. Bull. Math. Biol.,1981,43:47-58.
    [95]DONG L Z, CHEN L S, SUN L H. Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively[J]. Math. Meth. Appl. Sci., 2006,29:415-425.
    [96]ARMSTRONG R A, MCGEHEE R. Competitive exclusion[J]. Amer. Natur.,1980,115: 151-170.
    [97]BUTLER G J. WOLKOWICZ G S K.A mathematical model of the chemostat with a general class of functions describing nutrient uptake[J]. SIAM J. Appl. Math..1985,45: 138-151.
    [98]HSU S B. Limiting behavior for competing species[J]. SIAM J. Appl. Math.,1978,34: 760-763.
    [99]HSU S B, HUBBELL S, WALTMAN P. A mathematical theory of single-nutrient com-petition in continuous cultures of micro-organisms[J]. SIAM J. Appl. Math.,1977,32: 366-383.
    [100]LEVINS R. Coexistence in a variable environment [J]. Amer. Natur.,1979.114:765-783.
    [101]WOLKOWICZ G S K, LU Z. Global dynamics of a mathematical model of compc- tition in the chemostat:general response function and differential death rates [J]. SIAM J. Appl. Math..1992,52:222-233.
    [102]GROVER J P. Resource Competition[M]. Chapman & Hall,1997.
    [103]HANSEN S, HUBBELL S P. Single-nutrient microbial competition:Agreement between experimental and theoretical forecast outcomes[J]. Science,1980,207:1491-1493.
    [104]TILMAN D. Resource competition and Community Structure[M]. Prince- ton:Princeton U. P.,1982.
    [105]DE LEENHEER P, SMITH H L. Feedback control for the chemostat model[J]. J. Math. Biol.,2003,46:48-70.
    [106]FLEGR J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems [J]. J. Theoret. Biol..1997,188:121-126.
    [107]曾广钊.状态依赖脉冲微分方程的周期解的存在性及其在害虫治理中的应用[J].生物数学学报,2007,22:652-660.
    [108]JIANG G R, LU Q S, QIAN L N. Complex dynamics of a Holling II prey-predator system with state feedback control [J]. Chaos, Solitons & Fractals,2007,31:448-461.
    [109]TANG S Y, CHEN L S. Modelling and analysis of integrated management strategy [J]. Discrete contin. Dyn. Syst. Series B,2004,4:759-768.
    [110]DEANGELIS D L. GOLDSTEIN R A. O'NEILL R V. A model for trophic interaction[J]. Ecology,1975,56:881-892.
    [111]BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency [J]. J. Animal Ecol.,1975,44:331-340.
    [112]SIMEONOV P E, BAINOV D D. Orbital stability of periodic solutions autonomous sys-tems with impulse effect [J]. Int. J. Syst. Sci.,1988,19:2562-2585.
    [113]CANTREL R S. COSNER C. On the dynamics of predatory-prey models with the Beddington-DeAngelis function response[J]. J. Math. Anal. Appl.,2001,257:206-22.
    [114]ARDITI R, GINZBURG L. Coupling in predator-prey dynamics:ratio-dependence [J]. J. Theor. Biol.,1989,139:311-326.
    [115]LI B T. Competition in a turbidostat for an inhibitory nutrient [J]. J. Biol. Dynam.,2008, 2:208-220.
    [116]ZENG G Z, CHEN L S, SUN L H. Existence of periodic solution of order one of planar impulsive autonomous system[J]. J. Comput. Appl. Math.,2006,186:466-481.
    [117]MASEL R I. Chemical kinetics and catlysis[M]. New York:Wiley-Interscience,2001.
    [118]SCHMIDT L D. The engineering of chemical reactions[M]. New York:Oxford University Press,1998.
    [119]EISWIRTH M, FREUND A, ROSS J. Operational producture toward the classification of chemical oscillators[J]. J. Phys. Chem.,1999,95:1294-1299.
    [120]GRAY P. SCOTT S K. Chemical Oscillations and Instabilities:Non-linear Chemical Kinetics[M]. Clarendon Press,1994.
    [121]ILYA P. Time. Structure and Fluctuations[R]. Noble Lecture 8. December (1977).
    [122]TYSON J J. The belousov-Zhabotinskii Reaction[M]. vol.10. Berlin:Springer-Verlag, 1976.
    [123]TYSON J J. LIHT J. Some further studies of nonlinear oscilations in chemical systems[J]. J. Chem. Phys.,1973,58:3919-3930.
    [124]LIU J X, ZHENG W M. HAO B L. From annular to interval dynamics:symbolic analysis of the periodically forced Brusselator[J]. Chaos, Solitons & Fractals,1996,7:1427-1453.
    [125]SELKOC E E, ZHABOTINSKII A M. Oscillatory Processes in Biological and Chemical Systems[M]. Moscow:Science Publish,1967.
    [126]ZAILIN A N, ZHABOTINSKII A M. Concentration wave propagation in two-dimensional liquid-phase[J]. Nature,1970,225:535.
    [127]BAYLISS A, MATKOWSKY B J. Two routes to chaos in condensed phase combustion[J]. SIAM J. Appl. Math.,1990,50(2):437-459.
    [128]BAYLISS A, MATKOWSKY B J. From traveling waves to chaos in combustion [J]. SIAM J. Appl. Math.1994,54(1):147-174.
    [129]LEFEVER R, NICOLIS G. Chemical instabilities and sustained oscillations [J]. J. Theor. Biol.,1971.30:267-284.
    [130]NICOLIS G, PRIGOGINE I. Self-organization in Non-equilibrium system[M]. New York: John Wiley & Sons,1977.
    [131]高慧贞,黄榕宁.饱和Prigogine三分子反应模型[J].福建师范大学学报(自然科学版),1990,6(4):18-24,
    [132]LIU X N, CHEN L S. Complex dynamics of Holling type II Lotka-Voltcerra predator-prey system with impulsive perturbations on the predator[J]. Chaos, Solitons & Frachals,2003, 16:311-320.
    [133]SUN M J, TAN Y S, CHEN L S. Dynmical behaviors of the brussclator system with impulsive input[J]. J. Math. Chem.,2008,44:637-649.
    [134]SHI R Q, CHEN L S. The study of a ratio-dependent predator-prey model with stage structure in the prey[J]. Nonlinear Dyn.,2009.58:443-451.
    [135]LIU B, ZHANG Y J. CHEN L S. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management [J]. Nonlinear Analysis:RWA,2005, 6:227-243.
    [136]WEI C J, CHEN L S. Dynamic analysis of mathematical model of ethanol fermentation with gas stripping[J]. Nonlinear Dyn.,2009,57:13-23.
    [137]ZHAO Z, CHEN L S. Chemical chaos in enzyme kinetics [J]. Nonlinear Dyn.,2009,57: 135-142.
    [138]LIU Z J, CHEN Y P, HE Z R. et al. Permanence in a periodic delay logistic system sub-ject to constant impulsive stocking[J]. Math. Methods Appl. Sci., DOI:10.1002/mma.1227.
    [139]LIU Z J, HUI J, WU J H. Permanence and partial extinction in an impulsive delay competitive system with the effect of toxic substances [J]. J. Math. Chem.,2009,46:1213-1231.
    [140]杨明朝.生物化学反应中一类非线性系统极限环的存在唯一性[J].高校应用数学学报(A辑),2002,17:397-400.
    [141]GEORGESCU P, ZHANG H, CHEN L S. Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model[J]. Appl. Math. Comput..2008,202: 675-687.
    [142]ZHAO Z, WANG T Y, CHEN L S. Dynamic analysis of a turbidostat model with the feedback control [J]. Commun. Nonlinear Sci. Numer. Simul.,2010,15:1028-1035.
    [143]WANG T Y, CHEN L S. Dynamic complexity of microbial pesticide model[J]. Nonlinear Dyn.,2009,58:539-552.