稻壳生物质资源的综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业化的快速发展,一次性能源的消耗量不断增加,引起了能源枯竭和环境污染问题,这些问题带来的负面影响正日益加剧,人类为了自身的生存和发展,不断寻找新的能源,以减少和替代一次性能源的消耗。在各种可再生能源中,生物质是储存太阳能的唯一一种可再生的碳源,是可持续再生能源中的重要组成部分。对稻壳热能利用的研究开发已成为开发新能源的一个重要方向,目前生物质能主要用于供热、发电以及合成化学工业产品的需要,大规模推广利用稻壳热能发电,这是我国目前正在研发推广的一项新技术。利用稻壳燃烧的热量的同时,燃烧灰分和燃烧废气的利用也是一个重要研究开发课题。
     稻壳是稻米加工后的副产品。据统计,我国年产稻壳6000万吨以上,利用稻壳发电,不仅解决了污染问题,而且开发了能源,对我国国民经济的发展有着巨大的作用。但是,稻壳发电燃烧后产生大量的稻壳灰,如不加以处理,对环境仍是一大危害。由于稻壳灰中含有大量的未完全燃烧的碳,是制备活性炭极好的原料。并且稻壳中含有16%-20%的无定形水合二氧化硅,燃烧后主要成分为二氧化硅,其它矿物杂质含量很少,是生产精细化工产品白炭黑的理想原料。
     本论文首先利用强碱NaOH浸提稻壳灰中的二氧化硅,得到含硅酸钠的滤液。然后用N2和CO2的混合气体模拟工业废气-石灰窑气,作为沉淀剂,碳化法制备了纳米级二氧化硅。通过向碳化后的滤液中加入Ca(OH)2浆液,提取齐NaOH获得了再生,用再生的NaOH滤液又去处理稻壳灰,实现了提取剂NaOH的循环利用。并通过正交实验设计,得出了NaOH处理稻壳灰提取二氧化硅的最佳工艺:NaOH的浓度为4wt.%,提取时间为2.5h,浸渍比为9:1,得到二氧化硅的提取率为99%以上。并对制得的二氧化硅进行了表征,发现制得的产品为无定形结构,IR表征为水合的二氧化硅,粒子平均直径在40nm左右,分散性良好、纯度较高的球形二氧化硅粉末。并对碳化法制备纳米二氧化硅的机理进行了研究。
     然后,改变传统的Na2CO3熔融石英砂的方法,用Na2CO3浸提稻壳灰中的二氧化硅,得到的滤液采用碳化法制备出分散性较好的纳米级二氧化硅。并对影响二氧化硅提取率的实验条件Na2CO3浓度、提取时间、碳化时间,及其浸渍比等进行了研究。提取剂Na2CO3在提取过程中起到催化剂的作用,反应过程中损失少,通过及时补充,能够实现提取齐Na2CO3的循环利用,并对反应机理进行了初步探讨。此法降低了传统工艺上需要处理大量工业废水的成本,因此上述方法是一种绿色和能够可持续发展的新工艺。
     稻壳灰经碱煮提硅后,剩余灰残渣中炭的含量有了极大提高,有的甚至高达90%以上,且炭质变得疏松多孔,是制备活性炭的良好原料。在二氧化硅的浸取过程中,由于碱对稻壳灰的刻蚀作用,使得得到的灰残渣产生很多空隙,如若对其进行进一步的活化处理,活化剂能够进入灰残渣内部,对炭进行充分刻蚀,进一步使孔的数量增加,能够更好的达到活化的目的。因此,我们对碳酸钠提取二氧化硅后剩余的灰残渣进行活化,用强碱KOH为活化剂,研究了活化时间、活化温度、活化剂用量对制备的活性炭的孔容、比表面积及其碘吸附性能的影响。得到了最佳的实验条件:活化温度为850℃,活化时间为1h,碱与灰残渣的质量比为2:1,在此条件下制备的活性炭样品的孔容为1.2ml/g,比表面积为1936 m2/g,碘吸附量可达1259.06 mg/g,并对KOH的活化造孔机理进行了探讨。并通过扫描电镜跟踪分析,考察稻壳灰经酸去除金属氧化物、碱提二氧化硅、及其KOH活化对灰的形貌及其孔隙的影响,得出高温是造孔的必需条件。
     中空二氧化硅微纳米球由于本身的高熔点、高稳定性、无毒等特殊性质,受到了广大研究人士的关注。模板法是在制备特殊形貌材料中应用比较多的一种方法。此方法先以特定的物质作为形貌辅助物-模板,然后根据需要将材料包覆或填充在模板中得到所需的形貌。少数研究者采用易溶于酸的无机盐或氧化物为核,多数以高分子共模板剂做核,并且采用的硅源基本上都为正硅酸乙酯。本论文采用的硅源来自于第二章中氢氧化钠处理稻壳灰得到的硅酸钠滤液,然后以常见模板剂PVP和CTAB胶束为共模板剂,硫酸做沉淀剂合成了二氧化硅中空球,在高温下煅烧后,得到了具有中空结构的二氧化硅微球。并通过设计实验及表征,探讨了中空介孔纳米二氧化硅微球的形成机制,得到了制备二氧化硅中空球的最佳PVP与CTAB的比例。
     最后,本文对碳化法制备的纳米级二氧化硅产品进行了表面修饰。通过采用不同链长的脂肪醇,实现了对二氧化硅不同程度的表面改性。通过接触角的测试,发现,当所用脂肪醇的量一定时,所得产品的接触角随着脂肪醇链的增长而逐渐增大,并对产生这一现象的机理进行了探讨。最后将改性后的纳米二氧化硅产品添加到高分子聚合物中,通过SEM断面分析,我们证实了经过改性后的二氧化硅在高分子材料里得到了良好的分散,实现了无机粒子与有机基质的良好相容性。
     总之,本论文通过碱提稻壳灰中的二氧化硅、碳化法制备了纳米级二氧化硅,并对提硅后的碳残渣进行了活化,制备了具有高比表面积和很强吸附性的活性炭,实现了稻壳灰资源的两大成分的充分利用。为稻壳灰的综合利用提供了一个崭新的方案。不仅在基础领域取得了成果,同时将理论分析与实际应用结合起来,具有着重要的社会意义以及经济意义。
With the rapid development of global industrialization, the consumption of primary energy is increasing, which causes energy depletion and environmental pollution problems and the negative impact of these problems are increasing. For its own survival and development, the human is constantly looking for new energy sources to reduce or substitute one-time energy consumption. In a variety of renewable energy, biomass, which is the only renewable carbon source to store solar energy, is an important renewable energy component. The research of heat energy utilization of rice husk has become an important direction to develop new energy sources. In the current, biomass is mainly used for heating, power generation and synthetic chemical industry. Large-scale promotion of the use of rice husk to generate power is now a new technology, which is spread by our country. Besides of use of rice husk burning calories, the use of combustion ash and gases is also an important issue.
     Rice husk is a by-product after processing. According to statistics, China's annual output of more than 60 million tons of rice husk. The use of rice husk to generate power is not only solving the pollution problem, but also developing energy resources, which plays a huge role to develop our national economy. However, the burning of rice husk to generate power produces large amounts of rice husk ash, if not dealt in time, which remains an environment problem. Because rice hull ash contains large amounts of unburned carbon, it is an excellent raw material for preparation of activated carbon. Moreover, rice husk contains 16% -20%of amorphous hydrated silicon dioxide, and the main component is silicon dioxide after the combustion of rice husk, besides, small amounts of other mineral impurities, which indicates that it is an ideal raw material to produce fine chemical product-white silica.
     In this paper, silica was leached from RHA as sodium silicate by NaOH treatment and industrial waste gas CO2 was used as precipitator. The silica extraction yield reached 99 wt.% and the effect of parameters, which involved the concentration of NaOH, the extraction time and impregnation ratio, on the silica extraction yield was investigated in this study. The optimum extracted conditions of silica from rice husk ash are as follows:the concentration of NaOH is 4 wt.%, the extraction time is 2.5h and impregnation ratio is 9:1. The extracted yield of silica is up to 99 wt.%. Furthermore, the extraction reagent NaOH could be regenerated by the addition of calcium hydroxide (Ca(OH)2) slurry into the filtrate after carbonation, and calcium carbonate (CaCO3) by-product with high purity was obtained. The X-ray diffraction patterns (XRD) indicated the amorphous structure of the silica powders and Fourier transform-infrared spectroscopy (FTIR) indicated that the product is hydrated silica. The average diameter of silica particle is around 40nm and the silica product has a well dispersion and fine purity. At last, Preparation and carbonization mechanism of nano-silica was studied.
     Then, the traditional method of Na2CO3 fused silica sand was changed in the second chapter. Na2CO3 was used to extract silica from rice husk ash, the resulting filtrate was then reacted with CO2 to prepare good dispersant nano-silica. The parameter of affecting on the silica extracted yield, such as Na2CO3 concentration, extraction time, carbonization time, and the impregnation ratio were studied. Na2CO3 acts as a catalyst in the extraction process, and only a small amount if it was lost during the reaction, thus, the recycling of extractant Na2CO3 was achieved through the timely supplement of it, and the reaction mechanism was discussed. This method reduced the cost of industrial waste water and predigested the traditional craft, therefore, the above method is a green and sustainable technology.
     The remained carbon content in the ash residue has been greatly improved after alkali extraction, and some is even as high as 90% or more, and become porous and loosen, thus it is a good material for preparation of activated carbon. In the silica leaching process, due to alkali etching effect of rice husk ash, the resulting ash residue was generated a lot of gaps. If some further activation was done, active agent can enter the ash residue internal to the full etching of carbon, and further increase the number of holes, therefore, better activated effect was achieved. In this chapter, a strong base KOH was used as activated agent to react with ash residue, the effect of parameters, which involved activated temperature, impregnation ratio, and activated time on pore volume, BET surface area and iodine adsorption capacity of activated carbonwas discussed in this study. The activated carbons are found to be a mixture of micropore and mesopore pore structures. The maximum pore volume, BET surface area and iodine adsorption capacity of as-prepared active carbon can reach 1.22 cm3/g,1936.62 m2/g and 1259.06 mg/g, respectively. Field emission scanning electron microscopy (SEM) was used to characterize the morphological features of the ash after step by step treatment, and we found that high temperature is a necessary condition for making pore.
     Because of their high melting point, high stability, non-toxic, and other special properties, hollow silica microspheres have got the majority of public concern. Template method is a familiar method in the preparation of the application of special shape materials. With this method, a particular material was used as the morphology of aids-templates firstly, and then some materials were needed to be covered or filled in the template to get the required shape. Several researchers used a small number of acid-soluble inorganic salt or oxide as the core, but the majority used polymer template as the core, besides TEOS was usually used as a silica source. Silica source used in this paper was from the second chapter, which was filtrate obtained from dealing with rice husk ash by sodium hydroxide, and PVP and CTAB were used as the co-templates, besides, sulfuric acid was used as precipitng agent to synthesize hollow silica spheres. After calcination at high temperatures, a hollow silica microspheres structure was obtained. The formation mechanism of silica hollow microspheres was raised through the design of experiments and characterization of product. Moreover, we found the key parameter to get silica hollow spheres was the ratio of PVP and CTAB.
     Finally, the precipitated nano-silica product was modified by fatty alcohol. Different levels of silica surface modification were achieved through the use of different chain length of fatty alcohol. By contact angle test, we found that when a certain amount of alcohol was used, the contact angle of the final product increased with the growth of chain length of fatty alcohol increasing, and the mechanism of this phenomenon was discussed. Finally, the modified nano-silica product was added into the polymer, and we confirmed that after modification of the silica, a good compatibility with organic substrate was achieved through SEM cross section analysis. Thus a good dispersion of inorganic particles in the polymer material was got through this method.
     In summary, the silica was extracted from rice husk ash by alkali, and nano-silica powder was prepared by carbonation method. Besides, the ash residue after alkali extraction was activated by KOH to obtain the activated carbon with high specific surface area and strong adsorption. The method in this paper makes full use of the two components of rice husk ash, which provides a new solution for the comprehensive utilization of rice husk ash. It is not only fruitful in the basic fields, but also on the combined the practical application with the theoretical analysis, Which has the important social significance and economic significance.
引文
[1]蒋晶洁,纪明艳,王玉民等.稻壳灰开发利用的研究[J].哈尔滨师范大学自然学报,1995,11(1):50-51.
    [2]Chandrasekhars.,K.G. Satyanarayana,P.N.Pramada. Review processing, properties and applications of reactive silica from rice husk[J]. Journal of Materials Science,2003,38:3159-3168.
    [3]Ikarm N, A khter M, X-ray diffraction analysis of silicon prepared from rice husk ash[J] Journal of materials science,1988,23:2379-2381.
    [4]郑典模,朱升干,稻壳制备超细二氧化硅新工艺[J].南昌大学学报,2009,31(2):117-120.
    [5]刘恒权,孙时知,于欣伟,由稻壳发电剩余物—稻壳灰生产白炭黑研究[J].无机盐工业,2009,32(5):41-43.
    [6]刘成梅,张彦军,李俶等,响应面分析法优化稻壳灰制备纳米级白炭黑工艺[J].南昌大学学报(理科版),2009,33(5):438-444;
    [7]王君,王凤旵,陈明强等,从稻壳裂解残渣中提取二氧化硅的研究[J].非金属矿,2008,31(3):37-39.
    [8]Mehta P K, Rice Husk Ash-A Unique Suppliementary Cementing Material [J]. Advances in Concrete Technology, MSL 9226 (R),1992.
    [9]Mehta P. K., Rice Husk Ash as Mineral Admixture in Concrete [J]. Proc. Intl. Conf. on Durability of Concrete, Chalmers University of Technology,1989.
    [10]欧阳东,六组介混凝土配比设计用强度弃式[J].混凝土,1997,3:38-44.
    [11]欧阳东,陈楷,低温焚烧稻壳灰的显微结构及其化学活性[J].硅酸盐学报,2003,31(11):1121-1124.
    [12]Mehta P K, Rice husk ash-A unique supplementary cementing material[J]. Ady. Coner. Tech. Athen. Greeee,1992:407-431.
    [13]欧阳东,陈楷,稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微学报,2003,22(5):390-394.
    [14]陈玉维,孙鹏章,稻壳灰的结构和组成的扫瞄透视分析-稻壳灰研究之三[J].黑龙江粮食科技,1996:17-19.
    [15]Feng Qingge, Yamamichi H, Shoya M, Sugita S, Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment[J]. Cement and Concrete Research,2004,34:521-526.
    [16]Saraswathy V, Song Ha-Won, Corrosion performance of rice husk ash blended concrete[J]. Construction and Building Materials,2007,21:1779-1784.
    [17]Chatveera B, Lertwattanaruk P, Durability of conventional concretes containing black rice husk ash[J]. Journal of Environmental Management,2011,92:59-66.
    [18]Ganesan K, Rajagopal K, Thangavel K, Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete[J]. Construction and Building Materials,2008, 22:1675-1683.
    [19]Nehdi M, Duquette J, Damatty A E, Performance of rice husk ash produced using a new technology as a mineral admixture in concrete[J]. Cement and Concrete Research,2003,33:1203-1210.
    [20]Alireza Naji Givi, Suraya Abdul Rashid, Farah Nora A. Aziz, Mohamad Amran Mohd Salleh, Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete[J], Construction and Building Materials,2010,24:2145-2150.
    [21]Bui D D, Hu J, Stroeven P, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete[J]. Cement and Concrete Composites,2005,27:357-366.
    [22]Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao H T, Sulfate resistance of blended cements containing fly ash and rice husk ash[J]. Construction and Building Materials,2007,21:1356-1361.
    [23]Rahman M A, Properties of clay-sand-rice husk ash mixed bricks[J]. International Journal of Cement Composites and Lightweight Concrete,1987,9: 105-108.
    [24]Gemma Rodriguez de Sensale, Strength development of concrete with rice husk ash[J]. Cement and Concrete Composites,2006,28:158-160.
    [25]高汉忠,叶慧海,杨满宏,稻壳水泥混凝土[J].混凝土,1996,(3):41-43.
    [26]蔡希高,稻壳、稻壳灰在建筑上的应用[J].广西科学院学报,1999,15(4):190-195.
    [27]张燕坤,宋玉普,衣伟,掺硅灰的陶粒混凝土强度和抗冻性试验[J].混凝土与水泥制品,1998,(5):23-25.
    [28]杨先和,稻壳内高纯度SiO2的提取及其应用前景[J],无机材料学报,1992,7(3):379-383.
    [29]王昌义,赵翠华,王家顺,稻壳灰水泥和混凝土的研究[J].混凝土,1991,(2):27-34.
    [30]林宝玉,高性能混凝土的研究和应用,全国混凝土行业科技论文集(1987~1997),中国建筑业协会混凝土分会,1997,10:66-71.
    [31]Chaudhary D S, Jollands M C, Cser F. Recycling rice hull ash:a filler material for polymeric composites [J]. Advances in Polymer Technology,2004,23(2): 147-155.
    [32]Chaudhary D S, Jollands M C, Characterization of rice hull ash[J]. Journal of Applied Polymer Science,2004,93(11):1-8.
    [33]Haxo H E, Mehta P K. Ground rice hull ash as a filler for rubber[J]. Rubber Chemistry and Technology,1975,48(4):271-288.
    [34]Ishak Z A M, Bakar A A, An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR) [J]. European Polymer Journal,1995, 31(3):259-269.
    [35]山下义裕,川端季雄,长冈宣雄,关于稻壳炭用作橡胶补强材料的研究[J].那洪 东译,世界橡胶工业,2002,29(1):41,43-46.
    [36]Siriwardena S, Ismail H, Ishiaku U S, A comparison of white rice husk ash and silica as fillers in ethylenepropylenedieneter polymer vulcanizates[J]. Polymer International,2000,50 (6):707-713.
    [37]Ismail H, Mega L, Khalil H PS A, Effect of a silane coupling agent on the properties of white rice husk ash polypropylene natural rubber composites [J], Polymer International,2001,50(5):606-611.
    [38]Ismail H, Nizam J M, Abdul Khalil H P S. T he effect of a compatibilizer on the mechanical properties an d mass swell of white rice husk ash fill ed natural rubber linear low density poly ethylene blends[J]. Polymer Testing,2001,20 (2):125-133.
    [39]杜连起,稻壳灰在油脂精炼中的应用[J].粮食与油脂,1995,2:47-48
    [40]欧阳东,陈楷,稻壳灰显微结构及其中纳米Si02的电镜观察[J].电子显微镜学报,2003,22(5):390-394.
    [41]范春辉,张颖,张颖超,李晶,Benny Chefetz,红外光谱法研究低温焚烧稻壳灰对Cr(O)的吸附机理[J].光谱学与光谱分析,2010,30(9):2345-2349.
    [42]张松梅,李立清,谷壳灰吸附水中汞的实验探讨[J].江苏环境科技,1999,12(4)4-5.
    [43]李立清,利用谷壳灰吸附水中Hg(Π)[J].污染防治技术,1998,11(2)97-99.
    [44]黄显慈,国外食用油脂脱色的新概念和新方法[J].中国油脂,2003,28(9):64.
    [45]Ang Y Y, Rice hull ash structure and bleaching performance by ashing at various times and temperatures [J]. J. Am. Oil Chem. Soc.,2001, (6):657-660.
    [46]Salma Omara, Badei Girgisb, Fakhriya Tahaa. Carbonaceous materials from seed hulls for bleaching of vegetable oils[J]. Food Research International,2003,36: 11-17.
    [47]Christidis G E, Scott P W, Dunham A C, Acid activation and bleaching capacity of bentonites from the islands of milos and chios, aegean, Greece[J].Applied Clay Science,1997,12:329-347.
    [48]李玥,陈正行,董梅,稻壳灰制取大豆油精炼中脱色剂的研究[J].中国油 脂,2004,29(3)30-32.
    [49]纪俊敏,酸化稻壳灰吸附剂制备及脱色性能的研究[J].中国油脂,2007,32(8),70-72.
    [50]谢杰,陈天虎,庆承松,宋浩,稻壳发电残余物稻壳灰对有机物的吸附作用[J].农业工程学报,2010,26(5):283-287.
    [51]汪德进,稻壳灰/TiO2复合吸附剂的制备与性能表征[J].中国卫生检验报告,2008,18(4):639-640.
    [52]Zhao Pengfei, Guo Xin, Zheng Chuguang, Removal of elemental mercury by iodine-modified rice husk ash sorbents. Journal of Environmental Sciences,2010, 22:1629-1636.
    [53]Foo K Y, Hameed B H, Utilization of rice husk ash as novel adsorbent:A judicious recycling of the colloidal agricultural waste[J]. Advances in Colloid and Interface Science,2009,152:39-47.
    [54]Apichat Imyim, Eakachai Prapalimrungsi, Humic acids removal from water by aminopropyl functionalized rice husk ash[J]. Journal of Hazardous Materials, 2010,184:775-781.
    [55]Lee Chung Lau, Keat Teong Lee, Abdul Rahman Mohamed, Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study [J]. Journal of Hazardous Materials,2010,183:738-745.
    [56]Lakshmi Uma R, Srivastava Vimal Chandra, Mall Indra Deo, Lataye Dilip H, Rice husk ash as an effective adsorbent:Evaluation of adsorptive characteristics for Indigo Carmine dye[J]. Journal of Environmental Management,2009,90: 710-720.
    [57]Farook Adam, Joo-Hann Chua, The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the sol-gel technique[J]. Journal of Colloid and Interface Science,2004,280:55-61.
    [58]Tarun Kumar Naiya, Ashim Kumar Bhattacharya, Sailendranath Mandal, Sudip Kumar Das, The sorption of lead (II) ions on rice husk ash[J]. Journal of Hazardous Materials,2009,163:1254-1264.
    [59]Irvan Dahlan, Keat Teong Lee, Azlina Harun Kamaruddin, Abdul Rahman Mohamed, Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO2 sorbent:Evaluation of deactivation kinetic parameters[J]. Journal of Hazardous Materials,2010, doi.org/10.1016/j.jhazmat.2010.10.053
    [60]Qingge Feng, Qingyu Lin, Fuzhong Gong, Shuichi Sugita, Masami Shoya, Adsorption of lead and mercury by rice husk ash[J]. Journal of Colloid and Interface Science,2004,278:1-8.
    [61]Vimal Chandra Srivastava, Indra Deo Mall, Indra Mani Mishra, Removal of cadmium(Ⅱ) and zinc(Ⅱ) metal ions from binary aqueous solution by rice husk ash[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008, Pages 312:172-184.
    [62]Lataye D H, Mishra I M, Mall I D, Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC):Parametric, kinetic, equilibrium and thermodynamic aspects[J]. Journal of Hazardous Materials, 2008,154:858-870.
    [63]Vimal Chandra Srivastava, Indra Deo Mall, Indra Mani Mishra, Competitive adsorption of cadmium(Ⅱ) and nickel(Ⅱ) metal ions from aqueous solution onto rice husk ash[J]. Chemical Engineering and Processing:Process Intensification, 2009,48:370-379.
    [64]Pankaj Sharma, Ramnit Kaur, Chinnappan Baskar, Wook-Jin Chung, Removal of methylene blue from aqueous waste using rice husk and rice husk ash[J]. Desalination,2010,259:249-257.
    [65]Nakbanpote W, Thiravetyan P, Kalambaheti C, Preconcentration of gold by rice husk ash[J]. Minerals Engineering,2000,13:391-400.
    [66]欧阳东,用稻壳开发混凝土高活性掺合料[J],粮油食品科技,2003,(4):41-43.
    [67]姚惠源,谷物加工工艺学[M].北京:中国财经出版社,1997,7.
    [68]Zhang Hong xi, Zhao Xu, D ing Xuefeng, et al. A study on the consecutive preparation of-xylose and pure superfine-silica from rice husk [J]. Bioresource Technology,2010,101(4):1263-1267.
    [69]Kalapathy U, Proctor A, Shultz J. An improved method for production of silica from rice hull ash[J]. Bioresource technology,2002, (85):285-289.
    [70]丁开宇,张彦军,刘成梅,等.稻壳灰制备高纯度白炭黑联产水玻璃影响因素研究[J].中国粮油学报,2009,24(5):1-6.
    [71]刘厚凡,稻壳制备白炭黑新方法研究[J].无机盐工业,2007,(2):40-42.
    [72]徐星汉,利用稻壳灰制取水玻璃和活性炭[J].粮食与饲料工业,1988,(3),44-45.
    [73]蒋晶洁,纪明艳,王玉民,王艺,稻壳灰开发利用的研究[J].哈尔滨师范大学自然科学学报,1995,11(1):50-51.
    [74]徐星汉,邹宗柏,利用稻壳灰联产水玻璃和活性炭[J].化工时刊,1988,3,32-33.
    [75]卢芳仪,卢爱军,稻壳灰制高纯二氧化硅的研究[J].粮食与饲料工业,2001,(6).
    [76]卫延安,朱永义,朱春山,蔡春,吕春绪,提高稻壳灰制备活性炭、白炭黑质量的方法研究[J].郑州工程学院学报,2003,24(1):61-63.
    [77]陈正行,李玥,稻壳灰同时制备脱色剂和水玻璃的研究[J].林产化学与工业,2005,25:146-150.
    [78]刘娟,侯书恩,靳洪允,肖红艳,稻壳灰制水玻璃的正交试验研究[J].粮食与饲料工业,2008,12:6-7.
    [79]杨振明,稻壳灰制水玻璃[J].今日科技,1989,7:14.
    [80]徐星汉,用稻壳灰制备高模数水玻璃和活性炭的方法[J].中国专利,CN1039000A.
    [81]鞠馥阳,刘伟,用稻壳灰炭制取水玻璃及副产品活性炭的方法[J].中国专利,CN1229057.
    [82]李相彪,愈慧玲,由副产物硫酸生产白炭黑的工艺研究[J].广州化工,2009,37(9):212-214.
    [83]Della V P, Kiihn I, Hotza D, Rice husk ash as an alternate source for active silica production[J]. Materials Letters,2002,57:818-821.
    [84]Panpa W, Jinawath S, Synthesis of ZSM-5 zeolite and silicalite from rice husk ash[J]. Applied Catalysis B:Environmental,2009,90:389-394.
    [85]James Jose, Rao M S, Reaction product of lime and silica from rice husk ash[J]. Cement and Concrete Research,1986,16:67-73.
    [86]Paya J, Monzo J, Borrachero M V, Mellado A, Ordonez L M, Determination of amorphous silica in rice husk ash by a rapid analytical method[J].Cement and Concrete Research,2001,31:227-231.
    [87]王象民,稻壳灰在硅橡胶中的应用[J].橡胶参考资料,2002,32(1):21-23.
    [88]邵洪东,关于稻壳炭用作橡胶补强材料的研究[J].世界橡胶工业,2002,29(1):12-16.
    [89]延国宁,马登民,以稻壳为原料制取氟硅酸钠[J].沈阳化工学院学报,1997,11(3):173-177.
    [90]吴鹰,稻壳制氟硅酸钠[J].适用技术市场,1994,(8):22.
    [91]卫延安,朱春山,蔡春,吕春绪,由稻壳灰制备活性炭的工艺及应用研究[J].中国粮油学报,2003,18(6):29-33.
    [92]耿敏,利用低碳稻壳灰生产活性炭的工艺与应用研究[J].江南大学粮食、油脂及植物蛋白工程,2009.
    [93]卫延安,朱永义,由稻壳灰制备活性炭的研究[J].粮食与食品工业,2000(3):34-36.
    [94]张锦铎等,用炭化法制活性炭[J].化学世界,1989,(7):326-327.
    [95]Joana M. Dias, Maria C.M. Alvim-Ferraz, Manuel F. Almeida, Jose Rivera-Utrilla, Manuel Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment[J], Journal of Environmental Management,2007,85(4):833-846.
    [96]Ioannidou O, Zabaniotou A, Agricultural residues as precursors for activated carbon production, Renewable and Sustainable Energy Reviews[J].2007,11(9): 1966-2005.
    [97]甘露,刘厚凡,高长华,潘庆辉,稻壳联产纳米白炭黑与活性炭的研究[J].粮食与饲料工业,2007,11:7-9.
    [98]徐星汉,邹宗柏,利用稻壳灰联产水玻璃和活性炭[J].化工时刊,1988,3:32-33.
    [99]耿敏,丁开宇,陈正行,低碳稻壳灰碱法活化制备活性炭的研究[J].中国粮油学报,2009,24(2):139-144.
    [100]徐星汉,利用稻壳灰联产水玻璃、白炭黑和活性炭[J].粮食与饲料工业,1988,3:52-53.
    [101]Bunsell A R, Fibre reinforeements for composite materials[J]. Composite Materials Series, Elsevier,1988; 2:463-468.
    [102]陈晓农,周峰,严学华,以木材为模板制备A1203多孔陶瓷的工艺[J].江苏大学学报,2008,39(5):402-405.
    [103]戈晓岗,许晓静,张洁,亚微米SiCp/Al复合材料的磨损性能[J].江苏大学学报,2006,27(2):144-148.
    [104]June Gunn Lee and Ivan B. Cutler, Formation of silicon carbide from rice hull[J]. Ceramic Bulletin,1975,54 (2):195.
    [105]陈泳华,石墨与稻壳灰制取碳化硅涂层及应用[J].新技术新工艺,1997,4:33-34.
    [106]徐振民,石墨与稻壳灰制取的碳化硅涂层特性[J].中南工业大学学报,1996,27(2):199-203.
    [107]Martinez V, Valencia M F, Cruz J, Mejia J M, Chejne F, Production of β-SiC by pyrolysis of rice husk in gas furnaces[J]. Ceramics International,2006,32, (8): 891-897.
    [108]Krishnarao R V, Subrahmanyam J, Formation of SiC from rice husk silica-carbon black mixture:Effect of rapid heating[J]. Ceramics International, 1996,22, (6):489-492.
    [109]Raghavarapu Venkata Krishnarao, Effect of cobalt chloride treatment on the formation of SiC from burnt rice husks[J]. Journal of the European Ceramic Society,1993,12 (5):395-401.
    [110]Raghavarapu Venkata Krishnarao, Mahadev Malhar Godkhindi, Studies on the formation of SiC whiskers from pulverized rice husk ashes[J]. Ceramics International,1992,18 (1):35-42.
    [111]Krishnarao R V, Subrahmanyam J, Jagadish Kumar T, Studies on the formation of black particles in rice husk silica ash[J]. Journal of the European Ceramic Society,2001,21(1):99-104.
    [112]TakanoriI Watari, Akihiro Nakata, Yoshimi Kiba, Toshio Torikai, Mitsunori Yada, Fabrication of porous SiO2/C composite from rice husks[J]. Journal of the European Ceramic Society,2006,26 (4-5):797-801.
    [113]Escalera-Lozano R, Gutierrez C A, Pech-Canul M A, Pech-Canul M I, Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans[J]. Waste Management,2008,28(2):389-395.
    [114]Janghorban K, Tazesh H R, Effect of catalyst and process parameters on the production of silicon carbide from rice hulls[J]. Ceramics International,1999,25 (1):7-12.
    [115]Moustafa S F, Morsi M B, Alm El-Din A, Formation of silicon carbide from rice hulls[J]. Canadian Metallurgical Quarterly,1997,36 (5):355-358.
    [116]Huang Feng ping, Li He jun, zhi Li Ke, Prefabrication of SiC whiskers through induction of carbon fiber[J]. Trans Nonferrous Met SOCC Hina,2006,16:483-487.
    [117]Janghorban K, Tazesh H R, Effect of catalyst and process parameters on the production of silicon carbide from rice hulls[J]. Ceramics International,1999,25: 7-12.
    [118]Takeshi Qkutan, Yoshinori Nakata, masaaki Suzuki, Development of stable supports consisting of SiC-Si composite for high temperature combustion catalysts[J].Catalysis Today,1995,26:247-254.
    [119]Jair C, Freitas C, Jean S, Moreira, Francisco G, Development of Si/C /N /O ceramics from pyrolyzed and heat-treated rice hulls[J]. Journal of Non-Crystalline Solids,2004,341:77-85.
    [120]许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,33(4):30-32.
    [121]王梅,李辽沙,金霞,李洪花.有盐体系中硅酸的聚合与纳米白炭黑的制备[J].有色冶金设计与研究,2007,28(23):255-258.
    [122]Chattopadhyay P, Gupta R B, Supercritical CO2-based formation of silica nanoparticles using water-in-oil Microemulsions[J]. Ind. Eng. Chem. Res.2003, 42:465-472.
    [123]Zhang Jianling, Liu Zhimin, Han Buxing,et al. A simple and inexpensive route to synthesize porous silica microflowers by supercritical CO2[J]. Microporous and Mesoporous Materials,2005,87:10-14.
    [124]Cai X, Hong R Y, Wang L S, et al. Synthesis of silica powders by pressured carbonation[J]. Chemical Engineering Journal,2009,151:380-386.
    [125]胡庆福,李国庭,王金阁,等,C02沉淀法制取高补强白炭黑[J].非金属 矿,2000,23(6):23-26.
    [126]王慧,舒琼,龙文露,等,白炭黑制备新工艺研究[J].武汉工程大学学报,2009,31(1):29-31.
    [127]徐旺生,徐莹,彭迎慧,等.均相沉淀法制备白炭黑[J].无机硅化合物,2008,(2):20-22.
    [128]Esparza J.MM.L. Ojeda, A. Campero,et al. Developmentandsorption characterization of some model mesoporous and microporous silica adsorbents [J]. Journal of Molecular Catalysis A:Chemical,2005,228:97-110.
    [129]Gurav Jyoti L, Rao Venkateswara A, Rao A Parvathy,etal. Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure[J]. Journal of Alloys and Compounds,2009, 476:397-402.
    [130]Tang Qi, Wang Tao, Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying[J]. J. of Supercritical Fluids,2005,35:91-94.
    [131]Zhu Jianjun, Xie Jimin, Lu Xiaomeng, Jiang Deli, Synthesis and charaterization of superhydrophobic silica and silica/titania aerogels by sol-gel method at ambient pressure[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2009,342:97-101.
    [132]Schmidt H K, Synthesis and Processing of Nano-Scale Materials Through Chemistry[J]. Sci. Technol. Polym. Adv. Mater. (Proc.Int.Conf.Front.Polym.Adv.Mater.), fourth ed.,1997(Published 1998)
    [133]Hench L L, West J K, Gel-silica hybrid optics[J]. Chem Rev,1990,90:33.
    [134]Chu X, Chung W I, Schmidt L D, Sintering of sol-gel-prepared submicrometer particles studied by transmission electron microscopy [J]. J.Am.Ceram.Soc.,1993, 76:2115-2118.
    [135]Zhang G.,Liu M..Preparation of nanostructure tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol[J]. Mater.Sci.,1999,34:3213-3219.
    [136]Luca V.,Djajanti S.,Howe R.F..Structure and electronic properties of sol-gel Titanium oxides studied by X-ray absorption spectroscopy [J]. J. Phys.Chem. B, 1998,102:10650-10657.
    [136]Ferroni L P, Cerrato G., Determination of amorphous interfaced phases in Al2O3/SiC nanocomposites by computer-aided high-resolution electron microscopy[J]. Nanotechnology,2001,49:2109-2113.
    [137]Stober W, Fink A, Bohn E, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Journal of Colloid and Interface Science,1968,26: 62-69.
    [138]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566.
    [139]申晓毅,翟玉春.超微二氧化硅粉体的制备及脱除羟基[J].硅酸盐通报,2006,26(3):542-546.
    [140]姚渊,李冬梅,桑文斌,等.微乳液法制备二氧化硅包覆ZnS:Mn/CdS内米晶[J].人工晶体学报,2006,35(2):400-403.
    [141]Wang H C, Wu C Y, Cheng C C, eta.l, Analys is of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology [J]. Materials and Interfaces,2006,45: 8043-8048.
    [142]董丽新,纳米二氧化硅的制备与表征,河北:河北大学化学与环境学院,2005.
    [143]朱赛芬,吴周安,纳米材料的制备及在化工中的应用[J].上海化工,2001,8:22-25.
    [144]宋秀芹,马建峰,无机非金属材料的软化学合成[J].硅酸盐通报,1996,6:57-60.
    [145]贾宏,郭楷,郭奋,邹海魁,陈建峰,用超重力法制备纳米二氧化硅[J].材料研究学报,2001,15(1):120-124.
    [146]王海波,超重力法制取纳米级二氧化硅[J].中国照明电器,2003,9:8-9.
    [147]李曦,刘连利,王莉莉,纳米二氧化硅的研究现状与进展[J].渤海大学学报(自然科学版),2006,37(4):304-308.
    [148]邓建国,刘东亮,纳米Si02的制备方法及其在无机材料中的应用[J].陶瓷,2007(9):8-12.
    [149]陈立军,方宏锋,张欣宇等,纳米Si02的制备方法及其在皮革中的应用[J].中国 皮革,2007,36(5):61-64.
    [150]何清玉,郭锴,赵柄国,冷继斌,超重力法制备超细二氧化硅及影响因素的研究[J].北京化工大学学报,2006,33(1):16-19.
    [151]曹淑超,伍林,易德莲,秦晓蓉,刘峡,孙少学,纳米二氧化硅的制备工艺及其进展[J].化学与生物工程,2005,9:1-3.
    [152]朱振峰,李晖,朱敏,微乳液法制备无定形纳米二氧化硅[J].无机盐工业,2006,38(6):14-16.
    [153]骆锋,阮建明,万千,纳米二氧化硅粉体的微乳液制备及表征[J].粉末冶金材料科学与工程,2004,9(2):93-98.
    [154]沈风雷,赵婉雪,沈丽莉,万安家,闻荻江,微乳液法制备纳米二氧化硅颗粒研究[J].苏州大学学报(工科版),2008,28(3):34-36.
    [155]张明明,纳米球形二氧化硅的制备研究,江苏:南京理工大学材料学,2008.
    [156]A rriagada F J, Osseo- A sareK. Synthesis of nanosize silica in a nonionic water- in-oil microemulsion:Effects of the water/surfactantmolar ratio and a ammonia concentration[J]. Colloid and Interface Sci.1999,211(2):210-220.
    [157]Arriagada F J, Osseo- Asare K. Controlled hydrolysis of tetraethoxysilane in a anonionic water-in-oil microemulsion:Astatistical mode of silica nucleation[J]. Colloids and Surfaces A,1999,154(3):311-326.
    [158]薛伟,张敬畅,王延吉,等.利用W/O微乳液制备具有规则介孔结构的单分散球形纳米Si02[J].石油学报(石油加工),2005,21(4):37-43.
    [159]骆锋,阮建明,万千,微乳液法制备纳米二氧化硅粉末工艺的研究[J].硅酸盐通报,2004,5:48-52.
    [160]骆锋,阮建明,万千,微乳液法制备纳米二氧化硅基因传递复合载体[J].硅酸盐学报,2004,32(9):1098-1102.
    [161]Beck S.J.,Vartuli J.C.,Roth W.J. et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc,1992, 114:10834-10843.
    [162]徐峰,吴金荣,白炭黑生产技术及应用技术[J].化学建材,1997,1:34-35.
    [163]气相法白炭黑的生产与应用,科技成果纵横,2003,4:48.
    [164]Walter H Waddell,et al著,薛广智译,涂学忠校,高性能白炭黑炭黑料中的应用,轮胎工业,1995,15:534-541.
    [165]宁凯军,王小萍,贾德民,白炭黑的特性及其在胎面胶中的应用[J].合成橡胶工业,2001,24(3):182-184.
    [166]杨本意,段先健,李仕华,王跃林,气相法白炭黑的应用技术[J].有机硅材料,2003,17(4):28-32.
    [167]Xu B S, Tanaka S I, Formation and bonding of platinum nanoparticles controlled by high energy beam irradiation[J]. Scripta Mater.,2001, 44(8/9):2051-2054.
    [168]Tsubokawa N, Kogure A, Sone Y. Grafting of polyesters from ultrafine inorganic particles:copolymerization of epoxides with cyclic acid anhydrides initiated by COOK groups introduced onto the surface[J]. J Polym Sci:PartA: Polym Chem,1993,28:1990-1997.
    [169]Tsubokawa N, Ishida H, Hashimoto K, Effect of initiating groups introduced onto ultrafine silica on the molecular weight polystyrene grafted onto the surface[J]. Polym Bull,1993,31:456-461.
    [170]Tsubokawa N, Ishida H, Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface[J]. J Polym Sci: Part A:Polym Chem,1992,30:2241-2247.
    [171]Tesionowski T,Bula K, Janiszewski J, et al, The influence of filler modification on its aggregation and dispersion behavior in silica/PBT composite[J]. Composite interface,2003,10(2/3):225-242.
    [172]Rong M Z, Zhang M Q, Pan S L, et al, Interfacial effects in polypropylene-silica nanocomposites[J]. Journal of Applied Polymer Science, 2004,92(3):1771-1781.
    [173]Che J F, Luan B Y, Yang X J, et al, Graft polymerization onto nanosized SiO2 surface and its application to the modification of PBT[J]. Materials Letter,2005, 59 (13):1603-1609.
    [174]Hashemi O R, Raoufi F, Ganjali M R, Moghimi A, Aleksa M, Jovanovic V, Jason A. Flint, Manoj Varshney, Tim E. Morey, Donn M. Dennis, and Randolph S. Duran, Surface modification of silica core-shell anocapsules: biomedical implications[J]. Biomacromolecules,2006,7:945-949.
    [175]Ma W A, Liu F, Li K A, Chen W, Tong S Y, Preconcentration, separation and determination of trace Hg(Ⅱ) in environmental samples with aminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel[J]. Anal. Chim. Acta 416 (2000) 191-196.
    [176]Goswami A, Singh A K, Venkataramani B,8-Hydroxyquinoline anchored to silica gel via new moderate size linker:synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination[J]. Talanta,2003,60:1141-1154.
    [177]Kinci C E, Koklu U, Determination of vanadium, manganese, silver and lead by graphite furnace atomic absorption spectrometry after preconcentration on silica-gel modified with 3-aminopropyltriethoxsilane[J]. Spectrochem. Acta B: Atomic Spectr.2000,55 (9):1491-1495.
    [178]Espinola J G P, Oliverira S F, Lemus W E S, Souza A G, Airoldi C, Moreira J C A, Chemisorption of Cull and Coll chlorides and β-diketonates on silica gel functionslized with 3-aminopropyltrimethoxysilane[J]. Colloids Surf. A: Physicochem. Eng. Aspects 2000,166 (1-3):45-50.
    [179]Airoldi C, Gushikem Y, Espinola J G P, Adsorption of divalent cations on the silica-gel surface modified with N-(2-aminoethyl-3-aminopropyl) groups[J]. Colloids and Surface,1986,17(4):317-323.
    [180]Sahin T, Volkan M, Howard A G, Ataman O Y, Selective pre-concentration of selenite from aqueous samples using mercapto-silica[J]. Talanta,2003,60(5): 1003-1009.
    [181]Joo S H, Ryoo R, Kruk M, et al, Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates, J. Phys. Chem. B,2002,106:4640-4646.
    [182]Yamada T, Zhou H S, Hiroishi D, Tomita M, Ueno Y, Asai K and Honma I, Platinum Surface Modification of SBA-15 by γ-Radiation Treatment, Adv. Mater.,2003,15:511-513.
    [183]Yonezawa T, Matsune H, Kimizuka N, Formation of an Isolated Spherical Three-Dimensional Nanoparticle Assembly as Stable Submicrometer-Sized Units by Using an Inorganic Wrapping Technique [J]. Adv. Mater., 2003,15:499-503.
    [184]Nanguo L, Bradley S P, Victor I K, Hybrid Gold/Silica/Nanocrystal-Quantum-Dot Superstructures:Synthesis and Analysis of Semiconductor-Metal Interactions [J]. J. Am. Chem. Soc.,2006, 128:15362-15363.
    [185]Li X L, Liu Y Q, Fu L, et al, Synthesis and Device Integration of Carbon Nanotube/Silica Core-Shell Nanowires[J]. J. Phys. Chem. C,2007, 111:7661-7665.
    [186]Han J, Song G P, Guo R, Synthesis of Polymer Hollow Spheres with Holes in Their Surfaces[J]. Chem. Mater.2007,19:973-975.
    [187]Feng X M, Mao C J, Yang G, et al, Polyaniline/Au Composite Hollow Spheres:Synthesis, Characterization, and Application to the Detection of Dopamine[J]. Langmuir,2006,22:4384-4389.
    [188]Li L L, Chu Y, Liu Y, et al, Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres[J]. J. Phys. Chem. C,2007,111: 2123-2127.
    [189]Masahiro F, Kumi S, Ikuko S, et al. Silica Hollow Spheres with Nano-Macroholes Like Diatomaceous Earth[J]. Nano Lett.,2006, 6(12):2925-2928.
    [190]Huang H Y, Edward E R, Tomasz K, et al, Nanocages Derived from Shell Cross-Linked Micelle Templates [J]. J. Am. Chem.Soc.1999,121:3805-3086.
    [191]Makarova O V, Ostafin A E, Miyoshi H, et al, Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles[J]. J. Phys. Chem.B,1999,103: 9080-9084.
    [192]Ostafin A E, Siegel M, Wang Q, et al, Fluorescence of Cascade BlueTM inside nano-sized porous shells of silicate [J]. Micro. and Meso. Mater.,2003,57:47-55.
    [193]Melero J A, Rafael G, Gabriel M, et al, Acidic Mesoporous Silica for the Acetylation of Glycerol:Synthesis of Bioadditives to Petrol Fuel[J]. Energy & Fuels.,2007,21:1782-1791.
    [194]Ji X, Hu Q, Hampsey J E, et al, Synthesis and Characterization of Functionalized Mesoporous Silica by Aerosol-Assisted Self-Assembly[J]. Chem. Mater.,2006,18:2265-2274.
    [195]Yang D, Xu Y, Wu D, et al, Super Hydrophobic Mesoporous Silica with Anchored Methyl Groups on the Surface by a One-Step Synthesis without Surfactant Template[J]. J. Phys. Chem. C,2007,111:999-1004.
    [196]Masaki I, Takayoshi S, Mamoru W, Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell[J]. Chem. Mater.,1998,10:3780-3782.
    [197]Ren T Z, Yuan Z Y, Su B L. Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2[J].Chem. Phys. Let.,2003,374:170-175.
    [198]Caruso F, Spasova M, Susha A, et al, Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater.,2001,13:109-116.
    [199]Caruso R A, Susha A, Caruso F, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres[J]. Chem. Mater.,2001,13:400-409.
    [200]何月德,无烟煤基高比表面积活性炭的制备及其在双电层电容器中的应用研究.湖南:湖南大学材料学,2003.
    [201]Nikolai B B, Rene G, Vladimir A K, et al. A novel Process for Preparation of activated carbon from sapropelitic coals[J]. Fuel,1998,6:473-478.
    [202]Qiao W M, Ling L C, Preparation of a Piteh-based Activated carbon with a high specific surface area[J]. J. Mater. Sci.,1997,32(16):4447-4453
    [203]Lozano-Castello D, Lillo-Rodenas M A, Cazorla-Amoros D, etal., Preparation of activated carbons from Spanish anthracite I.Activation by KOH[J]. Carbon,2001, 39(6):741-749
    [204]Lillo-Rodenas M A, Lozano-Castello D, Cazorla-Amoros D, et al, Preparation of activated carbons from Spanish anthraeite1Ⅱ.Activation by NaOH [J]. Carbon, 2001,39(5):751-759.
    [205]Maria J H. Katarzyna K. Comparison of molecular sieve properties in microporous chars from low-rank bituminous coal activated by steam and carbon dioxide[J]. Carbon,2005,43(5):944-953.
    [206]Gaian J,Gonzia C M, Gonaolez J F,etal, Preparation of activated carbons from bituminous coal pitches[J]. Applied Surface Science,2004,238(1-4):347-354.
    [207]Zeng H C, Jin F, Guo J, Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel,2004,83(1):143-146.
    [208]Tsai W T, Chang C Y, Wang Y, etal, Cleaner produetion of carbon absorbents by utilizing agricultural waste corn cob[J]. Resources, Conservation and Recycling,2001,32:43-53.
    [209]Tay J H, Chen X G, Jeyaseelan S, etal, Optimizing the Preparation of activated carbon from digested sewage sludge and coconut hask[J]. Chemosphere,2001,44: 45-51.
    [210]Hu Z H, Srinivasan M P, Ni Y M, Novel activation process for preparing highly microporous and mesoporous activated carbons.Carbon[J].2001,39(6):571-556.
    [211]Sebastien R, Catherine F B, Laurence L C, et al. Experimental design methodology for the Preparation of carbonaceous sorbents from sewage sludge by chemical activation-application to air and water treatments [J]. Chemosphere,2005, 58(4):423-437.
    [212]Lua A C, Yang T, Effcts of vacuum pyrolysis conditions on the characteristics of activated carbons derived from Pistachio-nut shells[J]. J. Colloid Inter.Sci., 2004,276(2):364-372.
    [213]Ismadji S, Sudaryanto Y, Hartono S B, et al. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust:Pore structure development and characterization[J]. Bioresource Technology,2005,96(12):1364-1369.
    [214]Lua A C, Guo J, Activated carbon Prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal[J]. Carbon,2000,38(7):1089-1097.
    [215]Kei M, Toshitatsu M, Yasuo H, et al.Tomoki Nakanishi, Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology,2004, (95):255-257.
    [216]Uatinov E A, Do D D, Herbst A, Modeling of gas adsorption equilibrium over a wide range of pressure:a thermodynamic approach based on equation of state[J]. J. Colloid Inter. Sci.2002,250(1):49-62.
    [217]Tseng H H, Wey M Y, Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts[J].Carbon, 2004,42(11):2269-2278.
    [218]Qiao S Z, Hu X J, Using local IAST with micropore size distribution to predict desorption and displacement kinetics of mixed gases in activated carbon[J]. Sep. Puri.Tee.2003,31(1):19-30.
    [219]Lopez F, Medina F, Prodanov M, et al, oxidation of activated carbon: application to vinegar decolorization[J]. J. Colloid Inter. Sci.2003, 257(2):173-178.
    [220]Wang A M, Qu J H, Ru J, et al. Mineralization of anazodye acid red 14 by electro-Fenton's reagent using an activated carbon fiber eathode[J]. Dyes and Pigments.2005,65(3):227-233.
    [221]Ismadji Suryadi, Bhatia S K, The use of liquid phase adsorption isotherms for characterization of activated carbons[J]. J. Colloid Inter. Sci.,2001, 244(2):319-335.
    [222]Atkowski A, Derylo-Marezewska A, Goworek J, et al. Study of adsorption from binary liquid mixtures on thermally treated activated carbon[J]. Applied Surface Science,2004,236(1-4):313-320.
    [223]Dubray A, Vandersehuren J, Mass transfer Phenomena during sorption of hydrophilic volatile organic compounds into aqueous suspensions of activated carbon[J]. Sep. Purf. Tee.,2004,38(3):215-223.
    [224]Ismadji S, Bhatia S K. Charaeterization of activated carbons using liquid phase adsorption[J]. Carbon,2001,39(8):1237-1250.
    [225]Li Y H, Lee C W, Gullett B K, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption [J]. Fuel,2003, 82(4):451-457.
    [226]Koran K M, Suidan M T, Khodadoust A P, et al. Eeffctiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids:a proposed strategy for remediating PCP/PAH contaminated soil[J]. Water Research,2001,35(10):2363-2370.
    [227]Martin C, Perrard A, Joly J P, et al, Dynamic adsorption on activated carbons of SO2 traces in air:Ⅰ. Adsorption capacities[J]. Carbon,2002,40(12):2235-2246.
    [228]Guo J, Lua A C, Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation[J]. Sep. Purif. Tec.2003, 30(3):265-273.
    [229]Liu Z Q, Anderson J A, Influence of reductant on the thermal stability of stored NOx in Pt/Ba/Al2O3 NOx storage and reduction traps[J]. J. Catalysis,2004, 224(1):18-27.
    [230]Nishimura F, Somiya I, Tsuno H, et al, Development of acombined BAC and BZ reactor for removal of nitrogen in waste water from sludge drying process [J]. Water Science and Technology,1996,34(1-2):145-151.
    [231]Quintanilla A, Casas J A, Zazo J A, et al. Wet air oxidation of phenol at mild conditions with a Fe/cetivated carbon catalyst[J]. Applied Catalysis B: Environmental,2006,62(1-2):115-120.
    [232]Subrahmanyam C, Bulushev D A, Kiwi Minsker L, Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature [J]. Applied Catalysis B:Environmental,2005,61(1-2):98-106.
    [233]Kang M, Bae Y S, Lee C H, Eeffct of heat treatment of activated carbon supports on the loading and activity of Pt catalyst[J]. Carbon,2005, 43(7):1512-1516.
    [234]Hou Z H, Li X H, Liu E H, et al, New mesoporous carbons Prepared by a simultaneous synthetic template carbonization method for electric double layer capacitors[J].New Carbon Materials,2004,19(1):11-15.
    [235]Li C S, Wang D S, Liang T X, et al, A study of activated carbon nanotubes as double-layer capacitors electrode materials[J]. Materials Letters,2004, 58(29):3774-3777.
    [236]Takaya S, Gen M, Kentaro T, Electrochemical Properties of novel ionic liquids for electric double layer capacitor applications[J]. Electrochim Acta,2004, 49,3603-3611.
    [237]Lewandowski A, Swiderska A, Electrochemical capacitors with polymer electrolytes based on ionic liquids[J]. Solid State Ionies,2003,161:243-249.
    [238]肖九高,烟道气中二氧化碳回收技术的研究[J].现代化工,2004,24(5):4749.
    [239]李现勇,C02减排及封存利用技术概况及发展[J].电力设备,2008,9(5):7-10.
    [1]李添松,活性白炭黑的研制[J].无机盐工业,1984,(5):14-18.
    [2]丁开宇,稻壳灰制备白炭黑的研究,江南大学,江苏:江南大学食品科学,2009.
    [3]任素霞,稻壳资源的综合化利用研究,吉林大学,吉林:吉林大学化学学院2009.
    [4]李晓瑄,陈正行,周蕴宇,高纯度多孔稻壳基白炭黑的制备级性质[J].粮食加工,2010,35(1):51-53.
    [5]刘小梅,郑典模,温圣达,稻壳的资源化利用[J].山东化工,2008,37:35-37.
    [6]Chakraverty A, Kaleemullah S, Conversion of rice husk into amorphous silica and combustible gas[J]. Energy Consers. Mgmt.1991,32:565-570.
    [7]卜一兵,利用稻壳生产白炭黑[J].乡镇企业科技,1994,12:42.
    [8]甘露,稻壳制备白炭黑及其纳米级白炭黑的研究,南昌大学,江西:南昌大学无机化学,2007.
    [9]Zaky R R, Hessien M M, El-Midany A A, Khedr M H, Abdel-Aal E A, El-Barawy K A, Preparation of silica nanoparticles from semi-burned rice straw ash[J]. Powder Technology,2008,185:31-35.
    [10]李万海,齐爱玖,王红,稻壳制备二氧化硅的研究[J].吉林化工学院学报,2008,25(3):47-50.
    [11]贾宏,郭楷,郭奋,邹海魁,陈建峰,用超重力法制备纳米二氧化硅[J].材料研究学报,2001,15(1):120-124.
    [12]熊释奴,窑气鼓泡塔碳化法生产白炭黑的工艺探讨[J].无机盐工业,1988,(2):15-19.
    [13]姚英,无机活性填料白炭黑的碳化法制备与表面改性研究,太原理工大学,山西:太原理工大学化学学院,2004.
    [14]涂华,周永华,余嘉耕,满瑞林,碳化法生产白炭黑工艺研究及反应动力学分析[J].无机盐工业,2001,33(6);8-11.
    [15]刘金龙,碳化法白炭黑的试制和生产[J].浙江化工,1990,22(4):38-40.
    [16]何凯,陈宏刚,石灰窑气碳酸化法制备白炭黑工艺[J].过程工程学报,2006,6(4):555-558.
    [17]胡庆福,王金阁,李国庭,刘鸿雁,喷雾碳化法生产透明白炭黑新工艺研究[J].无机盐工艺,1997,(6):31-33.
    [18]胡庆福,李国庭,王金阁,刘洪雁,CO2沉淀法制取高补强白炭黑[J].非金属矿,2000,23(6):23-24.
    [19]李安,沉淀法白炭黑制备过程的动力学分析[J].炭黑工业,1993:20-25.
    [20]李安,影响沉淀白炭黑产品物化性能的内在因素[J].炭黑工业,1994:24-30.
    [21]熊仕奴,窑气鼓泡塔碳化法生产白炭黑的工艺探讨[J].无机盐工业,1988,2:15-19.
    [22]孙正平,工业废气二氧化碳的回收利用,中国高新技术企业,2009,13:88-89.
    [23]Meakln,P.,Phys.Rev.Lett.,1983,51:1119-1120
    [24]Allen, L.H. etal., Stability of colloidal silica:Ⅰ. Effect of simple electrolytes, J.Colloid Interface Sci.,1969,31:287-294.
    [25]Allen, L.H.etal., E. The theory of absolute surface shear viscosity. IV. The double ring couette surface viscometer, J.Colloid Inteface Sci.,1971,35:66-72.
    [26]Allen, L.H.etal., Stability of colloidal silica:Ⅱ. Ion exchange, J.Colloid Interface Sci.,1970,31:287-297.
    [27]Tang.P. et al, Temperature effect on fractal structure of silica aggregates, J. Colloid Interface Sci.,1988,126:304-315.
    [28]姚英,无机活性填料白炭黑的碳化法制备与表面改性研究,山西:太原理工大学化学工艺,2001.
    [29]姚英,何凯,利用石灰窑气生产白炭黑,太原理工大学学报,2004,35:199-201.
    [30]涂华,周永华,余嘉耕,满瑞林,碳化法生产白炭黑工艺研究及反应动力学分析,无机盐工业,2001,33(6):8-11.
    [1]Brinker C J, Scherer G W, Academic Press, Inc., San Diego, CA,1990, pp. 839-880.
    [2]Iler R K, In:Her, R.K. (Ed.), The Chemistry of Silica. John Wiley and Sons, New York, NY,1979,pp.462-599.
    [3]Chakraverty A, Kaleemullah S, Conversion of rice husk into amorphous silica and combustible gas[J]. Energy Consers. Mgmt.1991,32:565-570.
    [4]YalcE in N, Sevinc V, Studies on silica obtained from rice husk[J]. Ceram. Int. 2001,27:219-224.
    [5]刘恒权,孙时知,于欣伟,周英彦,由稻壳发电剩余物—稻壳灰生产白炭黑的研究[J].无机盐工业,2000,32(5):41-42.
    [6]刘恒权,孙时知,赵国鹏,于欣伟,尚世南,利用稻壳生产优质白炭黑的新方法[J].冶金能源,2000,19(2):22-24.
    [7]于欣伟,赵国鹏,徐广蕙,周英彦,尚世南,由稻壳制取白炭黑工艺中提取率影响因素研究[J].化学工程,1998,26(4):51-55.
    [8]王君,王凤旵,陈明强,陈明功,从稻壳裂解残渣中提取二氧化硅的研究[J].非金属矿,2008,31(3):37-39.
    [9]Real C, Alcala'M D, Criado J M, Preparation of silica from rice husks[J]. J. Am. Ceram. Soc.,1996,79:2012-2016.
    [10]Chen J M, Chang F W, The chlorination kinetics of rice husk[J]. Indian Engineering Chemical Research,1991,30:2241-2247.
    [11]Allen, L.H. etal., J. Colloid Interface Sci.,1969,31:287-294.
    [12]谢杰,稻壳发电热解残渣稻壳灰对有机污染物的吸附,合肥:合肥工业大学资源与环境工程学院,2010.
    [1]H.Kienle;E.Bader著,魏同成编译.活性炭及其工业应用[M].北京:中国环境出版社,1990:43-47.
    [2]Evans M J B, Halllp E, Macdonald J A F. The production of chemically-activated carbon[J]. Carbon,1999,37(3):269-274.
    [3]胡福昌,陈顺伟.日本竹材热解研究的现状[J].林业科技开发,2001,15(3)8-11.
    [4]商红岩,吴明铂,郑经堂等.KOH活化制备高比表面积窄孔径分布的活性炭纤维的研究[J].炭素技术,1999,103(5):9-13.
    [5]余梅芳,胡晓斌,王康成等.KOH活化制备高比表面积竹活性炭研究[J].浙江林业科技,2006,26(3):18-20.
    [6]张锦铎等,用炭化法制活性炭[J].化学世界,1989,(7):26-27.
    [7]于欣伟等,由稻壳制取白炭黑工艺中提取率影响因素的研究[J].化学工程,1998,(4):51-55.
    [8]芦芳仪,稻壳的综合利用[J].粮食与饲料工业,1997,(12):41-42.
    [9]Bjelopavlic M, Newcombe G, Hayes R, Adsorption of NOM onto Activated Carbon:Effect of Surface Charge, Ionic Strength, and Pore Volume Distribution[J], J. Colloid and Inter. Sci.,1999,210:271-280.
    [10]Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano.Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon,2003,41(2):267-275.
    [11]Yamashita Y, Ouchi K, Influence of alkali on the carbonization process-Ⅰ: Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH[J]. Carbon,1982,20(1):41-44
    [12]Otawa T, Shiraishi M, Tanibata R, Tanka N, Carbon'92, International Conference on Carbon,Essen,Extended Abstracts,1992:944-995
    [13]P. Ehrburger, A.Addon,J.B. Donnet. Carbonization of coals in the presence of alkaline hydroxides and carbonates:Formation of activated carbons[J], Fuel, 1986,65(10):1447-1450
    [14]严继民,张启元,周永基,高泉,ST-03型表面与孔径测定仪使用方法(下)[J],分析仪器,1977.
    [1]乐园,陈建峰,汪文川,空心微球型纳米结构材料的制备及应用进展[J].化工进展,2004,23(6):595-5991.
    [2]Feng X M, Mao C J, Yang G, et al, Polyaniline/Au Composite Hollow Spheres: Synthesis, Characterization, and Application to the Detection of Dopamine[J]. Langmuir,2006,22:4384-4389.
    [3]Li L L, Chu Y, Liu Y, et al. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres[J]. J. Phys. Chem. C,2007,111:2123-2127.
    [4]Masahiro F, Kumi S, Ikuko S, et al. Silica Hollow Spheres with Nano-Macroholes Like Diatomaceous Earth[J]. Nano Lett.,2006,6(12):2925-2928.
    [5]Zhu Y F, Shi J L, Dong X P, et all A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property, Microporous and Mesoporous Materials,2005, (84):218-2221
    [6]Yang X L, Yao K, Zhu Y H, Fabrication and sustained release property of nanostructured hollow silica microspheres[J]. J of Inorganic Materials,2005,20 (6):1403-1408.
    [7]Zhu Y F, Shi J L, A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J]. Microporous and Mesoporous Materials, 2007,103:243-2491.
    [8]Zhang Ch X, Zhang J L, Yang G Y, et al. Preparation of silica and titanium- containing silica hollow spheres at supercritical CO2/H2O interface [J]. Journal of Supercritical Fluids,2007,42:142-149.
    [9]Park J H, Kim Y G, Chul O H, et al. Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates[J]. Materials Research Bulletin,2005,40:271-2801.
    [10]Wang J X, Chen J F, Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supporting precursors [J]. Materials Research Bulletin,2008,43 (4):889-8961.
    [11]Morgan M T, Carnahan M A, Immoos C E, et al, Dendritic Molecular Capsules for Hydrophobic Compounds[J], J Am Chem Soc,2003,125:15485-154891.
    [12]Joncheray T J, Audebert P, Schwartz E, etal. Electrochemical and spectroscopic characterization of organic compound up take in silica core-shell nanocapsules[J].Langmuir,2006,22:8684-8689.
    [13]Baca M, Li W J, Du P, Mul G, Moulijn J A, and Coppens M-O. Catalytic characterization of mesoporous Ti-Silica hollow spheres, Catalysis Letters,2006, 109(3-4):207-210.
    [14]Miszta A, Deursen B V, Schoufs R, et al, Absence of ethanol-induced interdigitation in supported phospholipid bilayers on silica surfaces[J]. Langmuir, 2008,24:19-21.
    [15]Darband I M, Thomann R, Nann T, Hollow silica nanospheres:in situ, semi-In situ, and two-step synthesis[J]. Chem. Mater.,2007,19:1700-1703.
    [16]Wang S F, Gu F, Yang ZH S, et al, Facile synthesis of silica-coated Bi2S3 nanorods and hollow silica nanotubes [J]. J of Crystal Growth,2005,282:79-84.
    [17]Xiao Q G, Tao X, Zhang J P, et al, Hollow silica nanotubes for immobilization of penicillin G acylase enzyme[J]. J of Molecular Catalysis B:Enzymatic,2006,42: 14-19.
    [18]Fujiwara M, Shiokawa K, Hayash I K, et al, Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres) [J]. J of Biomedical Mater. Research Part A,2007,81A(1):103-112.
    [19]Johnston A P R, Cortez C, Angelatos A S, et al, Layer-by-layer engineered cap sules and their applications[J]. Current Opinion in Colloid & Interface Sci,2006, 11:203-209.
    [20]Cheng X, Liu S Q, Lu L Ch, et al, Fast fabrication of hollow silica spheres with thermally stable nanoporous shells [J]. Microporous and Mesoporous Mater,2006, 98:41-46.
    [21]Sen T, Tiddy G J T, Casci J L, et al, Hierarchically ordered porous silica composites ordering on three different lengths with three dimensional pore inter-connectivity [[J]. Recent Advances in the Science and Technology of Zeolites and Related Materials, Part:A-C 2004,154:408-415.
    [22]Fan W G, Gao L, Synthesis of silica hollow spheres assisted by ultrasound [J]. J of Colloid and Interface Sci,2006,297:157-160.
    [23]Berezovska I S, Yan I I V, Tertykh V A, et al, Role of ionene in composition of porous structure of templated-synthesized silicas[J]. J of Thermal Analysis and Calorimetry,2006,86 (1):93-96.
    [24]Zhou X F, Qiao Sh Zh, Hao N, et al, Synthesis of ordered cubic periodic mesoporous organosilicas with ultra-large pores[J]. Chem Mater,2007,19: 1870-1876.
    [25]Jeroen J. L. M. Cornelissen, Eric. F. Connor, Ho-Cheol Kim, Victor Y. Lee, et al. Versatile synthesis of nanometer sized hollow silica spheres [J]. Chem Commun, 2003:1010-1011.
    [26]Yoon S B, Kim J Y, Kim J H, et al, Temp late synthesis of nanostructured silica with hollow core and mesoporous shell structures [J]. Current Applied Physics, 2006,6:1059-1063.
    [27]Le Y, Pu M, Chen J F, et al, Theoretical and experimental studies on the silica hollow spheres[J]. J of Non-Crystalline Solids,2007,353:164-169.
    [28]Wang J X, Wen L X, Liu R J, et al, Needle-like calcium carbonate assisted self-assembly of mesostructured hollow silica nanotube[J]. J of Solid State Chem, 2005,178:2383-2389.
    [29]Le Y, Chen J F, Wanf J X, et al, A novel pathway for synthesis of silica hollow spheres with mesostructured walls[J], Mater Letters,2004,58:2105-2108.
    [30]Kun H, Zho Zh H, Zheng X, et al, The sol-gel preparation of ZnO/silica core-shell composites and hollow silica structure[J]. Mater Letters,2007, 61:363-368.
    [31]Khanal A, Inoue Y, Yadam, et al, Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure [J]. J Am Chem Soc,2007,129:1534-1535.
    [32]Yeh Y Q, Chen B Ch, Lin H P, et al, Synthesis of hollow silica spheres with mesostructured shell using Cationic-anionic-neutral block copolymer ternary surfactants [J]. Langmuir,2006,22:6-9.
    [33]Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.,Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984) [J]. Pure and Applied Chemistry,1985,57:603-619.
    [1]周产力,寇战峰,刘钧超细二氧化硅制备应用[J].无机盐工业,2001,33(4)22-240
    [2]张咏春,田明,张立群等,二氧化硅制备、改性、应用进展[J].现代化工,1998(4):11-14.
    [3]葛奉娟,朱捷,醇酯法表面改性超细二氧化硅的研究[J].安徽理工大学学报(自然科学版),2005,25(4):78-80.
    [4]田明,张立群,耿海萍,等,二氧化硅制备、改性、应用进展[J].现代化工1998(4):11-14.
    [5]解小玲,郭睿劫,贾虎生,刘旭光,许并社,KH-550改性纳米二氧化硅的研究[J].太原理工大学学报,2008,39(1):26-27.
    [6]David A, Edmond I Ko, Preparing catalytic materials by the sol-gol method, Industrial and engineering chemistry research[J].1995,34(2):421-433.
    [7]刘章超,李小兵,张华林等,纳米二氧化硅增强增韧环氧树脂的研究[J].胶体与聚合物,2000,18(4):15-17.
    [5]卢寿慈,粉体加工技术,北京:中国轻工业出版社,1999:125-130.
    [6]Teofil J., Andrzej K., Influence o f silane coupling agents on surface properties of precipitated silicas[J]. Applied Surface Science,2001,172:18-32.
    [7]何东铭,张超灿,纳米SiO2水溶液制备、改性及应用性能研究[J].武汉理工大学学报,2003,25(2):7-10.
    [8]Hoon Cho, Wei Chen. Surface-modified silica colloid for diagnostic imaging [J]. Journal o f Colloid and Interface Science[J].2003,258:435-437.
    [9]张辉,稻壳基无机纳米材料的提取及应用.长春:吉林大学化学学院,2003.
    [10]任素霞,稻壳资源的综合利用研究.长春:吉林大学化学学院,2009.
    [11]郑水林,粉体表面改性[J].北京:化学工业出版社,1995:13-26.
    [12]贾红兵,金志刚,吉庆敏,不同硅烷偶联剂对纳米白碳黑填充胶料性能的影响[J].橡胶工业,1999,10:590-591.
    [13]Giesenberg T., Hein S.,Binnewies M., Kickelbick G., Synthesis and Functionalization of a New Kind of Silica Particle[J]. Angew. Chem. Int. Ed. 2004,43,5697-5700.
    [14]Anedda A., Carbonaro C.M., Clemente F., Corpino R., Ricci P.C., Raman Investigation of Surface OH-Species in Porous Silica[J]. J Phys. Chem. B,2003, 107:13661-13664.
    [15]Chuang I., Maciel G.E., A Detailed Model of Local Structure and Silanol Hydrogen Bonding of Silica Gel Surfaces[J]. J Phys. Chem. B,1997, 101:3052-3064.