聚合物微/纳米囊的制备及其在药物控制释放中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于智能型聚合物微/纳米囊在药物传递及其生物医学领域的重大潜在应用价值而成为聚合物科学领域研究的热点之一。在一定的特殊条件下,基于一定的刺激机理可以有效调节聚合物微/纳米囊囊壁的渗透性来进行客体分子的控制释放,其释放速率可以通过客体分子穿过聚合物微/纳米囊囊壁的扩散速率进行调节。因此,聚合微/纳米囊囊壁对外界环境的发生快速响应是必不可少的。目前已经报道的环境刺激响应的微/纳米囊的刺激因素主要有:pH、温度、糖、离子强度等等。本论文主要基于模板聚合法及其多种模板表面的聚电解质的层层自组装来制备功能性聚合物微/纳米囊,其主要包括以下几个部分。
     1.以纳米氧化硅为模板,通过表面引发原子转移自由基聚合在其表面接枝聚丙烯酸甲酯,通过酯交换反应将其链末端的酯基转变为胺基后与六甲撑二异氰酸酯发生交联反应,刻蚀模板后制得了粒径为20~50 nm的交联聚合物纳米囊。为了进一步优化上述制备聚合物纳米囊的过程,直接以乙二胺为交联剂,通过酯交换反应实现聚合物壳层的交联,刻蚀氧化硅之后得到了壳层含有交联聚N-烷基丙烯酰胺结构内径为10 nm的温度敏感的交联聚合物纳米囊。通过动态光散射研究发现其低临界溶液温度(LCST)大约为35℃,这比其他N-烷基取代的聚丙烯酰胺的LCST高。
     2.通过表面引发原子转移自由基聚合及其紫外光照交联接枝的聚苯乙烯壳层,刻蚀模板后制得了壳层结构可控的交联聚苯乙烯纳米囊。聚合物壳层的交联度可以通过紫外光照射的时间来进行控制,同时也考察了紫外光照交联过程中接枝聚合物的光降解情况。
     此外,通过表面引发原子转移自由基聚合技术,在纳米氧化硅表面接枝了丙烯酸叔丁酯和苯乙烯的共聚物后,紫外光照交联外围的聚苯乙烯壳层,刻蚀模板后将交联聚合物纳米囊内壁的酯基转变为羧基,得到内径为30-40nm羧基功能化的交联聚苯乙烯纳米囊。同时,我们以亚甲基蓝为模型分子研究了交联聚合物纳米囊的控制释放行为,发现由于羧基与亚甲基蓝染料之间的静电作用使得羧基化聚合物纳米囊的吸附量高于酯基水解前的交联聚合物纳米囊,而释放结果显示,由于羧基与染料之间静电作用被H+破坏使得交联聚合物纳米囊的释放速率在酸性条件下快于中性条件。
     3.利用模板聚合法制备了内壁接枝聚丙烯酸链、具有温度敏感交联聚合物壳层的新型pH/温度双重敏感的交联聚合物纳米囊。先是通过连续表面引发原子转移自由基聚合在氧化硅表面接枝聚丙烯酸叔丁酯及其温度敏感的交联聚合物壳层,刻蚀模板后得到内壁接枝聚丙烯酸叔丁酯的温度敏感交联聚合物纳米囊,再水解聚丙烯酸叔丁酯得到pH/温度双重敏感的交联聚合物纳米囊。其中空结构和多重环境响应行为分别通过透射电镜和动态光散射证实。通过改变聚合条件可以有效控制交联聚合物纳米囊的内径、内壁接枝功能聚合物刷的链长以及交联聚合物壳层的交联度。
     4.利用壳聚糖的胺基与柠檬酸改性的磁性纳米粒子羧基之间的静电作用,通过层层自组装技术在磺化聚苯乙烯表面交替沉积壳聚糖及其磁性纳米粒子,透析去除聚合物模板后制得了具有pH敏感杂化壳层、靶向控制释放的超顺磁性杂化聚电解质微囊。同时以亚甲基蓝为模型分子,研究了磁性杂化聚电解质壳层的对客体分子的负载及其靶向控制释放行为。发现碱性条件下磁性杂化聚电解质微囊对染料分子的吸附容量高于酸性介质的情况,与此相反,负载亚甲基蓝的磁性聚电解质微囊在酸性条件下的释放率经过48 h后达78%,但在碱性条件下基本没有释放。
     5.通过层层自组装及其Ce(IV)引发接枝聚合技术在磺化聚苯乙烯表面包覆聚合物之后,透析去除模板得到具有可控温敏壳层的pH/温度/离子强度多重响应聚电解质微囊,经透射电镜观察其内径约为200nm。根据动态光散射的结果得知,在pH敏感的聚电解质壳层中引入PNIPAm,不但可以实现通过pH和温度双重调控客体分子双嘧达莫的控制释放,还可以通过外围的PNIPAm链避免制得的多重环境敏感聚电解质微囊之间在较高盐浓度的水溶液发生团聚而絮凝的现象,从而或许可以实现在药物传递及其智能释放方面的实际临床应用。
     6.在磺化聚苯乙烯模板表面通过壳聚糖的胺基与氧化海藻酸钠醛基之间的共价层层自组装实现逐层吸附,刻蚀模板后制得可控崩解的刺激响应性多层聚电解质微囊。与非共价交联的聚电解质微囊相比,聚合物微囊壳层间席夫碱结构的引入,增加了微囊在溶液中的稳定性。经动态光散射研究发现,共价交联聚电解质微囊的粒径随着溶液pH或离子强度的增加而减小。这种pH和离子强度双重敏感的多层聚电解质微囊在酸性和中性条件下稳定,但是在强碱性介质中因壳层之间席夫碱结构的破坏而崩解。
     7.以含有药物分子双嘧达莫、油酸改性的Fe3O4磁性纳米粒子的油酸自乳化形成的水包油型磁性杂化微乳液滴为模板,通过层层自组装技术实现其杂化微乳液滴表面低聚壳聚糖及其海藻酸钠的交替逐层吸附,制备得到新型磁靶向、pH敏感的的药物释放体。在此过程中,由于药物分子直接被包埋进磁性的杂化微乳液滴,无需刻蚀去核进行目标客体分子的再填充过程,所得磁性药物释放体具有较高的药物包覆率及其负载率。这种低聚壳聚糖/海藻酸钠包覆的磁性微乳液滴在pH=1.8的条件下经过31 h,其药物的累计释放量接近100%,但是,在pH=7.4的条件下历经48 h才释放了约3.3%。
     此外我们以粒径300 nm左右的双嘧达莫颗粒作为模板,通过层层自组装技术实现其表面磁性纳米粒子和聚电解质的逐层沉积,制备了可用于靶向控制释放的磁性药物释放体。通过紫外-可见分光光度计研究其在不同pH条件下的药物控制释放行为,发现这种磁性多层杂化聚电解质包覆的药物释放体的控制释放行为主要由杂化聚电解质壳层的渗透性及其药物分子在本体溶液中的溶解性共同决定,结果显示其可以被靶向到病灶部位实现药物的快速、持续释放。
In recent years, the "smart" polymeric micro/nanocapsules have received increasing attentions due to their potential applications in drug delivery and biomedical fields. The stimuli-responsive polymeric micro/nanocapsules permit the adjustable permeability of the guest molecules with the controllable release based on a designed mechanism under a given environmental stimulus. The release rate of the guest molecules was usually controlled by the diffusion rate of the guest molecules across the wall of the micro/nanocapsules. Therefore, the fast response of the wall structure of the micro/nanocapsules to the external factors was indispensable. At present, the stimuli-responsive micro/nanocapsules have been reported in response to specific stimuli, such as pH, temperature, glucose, ionic strength and so on. In this paper, the functionalizated micro/nanocapsules have been prepared by polymerization from template technique and layer-by-layer assembly based on the various templates, respectively. Furthermore, the controlled release of the obtained micro/nanocapsules was also investigated. It mainly included several senctions as follows.
     1. The crosslinked polymeric nanocapsules with inner diameter of about 20-50 nm were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) technique based on the silica templates. Then SiO2 were removed by being etched with HF to produce the crosslinked polymeric nanocapsules after the ester groups of the grafted poly(methyl acrylate) (PMA) were transformed into amides by interesterification with diethylamine to complete crosslinking with hexamethylene diisocyanate (HDI). To optimize above the process of preparation crosslinked polymeric nanocapsules, we designed and prepared a crosslinked temperature-sensitive polymeric nanocapsules with inner diameter of about 10 nm based on the above grafted PMA silica nanoparticle with diethylamine as crosslinker after removing the silica templates. The obtained crosslinked nanocapsules had a higher lower critical solution temperature (LCST) about 35℃compared with other poly-(N-alkyl acrylamides).
     2. The crosslinked polystyrene nanocapsules with controllable shell were prepared by UV treatment the polystyrene grafted silica nanoparticles (SN-PS) to achieve polystyrene crosslinking after HF etching of the silica templates. The degree of crosslinking of polystyrene shell was well controlled by adjusting the time of UV irradiation. Furthermore, the degradation of grafted polymer was also investigated during the process of UV-induce crosslinking.
     And then the carboxyl groups functionalized crosslinked polystyrene nanocapsules with the inner diameter about 30~40 nm were prepared via combination of surface-initiated atom transfer radical polymerization and ultraviolet irradiated crosslinking techniques, while the ester groups of poly(tert-butyl acrylate) in the nanocapsules were transformed chemically into carboxyl ones after etching the silica templates by HF. Furthermore, we also investigated the controlled release of the carboxyl groups functionalized crosslinked polystyrene nanocapsules. The results of UV-vis spectra showed that the dye adsorbed amounts of the carboxyl group functional crosslinked polymeric nanocapsules (PAA-CPS nanocapsules) were superior to the PtBA-CPS nanocapsules due to the electrostatic interaction between the carboxyl group of PAA-CPS nanocapsules and the alkaline dye (MB). Furthermore, the release behavior of dye molecules of MB-load nanocapsules is quicker under acid medium compared to the neutral medium becaus of the electrostatic interaction between the carboxyl group of PAA-CPS nanocapsules and the dye was destroyed.
     3. The novel intelligent nanocapsules with the temperature-responsive crosslinked polymer shells and the pH- responsive polymer brushes on their inner walls have been designed and fabricated by using the "polymerization from template" strategy via the surface-initiated atom transfer radical polymerization (SI-ATRP) technique from the silica nanoparticles as sacrificial templates. The two steps sequential SI-ATRP procedures could provide the poly(tert-butyl acrylate) (PtBA) brushes on the inner walls of the temperature responsive crosslinked poly(N-isopropyacrylamide) (PNIPAm) shells. Then the tert-butyl ester groups in the nanocapsules were transformed chemically into acrylic acid groups after etching the silica templates with hydrofluoric acid (HF). The hollow structures and the multiple environmental stimuli responsive properties were validated with TEM and DLS techniques, respectively. In the strategy developed, the inner diameter, the crosslinking degree and the thickness of the shells, the length of the functional brushes could be controlled by adjusting the preparation conditions.
     4. The magnetic hybrid polyelectrolyte microcapsules with pH-sensitive shell and targeted controlled release have been prepared via the layer-by-layer self-assembly technique by electrostatic interaction between amino groups of chitosan (CS) and carboxyl groups of citrate onto the sacrificial templates (PSS) after etching above templates by dialysis. The behavior of loading and targeted controlled release of the magnetic hybrid polyelectrolyte microcapsules was researched by UV-vis spectrometer in methylene blue as a model molecule. It is found that the dye adsorbed capacity of the magnetic hybrid polyelectrolyte microcapsules was higher under basic medium compared with the acid medium. In contrast, the releasing raio of methylene blue from the MB-loaded magnetic hybrid hollow spheres was up to 76% after 48 h at pH= 4 without releasing under basic medium.
     5. The pH/temperature/ionic strength multi-sensitive polyelectrolyte microcapsules with controllable thermoresponsive layer were successfully prepared via combination of layer-by-layer assembly and Ce (Ⅳ) initiated grafting polymerization techniques after etching the templates by dialysis. The hollow structure of the obtained multi-sensitive polyelectrolyte microcapsules was characterized by transmission electron microscopy (TEM), which indicated the inner diameter of hollow microspheres is about 200 nm. The introduction of PNIPAm in pH-sensitive polyelectrolyte shell achieved the controlled release of drug molecules (a model hydrophobic drug, dipyridamole) could be dually controlled by the solution pH and temperature. Furthermore, the PNIPAm layer also could prevent from flocculation among the obtained multi-responsive polyelectrolyte microcapsules in the solution of higher salt concentration according to the results of DLS. This represents the first reported of pH/temperature/ionic strength multi-sensitive hollow microspheres prepared by layer-by-layer assembly, which might find practical application such as drug delivery and smart release in clinical application.
     6. The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (PSS), which was removed by dialysis subsequently. The introduction of Schiff base between the polyelectrolyte shells could increase the stability of microcapsules in the solution compared with noncovalent polyelectrolyte microcapsules. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media.
     7. Novel magnetic-targeted pH-responsive drug-delivery system have been designed and prepared via layer-by-layer self-assembly of polyelectrolytes (oligochitosan as polycation and sodium alginate as polyanion) via electrostatic interaction with the oil-in-water type hybrid emulsion droplets containing superparamagnetic ferroferric oxide nanoparticles and drug molecules (Dipyridamole (DIP)) as cores. And the drug molecules were directly encapsulated into the interior of droplets without etching the templates and refilling with the desired guest molecules. The drug-delivery system showed high encapsulation efficiency of drugs and drug-loading capacity. The cumulative release ratio of dipyridamole from the oligochitosan/sodium alginate multilayer encapsulated magnetic hybrid emulsion droplets (DIP/Fe3O4-OA/OA)@(OCS/SAL)4 was up to almost 100% after 31 h at pH= 1.8. However, the cumulative release ratio was only 3.3% at pH= 7.4 even after 48 h.
     Furthermore, the dipyridamole microparticles with a size about 300 nm have been encapsulated by magnetic nanoparticles and polyelectrolyte hybrid multilayers via layer-by-layer assembly technique for the purpose of targeted controlled release. UV-vis spectroscopy was employed to monitor the drug release processes in both pH 1.8 and pH 7.4 buffer solutions. It was found that the release of drug molecules from magnetic hybrid multilayers coated drug-delivery was mainly dependent on the following factors such as the permeability of the hybrid polyelectrolyte shell and the solubility of the drug molecules in the bulk solutions. The results revealed that it could achieve the quick and continuous controlled release by magnetically-guide to the target tissue of the organism.
引文
1. Ding J., Liu G. Water-soluble hollow nanospheres as pontential drug carriers. J. Phys. Chem. B, 1998,102(31):6107-6113.
    2. Stewart S., Liu G. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoyl -ethyl methacrylate)-block-poly(tert-butyl acrylate) Chem. Mater.,1999,11(4):1048-1054.
    3. Huang H., Remsen E. E., Kowalewski T., Wooley K. L. Nanocages from shell cross-linked micelle templates. J. Am. Chem. Soc,1999,121(15):3805-3806.
    4. Wang M., Jiang M., Ning F. L., Block-copolymer-free strategy for preparing micelles and hollow spheres:self-assembly of poly(4-vinylpyridine) and modified polystyrene. Macromolecules,2002,35(15):5980-5989.
    5. Zhang Y. W., Jiang M., Zhao J. X., Wang Z. X., Dou H. J., Chen D. Y. H-Responsive core-shell partcles and hollow spheres attained by macromolcular self-assembly. Langmuir,2004,21(4): 1531.
    6. Liu X. Y., Jiang M., Yang S., Chen M. Q., Chen D. Y., Ynag C., Wu K. Micelles and hollow nanospheres based on epsiloncaprolactone-containing polymers in aqueous media. Angew. Chem. Int. Ed.,2002,41(16):2950-2953.
    7. Dou H. J., Jiang M., Peng H. S., Chen D.Y., Hong Y. pH-Dependent self-assembly: Micellization and micelle-hollow sphere transition of cellulose-based copolymers. Angew. Chem. Int. Ed.,2003,42 (13):1516-1519.
    8. Zhang Y. W., Jiang M., Zhao J. X., Ren X. W., Chen D. Y., Zhang G. Z. A novel route to therm-sensitive polymeric core-shell aggregates and hollow spheres in aqueous media. Adv. Funct. Mater.,2004,15(4):695-699.
    9. Chen Y, Liu H. R., Zhang Z. C., Wang S. J. Preparation of Polymeric nanocapsules by radiation induced miniemulsion polymerization. Eur. Polym. J.,2007,43(7):2848-2855.
    10. Yang S., Liu H. R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization. J. Mater. Chem.,2006,16(46): 4480-4487.
    11. Yang S., Liu H. R., Zhang Z. C. A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. J. Polym. Sci. Part A:Polym. Chem.,2008,46(12),3900-3910.
    12. Kang K., Kan C. Y., Du Y., Liu D. S. The generation of void morphology inside soap-free P(MMA-EA-MAA) particles prepared by seeded emulsion polymerization. J. Colloid Interface Sci.,2006,297(2):505-512.
    13. Okubo M., Shiozaki M., Tsujihiro M, Tsukuda Y. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym. Sci.,1991,269(3):222-226.
    14. Okubo M., Yamashita T., Suzuki T., Shimizu T. Production of micron-sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method. Colloid Polym. Sci.,1997,75(3):288-292.
    15. Okubo M., Minami H. Control of hollow size of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym. Sci.,1996,274(5):433-438.
    16. Okubo M., Minami H., Morikawa K. Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles Colloid Polym. Sci.,2003,281(3): 214-219.
    17. Jang J., Ha H. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir,2002,18(14),5613.
    18. Xu X. L., Asher S. A. Synthesis and utilization of monodisperes hollow polymeric particles in photonic crystals. J. Am. Chem. Soc.,2004,126(25):7940-7945.
    19. Zhang K., Zheng L. L.,Zhang X. H., Chen X., Yang B. Silica-PMMA core-shell and hollow nanospheres. Colloid Surf. A:Physicochem. Eng. Aspects,2006,277(1-3):145-150.
    20. Shi Z. Q., Zhou Y. F., Yan D. Y. Preparation of poly(β-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness. Polymer,2006,47(24):8073-8079.
    21. Kida T., Mouri M., Akashi M. Fabrication of hollow capsules composed of poly( methyl methacrylate) stereocomplex films. Angew. Chem. Int. Ed.,2006,45(45):7534-7536.
    22. Watson K. J., Zhu J., Nguyen S. T., Mirkin C. A. Hybrid nanoparticles with block copolymer shell structures. J. Am. Chem. Soc.,1999,121(2):462-463.
    23. Mandal T. K., Fleming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater.,2000,12(11): 3481-3487.
    24. Fu G. D., Zhao J. P., Sun Y. M., Kang E. T., Neoh K. G. Conductive hollow nanosoheres polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules,2007,40(6):2271-2275.
    25. Dejugnat C., Sukhorukov G. B. pH-Responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir,2004,20(17):7265-7269.
    26. De Geest B. G., Jonas A. M., Demeester J., De Smedt S. C. Glucose-responsive polyelectrolyte capsules. Langmuir,2006,22(11):5070-5074.
    27. Mauser T., Dejugnat C., Mohwald H., Sukhorukov G. B. Microcapsules made of weak polyelectrolytes:templating and stimuli-responsive properties. Langmuir,2006,22(13): 5888-5893.
    28. Szarpak A., Pignot-Paintrand I., Nicolas C., Picart C., Auzely-Velty R. Multilayer assembly of hyaluronic acid/poly(allylamine):control of the buildup for the production of hollow capsules. Langmuir,2008,24(17):9767-9774.
    29. Xie Y. L., Wang M. J., Yao S. J.Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir,2009,25(16):8999-9005.
    30. Stadler B., Chandrawati R., Goldie K., Caruso F. Capsosomes:subcompartmentalizing polyelectrolyte capsules using liposomes. Langmuir,2009,25(12):6725-6732.
    31. Beye r S., Mak W. C., Trau D. Reverse-phase LbLs encapsulation of highly water soluble materials by layer-by-layer polyelectrolyte self-assembly. Langmuir,2007,23(17):8827-8832.
    32. Qiu X. P., Leporatti S., Donath E., Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir,2001,17(17): 5375-5380.
    33. Zahr A. S., de Villiers M., Pishko M. V. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 2005,21(1):403-410.
    34. Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(6):1111-1114.
    35. Jia Y., Fei J. B., Cui Y., Yang Y., Gao, Li J. B. pH-responsive polysaccharide microcapsules through covalent bonding assembly. Chem. Commun.,2011,47(4):1175-1177.
    36. Schild H. G. Poly(N-isopropylacrylamide):experiment, theory and application.Prog. Polym. Sci.,1992,17(2):163-249.
    37. Zha L., Zhang Y., Yang W., Fu S. Monodisperse temperature-sensitive microcontainers. Adv. Mater.,2002,14(15):1090-1092.
    38. Gline K., Sukhorukov G. B., Mohwald H., Khrenov V., Tauer K. Thermosensitive hollow capsules based on thermoresponsive polyelectrolytes. Macromol. Chem. Phys.,2003,204(14): 1784-1790.
    39. Sauer M., Streich D., Meier W. pH-sensitive nanocontainers. Adv. Mater.,2001,13(21): 1649-1651.
    40. Guo J., Yang W. L., Deng Y. H., Wang C. C., Fu S. K. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small,2005,1(7): 737-743.
    41. Mu, B.; Liu, P., Dong, Y.; Lu, C. Y.; Wu, X. L. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J. Polym. Sci., part A:Polym. Chem.,2010,48(14):3135-3144.
    42. Jiang X. Z., Ge Z. S., Xu J., Liu H., Liu S. Y. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules,2007,8(10):3184-3192.
    43. Wan S., Jiang M., Zhang G. Z. Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts. Macromolecules,007,40(15): 5552-5558.
    44. Chen L. B., Zhang F., Wang C. C. Rational synthesis of magnetic thermosenstitive microcontainers as targeting drug carriers. Small,2009,5(5):621-628.
    45. Gil P. R., del Mercato L. L., del Pino P., Javier A. M., Parak W. J. Nanoparticle-modified polyelectrolyte capsules. Nantoday,2008,3(3-4):12-21.
    46. Becker A. L., Johnston A. P. R., Caruso F. Layer-by-layer-assembled capsules and films for therapeutic delivery. Small,2010,6(17):1836-1852.
    47. Borodina T., Markvicheva E., Kunizhev S., Mohwald H., Sukhorukov G. B., Kreft O. Controlled release of DNA from self-degrading microcapsules. Macromol. Rapid Commun., 2007,28(18-19):1894-1899.
    48. Cheng D., Zhou X. D., Xia H.B., Chan H. S. Novel method of the preparation of polymeric hollow nanospheres containing silver cores with different sizes.Chem. Mater.,2005,17(14): 3578.
    49. Poe S. L., Kobaslija M., McQuade D. T. Microcapsule enabled multicatalyst system. J. Am. Chem. Soc.,2006,128 (49):15586-15587.
    50. Miao S. D., Zhang C. L., Liu Z. M., Han B. X., Xie Y., Ding S. F., Yang Z. Z. Highly efficient nanocatalysts supported on hollow polymer nanospheres:synthesis, characterization, and applications. J. Phys. Chem. C,2008,112 (3):774-780.
    1. Raemdonck K., Smedt J., Demeester S. D. Advanced nanogel engineering for drug delivery. Soft Matter,2009,5(4):707-715.
    2. Wang Y., Bansal V., Zelikin A. N., Caruso F. Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano. Lett.,2008,8(6):1741-1745.
    3. Sinha V. R., Trehan A. Biodegradable microspheres for protein delivery. J Control. Release, 2003,90(3):261-280.
    4. Cochran J. K. Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci.,1998,3(5):474-479.
    5. Sukhorukov G. B., Fery A., Mohwald H. Intelligent micro- and nanocapsules. Prog. Polym. Sci., 2005,30(8-9):885-897.
    6. Zelikin A. N., Li Q., Caruso F. Degradable polyelectrolyte capsules filled with oligonucleotide sequences. Angew Chem. Int. Ed.,2006,118(46):7907-7909.
    7. Wyss A., Boucher J., Montero A., Marison I. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microb. Technol.,2006,40(1): 25-31.
    8. Miao S. D., Zhang C. L., Liu Z. M., Han B. X., Xie Y., Ding S. F., Yang Z. Z. Highly efficient nanocatalysts supported on hollow polymer nanospheres:synthesis, characterization, and applications. J. Phys. Chem. C.,2008,112(3):774-780.
    9. Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114.
    10. McDonald C. J., Devon M. J. Hollow latex particles:synthesis and applications. Adv. Colloid Interface Sci.,2002,99(2):181-213.
    11. Sukhorukov G., Fery A., Mohwald H. Intelligent micro- and nanocapsules. Prog. Polym. Sci., 2005,30(8-9):885-897.
    12. Johnston A. P. R., Cortez C., Angelatos A. S., Caruso F. Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci.,2006,11(4):203-209.
    13. Lecommandoux S., Sandre O., Checot F., Perzynski R. Smart hybrid magnetic self-assembled micelles and hollow capsules. Prog. Solid State Chem.,2006,34(2-4):171-179.
    14. Marinakos S. M., Novak J. P., Brousseau L. C., House A. B., Edeki E. M., Feldhaus J. C., Feldheim D. L. Gold particles as templates for the synthesis of hollow polymer capsules: control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc.,1999,121(37): 8518-8522.
    15. Marinakos S M, Shultz D A, Feldheim D L. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules. Adv. Mater.,1999,11(1):34-37
    16. Gittins D. I., Caruso F.. Multilayered polymer nanocapsules derived from gold nanoparticle templates. Adv. Mater.,2000,12(24):1947-1949.
    17. Mandal T. K., Fleming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater.,2000,12(11): 3481-3487.
    18. Da Silva Gomes J. F. P., Sonnen A. F. P., Kronenberger A., Fritz J., Coelho M. A. N., Fournier D., Fournier-Noel C., Mauzac M., Winterhalter M. Stable polymethacrylate nanocapsules from ultraviolet light-induced template radical polymerization of unilamellar liposomes. Langmuir, 2006,22(18):7755-7759.
    19. Schneider G., Decher G. From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano. Lett.,2004,4(10):1833-1839.
    20. Schwiertz J., Meyer-Zaika W., Ruiz-Gonzalez L., Gonzalez-Calbet J. M., Vallet-Regi M., Epple M. Calcium phosphate nanoparticles as templates for nanocapsules prepared by the layer-by-layer technique, J. Mater. Chem.,2008,18(32):3831-3834.
    21. Ai H., Gao J. Size-controlled polyelectrolyte nanocapsules via layer-by-layer self-assembly. J. Mater. Sci.,2004,39(4):1429-1432.
    22. Jang J., Ha H. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir,2002,18(14):5613-5618.
    23. Hu Y., Jiang X. Q., Ding Y., Chen Q., Yang C. Z. Core-template-free strategy for preparing hollow nanosphere. Adv. Mater.,2004,16(11):933-937.
    24. Wang J., Jiang M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc.,2006,128(11):3703-3708.
    25. Sun Q. H., Deng Y. L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J. Am. Chem. Soc.,2005,127(23):8274-8275.
    26. Wu D., Scott C., Ho C. C., Co C. C. Aqueous-core capsules via interfacial free radical alternating copolymerization. Macromolecules,2006,39(17):5848-5853.
    27. Yang S., Liu H. R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization. J. Mater. Chem.,2006,16(46): 4480-4487.
    28. Sauer M., Streich D., Meier W. pH-sensitive nanocontainers. Adv. Mater.,2001,13(21): 1649-1651.
    29. Sarkar D., El-Khoury J., Lopina S. T., Hu J. An effective method for preparing polymer nanocapsules with hydrophobic acrylic shell and hydrophilic interior by inverse emulsion radical polymerization. Macromolecules,2005,38(20):8603-8605.
    30. Zoldesi C.I., Imhof A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater.,2005,17(7):924-928.
    31. Koo H. Y., Chang S. T., Choi W. S., Park J. H., Kim D. Y., Velev O. D. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle -embedded polymer microcapsules. Chem. Mater.,2006,18(14):3308-3313.
    32. Liu K. H., Chen S. Y., Liu D. M., Liu T. Y. Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier. Macromolecules,2008,41(17): 6511-6516.
    33. Yu M., Ng B. C., Rome L. H., Tolbert S. H., Monbouquette H G. Reversible pH lability of cross-linked vault nanocapsules. Nano. Lett.,2008,8(10):3510-3515.
    34. Mu B., Shen R. P., Liu P. Preparation of crosslinked polymeric nanocapsules by surface-initiated self-condensing vinyl polymerization on silica templates. J. Nanosci. Nanotechnol.,2009,9(1),484-489.
    35. Liu H., Jiang X. Z., Fan J., Wang G. G., Liu S. Y. Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme. Macromolecules,2007,40(25):9074-9083.
    36. Jiang X. Z., Ge Z. S. Xu J., Liu H., Liu S. Y. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules,2007,8(10):3184-3192.
    37. Fu G. D., Shang Z. H., Hong L., Kang E. T., Neoh K. G. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations. Macromolecules,2005,38(18):7867-7871.
    38. Mu B., Shen R. P., Liu P. Facile preparation of crosslinked polymeric nanocapsules via combination of surface-initiated atom transfer radical polymerization and ultraviolet irradiated crosslinking techniques. Nanoscal Res. Lett.,2009,4(7):773-777.
    39. Peng H. S., Lu Y. F. Supramolecular assemblies with tunable morphologies from homopolymeric and small organic molecular building blocks. Langmuir,2006,22(13): 5525-5527.
    40. Mu B., Wang T. M., Liu P. Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Ind. Eng. Chem. Res., 2007,46(10):3069-3072.
    41. Liu F. T., Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic Acid)-block-polystyrene-block-poly(4-vinyl Pyridine). J. Am. Chem. Soc.,2003,125(49), 15059-15064.
    42. Zhang Y. W., Jiang M., Zhao J. X., Wang Z. X., Dou H. J., Chen D. Y. pH-Responsive core-shell particles and hollow spheres attained by macromolecular self-assembly. Langmuir, 2005,21(4):1531-1538.
    43. Qian J., Wu F. P. Synthesis of thermosensitive hollow spheres via a one-pot process. Chem. Mater.,2007,19(24):5839-5841.
    44. Wei H., Wu D. Q., Li Q., Chang C., Zhou J. P., Zhang X. Z., Zhuo R. X. Preparation of shell cross-linked thermoresponsive micelles as well as hollow spheres based on P(NIPAAm-co-HMAAm-co-MPMA)-b-PCL. J. Phys. Chem. C,2008,112(39):15329-15334.
    45. Ibarz G., Dahne L., Donath E., Mohwald H. Smart micro- and nanocontainers for storage, transport, and release. Adv. Mater.,2001,13(17):1324-1327.
    46. Luo Q. F., Liu P. X., Guan Y., Zhang Y. J. Thermally induced phase transition of glucose-sensitive core-shell microgels. ACS Appl. Mat. interfaces,2010,2(3):760-767.
    47. Lapeyre V., Gosse I., Chevreux S., Ravaine V. Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules,2006,7(12):3356-3363.
    48. Liu G. Y., Wang H., Yang X. L. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer,2009,50(12):2578-2586.
    49. Zhang Y. W., Jiang M., Zhao J. X., Ren X. W., Cheng D. Y, Zhang G Z. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media. Adv. Funct. Mater.,2005,15(4):695-699.
    50. Preetz C., Rube A., Reiche I., Hause G., Mader K. Preparation and characterization of biocompatible oil-loaded polyelectrolyte nanocapsules. Nanomedicine:NBM,2008,4(2), 106-114.(2008).
    51. Fuki Y., Fujimoto K. J. The preparation of sugar polymer-coated nanocapsules by the layer-by-layer deposition on the liposome. Langmuir,2009,25(17):10020-10025.
    52. Lokitz B. S., York A. W., Stempka J. E., Treat N. D., Li Y. T., Jarrett W. L., McCormick C. L. Aqueous RAFT synthesis of micelle-forming amphiphilic block copolymers containing N-acryloylvaline. Dual mode, temperature/pH responsiveness, and "locking" of micelle structure through interpolyelectrolyte complexation. Macromolecules,2007,40(18), 6473-6480.
    53. Wan S., Jiang M., Zhang G. Z. Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts. Macromolecules,2007, 40(15):5552-5558.
    54. Chilkoti A., Dreher M. R., Meyer D. E., Raucher D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev.,2002,54(5):613-630.
    55. Meyer D. E., Kong G. A., Dewhirst M. W., Zalutsky M. R., Chilkoti A. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res.,2001, 61(4):1548-1554.
    56. Schild H. G. Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.,1992,17(2):163-249.
    57. Mu B., Shen R. P., Liu P. Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization. Colloid Surf. B, 2009,74(2):511-515.
    1. Mandal T. K., Fleming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater.,2000,12(11): 3481-3487.
    2. Mu B., Shen R. P., Liu P. Preparation of crosslinked polymeric nanocapsules by surface-initiated self-condensing vinyl polymerization on silica templates. J. Nanosci. Nanotechnol.,2009,9(1):484-489.
    3. Mu B., Shen R. P., Liu P. Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization. Colloid Surf. B,2009,74(2):511-515.
    4. Liu P., Liu G. F., Zhang W., Jiang F. Crosslinked polymeric nanocapsules with controllable structure via a 'self-templating' approach. Nanotechnology,2010,21(1):015603.
    5. Blomberg S., Ostberg S., Harth E., Bosman A. W., Horn B. V., Hawker C. J. Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. J. Polym. Sci., Part A:Polym. Chem.,2002,40(9):1309-1320.
    6. Shen R. P., Mu B., Du P. C., Liu P. Polymeric nanocapsule from silica nanoparticle@cross-linked polymer nanoparticles via one-pot approach. Nanoscale Res. Lett., 2009,4(11):1271-1274.
    7. Dong H., Zhu M., Yoon J. A., Gao J., Jin R., Matyjaszewski K. One-pot synthesis of robust core/shell gold nanoparticles. J. Am. Chem. Soc.,2008,130(39):12852-12853.
    8. Mu B., Liu P. Temperature and pH dual responsive crosslinked polymeric nanocapsules via surface-initiated atom transfer radical polymerization. React. Func. Polym., Doi:10.1016/j.reactfunctpolym.2010.12.006
    9. Mu B., Liu P., Tang Z. B., Du P. C., Dong Y. Temperature and pH dual responsive crosslinked polymeric nanocapsules with controllable structures via surface-initiated atom transfer radicalpolymerization from templates. Nanomedicine:NBM, In press.
    10. Gomes J., Sonnen A. F. P, Kronenberger A., Fritz J., Coelho M., Fournier D., Fournier-Noel C., Mauzac M., Winterhalter M. Stable polymethacrylate nanocapsules from ultraviolet light-induced template radical polymerization of unilamellar liposomes. Langmuir,2006, 22(18):7755-7759.
    11. Nardin C., Hirt T., Leukel J., Meier W. Polymerized ABA triblock copolymer vesicles. Langmuir,2000,16(3):1035-1041.
    12. Fu G. D., Shang Z. H., Hong L., Kang E. T., Neoh K. G. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerization. Macromolecules,2005,38(18):7867-7871.
    13. Mu B., Shen R. P., Liu P. Facile preparation of crosslinked polymeric nanocapsules via combination of surface-initiated atom transfer radical polymerization and ultraviolet irradiated crosslinking techniques. Nanoscale Res. Lett.,2009,4(7):773-777.
    14. Mu B., Wang T. M., Liu P. Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Ind. Eng. Chem. Res., 2007,46(10):3069-3072.
    15. Ranby B., Rabek J. F. Photodegradation, photo-oxidation and photostability of polymers, John Wiley & Sons Inc., New York,1975, pp.36.
    16. Lawrence J. B., Weir N. A. Photodecomposition of polystyrene on long-wave ultraviolet irradiation:A possible mechanism of initiation of photooxidation. J. Polym. Sci., Part A: Polym. Chem.,1973,11(1):105-118.
    17. Fu G. D., Zhao J. P., Sun Y. M., Kang E. T., Neoh K. G. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules,2007,40(6):2271-2275.
    18. Cheng D. M., Xia H. B., Chan H. S. O. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres. Langmuir,2004,20(23): 9909-9912.
    19. Lv H., Lin Q., Zhang K., Yu K., Yao T. J., Zhang X. H., Zhang J. H., Yang B. Facile fabrication of monodisperse polymer hollow spheres. Langmuir,2008,24(23):13736-13741.
    20. Zhang Y. W., Wang Z. X., Wang Y. S., Zhao J. X., Wu C. X. Facile preparation of pH-responsive gelatin-based coreeshell polymeric nanoparticles at high concentrations via template polymerization. Polymer,2007,48(19):5639-5645.
    21. Morinaga T., Ohkura M., Ohno K., Tsujii Y., Fukuda T. Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes:their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres. Macromolecules, 2007,40(4):1159-1164.
    22. Szarpak A., Pignot-Paintrand I., Nicolas C., Picart C., Auzely-Velty R., Multilayer assembly of hyaluronic acid/poly(allylamine):control of the buildup for the production of hollow capsules. Langmuir,2008,24(17):9767-9774.
    23. Xie Y. L., Wang M. J., Yao S. J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir,2009,25(16):8999-9005.
    24. Zhu Y, Tong W. J., Gao C. Y, Mohwald H. Assembly of polymeric micelles into hollow microcapsules with extraordinary stability against extreme pH conditions. Langmuir,2008, 24(15):7810-7816.
    25. Park M. K. Deng S. X., Advincula R. C. Sustained release control via photo-cross-linking of polyelectrolyte layer-by-layer hollow capsules. Langmuir,2005,21(12):5272-5277.
    26. Lecommandoux S, Sandre O, Checot F, Perzynski R. Smart hybrid magnetic self-assembled micelles and hollow capsules. Prog. Solid State Chem.,2006,34(2-4):171-179.
    27. Zhang Y. W., Jiang M., Zhao J. X., Zhou J., Chen D. Y. Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water. Macromolecules,2004,37(4):1537-1543.
    28. Stewart S., Liu G. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoyl -ethyl methacrylate)-block-poly(tert-butyl acrylate) Chem. Mater.,1999,11(4):1048-1054.
    29. Liu F. T., Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine). J. Am. Chem. Soc.,2003,125(49): 15059-15064.
    30. Sun Q. H., Deng Y. L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J. Am. Chem. Soc.,2005,127(23):8274-8275.
    31. Chen L. B., Zhang F., Wang C. C. Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small,2009,5(5):621-628.
    32. Wan S., Jiang M., Zhang G. Z. Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts. Macromolecules,2007, 40(15):5552-5558.
    33. Zhang J. Y, Jiang X. Z., Zhang Y. F., Li Y. T., Liu S. Y. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules,2007,40(25): 9125-9132.
    34. Zhang Y. W., Jiang M., Zhao J. X., Wang Z. X., Dou H. J., Chen D. Y. pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly. Langmuir, 2005,21(4),1531-1538.
    35. Cao Y., Shen X. C., Chen. Y., Guo J., Chen Q., Jiang X. Q. pH-induced self-assembly and capsules of sodium alginate. Biomacromolecules,2005,6 (4):2189-2196.
    36. Dejugnat C., Sukhorukov G. B. pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir,2004,20(17):7265-7269.
    37. Chu L. Y., Yamaguchi T., Nakao S. A molecular-recognition microcapsule for environmental stimuli-responsive controlled release. Adv. Mater.,2002,14(5):386-389.
    38. Mu B., Lu C. Y, Liu P. Disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules via covalent layer-by-layer assembly. Colloid Surf. B,2011,82(2): 385-390.
    39. Lapeyre V., Gosse I., Chevreux S., Ravaine V. Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules,2006,7(12):3356-3363.
    40. De Geest B. G., Jonas A. M., Demeester J., De Smedt S. C. Glucose-responsive polyelectrolyte capsules. Langmuir,2006,22(11):5070-5074.
    41. Becker A., Zelikin A. N., Johnston A. P. R., Caruso F. Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. Langmuir,2009, 25(24):14079-14085.
    42. Niu J., Shi F., Liu Z., Wang Z. Q., Zhang X. Reversible disulfide crosslinking in layer-by-layer films:preassembly enhanced loading and H/reductant dually controllable release. Langmuir, 2007,23(11):6377-6384.
    43. Jiang X. Z., Ge Z. S., Xu J., Liu H., Liu S. Y. Fabrication of multiresponsive shell crosslinked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules,2007,8(10):3184-3192.
    44. Cleary J., Bromberg L. E., Magner E. Diffusion and release of solutes in pluronic-g-poly(acrylic acid) hydrogels. Langmuir,2003,19(22):9162-9172.
    45. Yoo M. K., Sung Y. K., Lee Y. M., Cho C. S.. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer,2000,41(15):5713-5719
    46. Am Ende M. T., Peppas N. A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. Ⅱ. Diffusion and release studies. J. Controlled release,1997,48(1):47-56.
    47. Zhao M.F., Liu P., Adsorption behavior of methylene blue on halloysite nanotubes. Micropor. Mesopor. Mater.,2008,112(1-3):419-424.
    48. M. Alkan, O. Demirbas, M. Dogan, Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Micropor. Mesopor. Mater.,2007,101(3):388-396.
    49. Jin Y, Zhang L. N., Zhang M., Chen L., Cheung P. C. K., Oi V. E. C., et al. Antitumor activities of heteropolysaccharides of Poria cocos mycelia from different strains and culture media. Carbohydr. Res.,2003,338(14):1517-1521.
    50. Liu P., Wang T. M., Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerization from zinc oxide nanoparticles. Polym. Eng. Sci.,2007,47(19): 1296-1301.
    1. Mosqueira V.C.F., Legrand P., Barratt G Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. J. Nanosci. Nanotechnol.,2006, 6(9-10):3193-3202.
    2. Wang Y., Bansal V., Zelikin A.N., Carus F.o, Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano. Lett.,2008,8(6):1741-1745.
    3. Sinha V. R., Trehan A. Biodegradable microspheres for protein delivery. J. Controlled Release, 2003,90(3):261-280.
    4. Morris C. A., Anderson M. L., Stroud R. M., Merzbacher C. I., Rolison D. R., Silica Sol as a Nanoglue:Flexible Synthesis of Composite Aerogels. Science,1999,284(5414):622-624.
    5. Cochran J. K., Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci.,1998,3(5):474-479.
    6. Borodina T., Markvicheva E., Kunizhev S., Mohwald H., Sukhorukov G. B., Kreft O. Controlled Release of DNA from Self-Degrading Microcapsules. Macromol. Rapid Commun., 2007,28(18-19):1894-1899.
    7. Sukhorukov G. B., Fery A., Mohwald H. Intelligent micro- and nanocapsules. Prog. Polym. Sci., 2005,30(8-9):885-897.
    8. Zelikin A. N., Li Q., Caruso F. Degradable polyelectrolyte capsules filled with oligonucleotide sequences. Angew. Chem. Int. Ed.,2006,45(46):7743-7745.
    9. Gill I., Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers:An efficient and generic approach. J. Am. Chem. Soc.,1998,120(34):8587-8598.
    10. Blaiszik B. J., Sottos N. R., White S. R. Nanocapsules for self-healing materials Compos. Sci. Technol.2008,68 (3-4) 978-986.
    11. Wyss A., Boucher J., Montero A., Marison I. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microb. Technol.,2006,40(1): 25-31.
    12. Poe S. L., Kobaslija M., McQuade D. T. Microcapsule enabled multicatalyst system. J. Am. Chem. Soc.,2006,128(49):15586-15587.
    13. Miao S. D., Zhang C. L., Liu Z. M., Han B. X., Xie Y., Ding S. F., Yang Z. Z. Highly efficient nanocatalysts supported on hollow polymer nanospheres:synthesis, characterization, and applications, J. Phys. Chem. C,2008,112(3):774-780.
    14. Mu B., Liu P., Dong Y., Lu C. Y., Wu X. L. Superparamagnetic multilayer hybrid hollow microspheres with pH-sensitive shell for targeted controlled release. J. Polym. Sci., part A: Polym. Chem.,2010,48(14),3135-3144.
    15. Schwiertz J., Meyer-Zaika W., Ruiz-Gonzalez L., Gonzalez-Calbet J. M., Vallet-Regi M., Epple M. Calcium phosphate nanoparticles as templates for nanocapsules prepared by the layer-by-layer technique. J. Mater. Chem.,2008,18(32):3831-3834.
    16. Sarkar D., El-Khoury J., Lopina S. T., Hu J. An Effective method for preparing polymer nanocapsules with hydrophobic acrylic shell and hydrophilic interior by inverse emulsion radical polymerization. Macromolecules,2005,38(20):8603-8605.
    17. Zoldesi C. I., Imhof A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater.,2005,17(7):924-928.
    18. Sun Q. H., Deng Y. L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J. Am. Chem. Soc.,2005,127(23):8274-8275.
    19. Yang S., Liu H. R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization. J. Mater. Chem.,2006,16(46): 4480-4487.
    20. Steward S., Liu G. J. Hollow Nanospheres from Polyisoprene-block-poly (2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem. Mater.,1999,11(4):1048-1054.
    21. Sanji T., Nakatsuka Y., Ohnishi S., Sakurai H. Preparation of nanometer-sized hollow particles by photochemical degradation of polysilane shell cross-linked micelles and reversible encapsulation of guest molecules. Macromolecules,2000,33(23):8524-8526.
    22. Zhang Q., Remesen E. E., Wooley K. L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J. Am. Chem. Soc.,2000,122(15): 3642-3651.
    23. Checot F., Lecommandoux S., Gnanou Y., Klok H. A. Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angew. Chem. Int. Ed.,2002,41(8): 1339-1343.
    24. Du J. Z., Chen Y. M. Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles. Macromolecules,2004,37(15):5710-5716.
    25. Liu P., Liu G. F., Zhang W., Jiang F. Crosslinked polymeric nanocapsules with controllable structure via a'self-templating' approach. Nanotechnology,2010,21(1):015603.
    26. Zhang Y. W., Jiang M., Zhao J. X., Ren X. W., Cheng D. Y, Zhang G. Z.. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media. Adv. Funct. Mater.,2005,15(4):695-699.
    27. Mandal T. K., Fleming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater.,2000,12(11): 3481-3487.
    28. Fu G. D., Shang Z. H., Hong L., Kang E. T., Neoh K. G. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations. Macromolecules,2005,38(18):7867-7871.
    29. Mu B., Shen R. P., Liu P., Facile preparation of crosslinked polymeric nanocapsules via combination of surface-initiated atom transfer radical polymerization and ultraviolet irradiated crosslinking techniques. Nanoscale Res. Lett.,2009,4(7):773-777.
    30. Mu B., Shen R. P., Liu P. Preparation of crosslinked polymeric nanocapsules by surface-initiated self-condensing vinyl polymerization on silica templates. J. Nanosci. Nanotechnol.,2009,9(1):484-489.
    31. Mauser T., Dejugnat C., Sukhorukov G. B. Reversible pH-dependent properties of multilayer microcapsules made of weak polyelectrolytes. Macromol. Rapid Commun.,2004,25(20): 1781-1785.
    32. Liu F. T., Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine). J. Am. Chem. Soc.,2003,125(49): 15059-15064.
    33. Zhang Y. W., Jiang M., Zhao J. X., Wang Z. X., Dou H. J., Chen D. Y pH-Responsive core-shell particles and hollow spheres attained by macromolecular self-assembly. Langmuir, 2005,21(4):1531-1538.
    34. Qian J., Wu F. P. Synthesis of thermosensitive hollow spheres via a one-pot process. Chem. Mater.,2007,19(24):5839-5841.
    35. Wei H., Wu D. Q., Li Q., Chang C., Zhou J. P., Zhang X. Z., Zhuo R. X. Preparation of shell cross-linked thermoresponsive micelles as well as hollow spheres based on P(NIPAAm-co-HMAAm-co-MPMA)-b-PCL. J. Phys. Chem. C,2008,112(39):15329-15334.
    36. Chu L. Y., Yamaguchi T., Nakao S. A molecular-recognition microcapsule for environmental stimuli-responsive controlled release. Adv. Mater.,2002,14(5):386-389.
    37. Ibarz G., Dahne L., Donath E., Mohwald H. Smart micro- and nanocontainers for storage, transport, and release. Adv. Mater.,2001,13(17):1324-1327.
    38. Jiang X. Z., Ge Z. S., Xu J., Liu H., Liu S. Y. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules,2007,8(10):3184-3192.
    39. Wan S., Jiang M., Zhang G. Z. Dual temperature- and pH-dependent self-assembly of cellulose-based compolymer with a pair of complentary grafts. Macromolecules,2007,40(15): 5552-5558.
    40. Luchini A., Geho D. H., Bishop B., Tran D., Xia C., Dufour R. L., Jones C. D., Espina V., Patanarut A., Zhou W., Ross M. M., Tessitore A., Petricoin Ⅲ E. F., Liotta L. A. Smart hydrogel particles:one-step affinity purification, size Exclusion, and protection against degradation. Nano Lett.,2008,8(1):350-361.
    41. Wu Y., Guo J., Yang W. L., Wang C. C., Fu S. K. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres. Polymer,2006,47(15): 5287-5294.
    42. Jin Y., Zhang L. N., Zhang M., Chen L., Cheung P. C. K., Oi V. E. C., et al. Antitumor activities of heteropolysaccharides of Poria cocos mycelia from different strains and culture media. Carbohydr. Res.,2003,338(14):1517-1521.
    43. Dong H., Zhu M., Yoon J. A., Gao H., Jin R., Matyjaszewski K. One-pot synthesis of robust core/shell gold nanoparticles. J. Am. Chem. Soc.,2008,130(39):12852-12853.
    44. Francis R., Lepoittevin B., Taton D., Gnanou Y. Toward an easy access to asymmetric stars and miktoarm stars by atom transfer radical polymerization. Macromolecules,2002,35(24): 9001-9008.
    45. Mu B., Wang T. M., Liu P. Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations. Ind. Eng. Chem. Res., 2007,46(10):3069-3072.
    46. Bawa P., Pillay V., Choonara Y. E., du Toit L.C. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater.,2009,4(2):022001.
    47. Alexander C. Synthetic polymer systems in drug delivery. Expert Opin. Emerg. Drug.,2001, 6(2):345-363.
    48. Schild H. G. Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.,1992,17(2):163-249.
    49. Zhang J., Chu L. Y., Cheng C. J., Mi D. F., Zhou M. Y. Ju X. J. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties. Polymer,2008,49(10):2595-2603.
    50. Isojima T., Lattuada M., Vander Sande J. B., Hatton T. A. Reversible clustering of pH- and temperature-responsive magnetic nanoparticles. ACS Nano.2008,2(9):1799-1806.
    51. Karg M., Lu Y., Carbo-Argibay E., Pastoriza-Santos I., Perez-Juste J., Liz-Marzan L. M., Hellweg T. Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels:temperature- and pH-tunable plasmon resonance. Langmuir,2009,25(5):3163-3167.
    52. Mori H., Seng D. C., Zhang M. F., Muller A. H. E. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir,2002,18(9):3682-3693.
    53. Johnson S. R., Evans S. D., Brydson R. Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir,1998,14(23),6639-6647.
    54. Hickey S. G., Riley D. J. Photoelectrochemical studies of CdS nanoparticle-modified electrodes. J. Phys. Chem. B,1999,103(22),4599-4602.
    55. Zhang J. H., Bai L. T., Zhang K., Cui Z. C., Zhang G., Yang B. A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres. J. Mater. Chem.,2003,13(3),514-517.
    56. Yang W. T., Ranby B. Radical living graft polymerization on the surface of polymeric materials. Macromolecules,1996,29(9):3308-3310.
    57. Matsuno R., Yamamoto K., Otsuka H., Takahara A., Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization. Chem. Mater.,2003,15(1):3-5.
    58. Carlmark A., Malmstrom E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. J. Am. Chem. Soc.,2002,124(6):900-901.
    1. Wang Y., Bansal V, Zelikin A. N., Caruso F. Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano. Lett.,2008,8(6):1741-1745.
    2. Sinha V. R., Trehan A. Biodegradable microspheres for protein delivery. J. Control. Release, 2003,90(3):261-280.
    3. Xu J., Liu S. Polymeric nanocarriers possessing thermoresponsive coronas
    Soft Matter,2008,4(9):1745-1749.
    4. Raemdonck K., Demeester J., Smedt S. D. Advanced nanogel engineering for drug delivery, Soft Matter,2009,5(4):707-715.
    5. Sukhorukov G. B., Fery A., Mohwald H. Intelligent micro- and nanocapsules. Prog. Polym. Sci., 2005,30(8-9):885-897.
    6. Zelikin A. N., Li Q., Caruso F. Degradable polyelectrolyte capsules filled with oligonucleotide sequences. Angew. Chem., Int. Ed.,2006,45(46):7743-7745.
    7. Poe S. L., Kobaslija M., McQuade D. T. Microcapsule enabled multicatalyst system J. Am. Chem. Soc.,2006,128(49):15586-15587.
    8. Sukhorukov G. B., Rogach A. L., Garstka M., Springer S., Parak W. J., Munoz-Javier A., Kreft O., Skirtach A. G., Susha A. S., Ramaye Y., Palankar R., Winterhalter M. Multifunctionalized polymer microcapsules:novel tools for biological and pharmacological applications. Small, 2007,3(60):944-955.
    9. Gupta A. K., Naregalkar R. R., Vaidya V. D., Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (London, England) 2007,2(1):23-29.
    10. Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials,2005,26(18):3995-4021.
    11. Shinkai M., Ito A. Functional magnetic particles for medical application. Adv. Biochem. Eng. Biotechnol.,2004,91:191-220.
    12. Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm.,2009,71(3):431-444.
    13. Du. P. C., Liu P., Mu B., Wang Y. J. Monodisperse superparamagnetic pH-sensitive single-layer chitosan hollow microspheres with controllable structure. J. Polym. Sci., part A: Polym. Chem.,2010,48(22):4981-4988.
    14. Caruso F., Spasova M., Susha A., Giersig M., Caruso R. A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater.,2001,13(1): 109-116.
    15. Shchukin D. G., Radtchenko I. L., Sukhorukov G. B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. J. Phys. Chem. B,2003,107(1):86-90.
    16. Nakamura M., Katagiri K., Koumoto K. Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process. J. Colloid Interface Sci.,2010,341(1):64-68.
    17. Shchukin D. G., Sukhorukov G. B. Synthesis of binary polyelectrolyte/inorganic composite capsules of micron size. Colloid Polym. Sci.,2003,281(12):1201-1204.
    18. Liu G. Y., Wang H., Yang X. L. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer,2009,50(12):2578-2586.
    19. Guo J., Yang W. L., Deng Y. H., Wang C. C., Fu S. K. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM Microcapsules. Small,2005,1(7): 737-743.
    20. Yang S., Liu H., Zhang Z. C. A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. J. Polym. Sci., Part A:Polym. Chem.,2008,46(12):3900-3910.
    21. Qiao R., Zhang X. L., Qiu R., Li Y, Kang Y. S. Fabrication of Superparamagnetic Cobalt Nanoparticles-Embedded Block Copolymer Microcapsules. J. Phys. Chem. C,2007,111(6): 2426-2429.
    22. Li X. H., Zhang D. H., Chen J. S. Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc.,2006,128(26):8382-8383.
    23. Koo H. Y, Chang S. T., Choi W. S., Park J. H., Kim D. Y, Velev O. D. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules. Chem. Mater.,2006,18(14):3308-3313.
    24. Jerri H. A., Dutter R. A., Velegol D. Fabrication of stable anisotropic microcapsules. Soft Matter,2009,5(4):827-834.
    25. Estrela-Lopis I., Leporatti S., Clemens D., Donath E. Polyelectrolyte multilayer hollow capsules studied by small-angle neutron scattering (SANS). Soft Matter,2009,5(1):214-219.
    26. Breguet V., Gugerli R., Pernetti M., Stockar U., Marison I. W. Formation of microcapsules from polyelectrolyte and covalent interactions. Langmuir,2005,21(21),9764-9772.
    27. Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114.
    28. Zhang S., Chen J., Li X., Preparation of uniform CdSe/polyelectrolyte multilayers on the surface of SiO2 spheres. Nanotechnology,2004,15(5),477-479.
    29. Frimpong R. A., Hilt J. Z. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization. Nanotechnology,2008,19(17): 175101-175107.
    30. Davies M. C., Lynn R. A. P., Hearn J., Paul A. J., Vickerman J. C, Watts J. F. Surface chemical characterization using XPS and ToF-SIMS of latex particles prepared by the emulsion copolymerization of methacrylic acid and styrene. Langmuir,1996,12(16):3866-3875.
    31. Zhang M., Cushing B. L., O'Connor C. J. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles, Nanotechnology 2008,19(8):085601.
    32. Zhou Y., Wang S. X., Ding B. J., Yang Z. M. Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem. Eng. J.,2008,138(1-3): 578-585.
    33. Shu X. Z., Zhu K. J., Song W. H. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm.,2001,212(1):19-28.
    34. Wuhan University. Analytical Chemistry. Higher Education Press:Beijing,2005.
    35. Orive G., Ponce S., Hernandez R. M., Gascon A. R., Igartua M., Pedraz J. L. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials,2002,23(18):3825-3831.
    36. Yalpani M., Hall L. D. Some chemical and analytical aspects of polysaccharide modifications. Ⅲ. Formation of branched-chain, soluble chitosan derivatives.Macromolecules,1984,17(3): 272-281.
    37. Park J. Y, Daksha P., Lee G. H., Woo S., Chang Y. M. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology,2008,19(36):365603.
    38. Hong J., Xu D. M., Yu J. H., Gong P. J., Ma H. J., Yao S. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging. Nanotechnology,2007,18(13):135608.
    39. Patil G. V. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res.,2003, 58(3):219-247.
    40. Billotey C., Wilhelm C., Devaud M., Bacri J. C., Bittoun J., Gazeau F. Cell internalization of anionic maghemite nanoparticles:quantitative effect on magnetic resonance imaging. Magn. Reson. Med.,2003,49(4):646-654.
    41. Qiu X., Leporatti S., Donath E., Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir,2001,17(17): 5375-5380.
    42. Kim B. S., Vinogradova O. I. pH-Controlled swelling of polyelectrolyte multilayer microcapsules. J. Phys. Chem. B,2004,108(24):8161-8165
    1. Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites. Science,1997, 277(5330):1232-1236.
    2. Hu S. H., Tsai C. H., Liao C. F., Liu D. M., Chen S. Y. Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir,2008,24(20):11811-11818.
    3. Angelatos A. S., Johnston A. P. P. R., Wang Y., Caruso F. Probing the permeability of polyelectrolyte multilayer capsules via a molecular beacon approach. Langmuir,2007,23(8): 4554-4562.
    4. Khapli S., Kim J. R., Monclare J. K., Levicky R., Porfiri M., Sofou S. Frozen cyclohexane-in-water emulsion as a sacrificial template for the synthesis of multilayered polyelectrolyte microcapsules. Langmuir,2009,25(17):9728-9733.
    5. Becker A. L., Zelikin A. N., Johnston A. P. R., Caruso F. Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. Langmuir,2009,25(24): 14079-14085.
    6. Berg M. C., Zhai L., Cohen R. E., Rubner M. F. Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 2006,7(1):357-364
    7. Tang Z Y., Wang Y., Podsiadlo P., Kotov N. A. Biomedical applications of layer-by-layer assembly:from biomimetics to tissue engineering. Adv. Mater.,2006,18(24):3203-3224.
    8. Shenoy D. B., Antipov A. A., Sukhorukov G. B., Mohwald H. Layer-by-layer engineering of biocompatible, decomposable core-shell structures, Biomacromolecules,2003,4(2):265-272.
    9. Mauser T., Dejugnat C., Mohwald H., Sukhorukov G. B. Microcapsules made of weak polyelectrolytes:templating and stimuli-responsive properties. Langmuir,2006,22(13): 5888-5893.
    10. Imoto T., Kida T., Matsusaki M., Akashi M. Preparation and unique pH-responsive properties of novel biodegradable nanocapsules composed of poly(y-glutamic acid) and chitosan as weak polyelectrolytes. Macromol. Biosci.,2010,10(3):271-277.
    11. Borodina T., Markvicheva E., Kunizhev S., Mohwald H., Sukhorukov G, B., Kreft O. Controlled release of DNA from self-degrading microcapsules. Macromol. Rapid Commun., 2007,28(18-19):1894-1899.
    12. Mu B. Liu, P., Dong Y., Lu C. Y., Wu X. L. Superparamagnetic multilayer hybrid hollow microspheres with pH-sensitive shell for targeted controlled release. J. Polym. Sci., part A: Polym. Chem.,2010,48(14):3135-3144.
    13. Radtchenko I. L., Sukhorukov G. B., Mohwald H. Incorporation of macromolecules into polyelectrolyte micro and nanocapsules via surface controlled precipitation on colloidal particles. Colloids Surf. A,2002,202(2-3):127-133.
    14. Paiphansiri U., Tangboriboonrat P., Landfester K. Antiseptic nanocapsule formation via controlling polymer deposition onto water-in-oil miniemulsion droplets. Macromol. Symp., 2007,251(1):54-62.
    15. An Z. H., Mohwald H., Li J. B. pH controlled permeability of lipid/protein biomimetic microcapsules. Biomacromolecules,2006,7(2):580-585.
    16. Tong W. J., Gao C. Y., Mohwald H. Stable weak polyelectrolyte microcapsules with pH-responsive permeability. Macromolecules,2006,39 (1):335-340.
    17. Kohler K., Mohwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules:2. insight into molecular mechanisms for the PDADMAC/PSS system. J. Phys. Chem. B,2006,110(47):24002-24010.
    18. Ichikawa H., Fukumori Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(Nisopropylacrylamide) gel dispersed in ethylcellulose matrix. J. Controlled release,2000,63(1-2),107-119.
    19. De Geest B. G., Jonas A. M., Demeester J., De Smedt S. C. Glucose-responsive polyelectrolyte capsules. Langmuir,2006,22(11),5070-5074.
    20. Mu B., Lu C. Y, Liu P. Disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules via covalent layer-by-layer assembly, Colloids Surf. B,2011,82(2), 385-390.
    21. Angelatos A. S., Radt B., Caruso F. Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J. Phys. Chem. B,2005,109(7):3071-3076.
    22. Lu C. Y., Mu B., Liu P. Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloids Surf. B,2011,83(2):254-259.
    23. Kim S. Y., Cho S. M., Lee Y. M., Kim S. J. Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J. Appl. Polym. Sci.,2000, 78(7):1381-1391.
    24. Shah S. B., Patel C. P., Trivedi H. C. Ceric-induced grafting of acrylate monomers onto sodium alginate. Carbohydr. Polym.,1995,26(1):61-67.
    25. Hossein H., Ceric-initiated free radical graft copolymerization of acrylonitrile onto kappa carrageenan. J. Appl. Polym. Sci.,2009,114(1):404-412.
    26. Duan J. C., Lu Q., Chen R. W., Duan Y. Q., Wang L. F., Gao L., Pan S. Y. Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its applicationin removal of Cu2+ ion. Carbohydr. Polym.,2010,80(2),436-441.
    27. Davies M. C., Lynn R. A. P., Hearn J., Paul A. J., Vickerman J. C., Watts J. F. Surface chemical characterization using XPS and TOF-SIMS of latex particles prepared by the emulsion copolymerization of methacrylic acid and styrene. Langmuir,1996,12(16), 3866-3875.
    28. Khopade A. J., Arulsudar N., Khopade S. A., Hartmann J. Ultrathin antibiotic walled microcapsules. Biomacromolecules,2005,6(1):229-234.
    29. Zhou J., Romerob G., Rojas E., Ma L., Moya S., Gao C. Y. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. J. Colloid Interface Sci.,2010,345(2):241-247
    30. Dennerberg R. J., Bothast R. J., P.Abbort T. A new biodegradable plastic made from starch graft poly(methyl acrylate) copolymer. J. Appl. Polym. Sci.,1978,22(2):459-465.
    31. Gao J. P., Tian R. U., Jiu Y., Duan M. L., Chuan R. Graft copolymers of methy methacrylate onto canna starch using manganic pyrophosphate as an initiator. J. Appl. Polym. Sci.,1994, 53(8):1091-1102.
    32. Ceresa R. J. Block and Graft Copolymerization. John Wiley:New York,1973, Chapter 1.
    33. Shu X. Z., Zhu K. J., Song W. H. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm.,2001,212(1),19-28.
    34. Orive G., Ponce S., Hernandez R. M., Gascon A. R., Igartua M., Pedraz J. L. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials,2002,23(18):3825-3831.
    35. Drury J. L., Monney D. J. Hydrogels for tissue engineering:scaffold design variables and applications. Biomaterials,2002,24(24):4337-4351.
    36. Lai H. L., Abu'Khalil A., Craig D. Q. M. Preparation and characterisation of drug-loaded alginate and chitosan sponges. Int. J. Pharm.,2003,251(1-2):175-181.
    37. Yalpani M., Hall L. D. Some chemical and analytical aspects of polysaccharide modifications. III. Formation of branched-chain, soluble chitosan derivatives. Macromolecules,1984,17(3): 272-281.
    38. Schild H. G. Preparation of novel acrylamide-based thermoresponsive polymer analogues and their application as thermoresponsive chromatographic matrices. Prog. Polym. Sci.,1992, 17(2),163-249.
    39. Chung J. E., Yokoyama M., Yamato M., Aoyagi T., Sakurai Y., Okano T. Thermo-responsive drug delivery from polymerc micelles constructed using block copolymers of poly(N-isopropylacrilamide) and poly(butyl methacrylate). J. Controlled Release,1999, 62(1-2):115-127.
    40. Jiang X. Z., Ge Z. S., Xu J., Liu H., Liu S. Y. Fabrication of Multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules,2007,8(10):3184-3192.
    41. Kim B. S., Vinogradova O. I. pH-Controlled swelling of polyelectrolyte multilayer microcapsules. J. Phys. Chem. B,2004,108(24):8161-8165.
    42. Qiu X. P., Leporatti S., Donath E., Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir,2001,17(17): 5375-5380.
    1. Donath E., Sukhorukov G. B., Caruso F., Davis S., Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed.,1998,37(16): 2201-2205.
    2. Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114.
    3. Peyratout C. S., Dahne L. Tailor-made polyelectrolyte microcapsules:from multilayers to smart containers. Angew. Chem., Int. Ed.,2004,43(29):3762-3783.
    4. Qi W., Yan X. H., Fei J. B., Wang A. H., Cui Y., Li J. B. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials,2009,30(14):2799-2806.
    5. Zhu H. G., McShane M. J. Loading of hydrophobic materials into polymer particles: mplications for fluorescent nanosensors and drug delivery. J. Am. Chem. Soc.,2005,127(39): 13448-13449.
    6. Stubbe B. G., Gevaert K. S., Derveaux K., Braeckmans B. G., De Geest M., Goethals J., Vandekerckhove J., De Smedt S. C. Evaluation of encoded layer-by-layer coated microparticles as protease sensors. Adv. Funct. Mater.,2008,18(11):1624-1631.
    7. Choi W. S., Park J. H., Koo H. Y, Kim J. Y, Cho B. K., Kim D. Y, "Grafting-from" polymerization inside a polyelectrolyte hollow-capsule microreactor. Angew. Chem. Int. Ed., 2005,44(7):1096-1101.
    8. Wang B., Zhao Q. H., Wang F., Gao C. Y. Biologically driven assembly of polyelectrolyte microcapsule patterns to fabricate microreactor arrays. Angew. Chem., Int. Ed.,2006,45(10): 1560-1563.
    9. Xie Y. L., Wang M. J., Yao S. J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir,2009,25(16):8999-9005.
    10. He Q., Cui Y, Li J. B., Molecular assembly and application of biomimetic microcapsules. Chem. Soc. Rev.,2009,38(8):2292-2303.
    11. Lu C. Y., Mu B., Liu P. Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloids Surf. B,2011,83(2):254-259.
    12. Shiratori S. S., Rubner M. F. pH-Dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules,2000,33(11):4213-4219.
    13. Dubas S. T., Schlenoff J. B. Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction. Macromolecules,2001,34(11):3736-3740.
    14. Clark S. L., Hammond P. T. The role of secondary interactions in selective electrostatic multilayer deposition. Langmuir,2000,16(26):10206-10214.
    15. Zhang Y. J., Guan Y., Zhou S. Q. Single component chitosan hydrogel microcapsule from a layer-by-layer approach. Biomacromolecules,2005,6(4):2365-2369.
    16. Tong W. J., Gao C. Y., Mohwald H. Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking. Chem. Mater.,2005,17(18):4610-4616.
    17. Schuetz P., Caruso F. Copper-assisted weak polyelectrolyte multilayer formation on microspheres and subsequent film crosslinking. Adv. Funct. Mater.,2003,13(12):929-937.
    18. Lee H., Jeong Y., Park T. G. Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelectrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores. Biomacromolecules,2007,8(12):3705-3711.
    19. Park M. K., Xia C., Advincula R. C., Schiitz P., Caruso F. Cross-linked, luminescent spherical colloidal and hollow-shell particles, Langmuir,2001,17(24):7670-7674.
    20. Zhang Y, Guan Y, Zhou S. Single component chitosan hydrogel microcapsule from a layer-by-layer approach. Biomacromecules,2005,6(4):2365-2369.
    21. Ye S., Wang C., Liu X., Tong Z. Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. J. Biomater. Sci.:Polym. Ed.,2005,16(7):909-923.
    22. Lee H., Jeong Y, Park T. G. Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelectrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores. Biomacromolecules,2007,8(12):3705-3711.
    23. Chan E. W., Lee D. C., Ng M. K., Wu G., Lee K. Y., Yu L. A novel layer-by-layer approach to immobilization of polymers and nanoclusters. J. Am. Chem. Soc.,2002,124(41): 12238-12243.
    24. Jia Y, Fei J. B., Cui Y, Yang Y, Gao L., Li J. B. pH-responsive polysaccharide microcapsules through covalent bonding assembly. Chem. Commun.,2011,47:1175-1177.
    25. Davies M. C., Lynn R. A. P., Hearn J., Paul A. J., Vickerman J. C:, Watts J. F., Surface chemical characterization using XPS and ToF-SIMS of latex particles prepared by the emulsion copolymerization of methacrylic acid and styrene. Langmuir,1996,12(16): 3866-3875.
    26. N. Q. Wu, C. Y. Pan, B. J. Zhang, Y. P. Rao, D. Yu, Preparation and properties of a thermo-sensitive hydrogel based on oxidized sodium alginate. Acta Polym. Sin.,2007,6: 497-502.
    27. Bouhadir K. H., Hausman D. S., Mooney D. J. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer,1999,40(12):3575-3584.
    28. Gao C. Y, Leporatti S., Moya S., Donath E., Mohwald H. Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. Chem. Eur. J.,2003,9(4):915-920.
    29. Artur Bartkowiak. Effect of the ionic strength on properties of binary alginate/oligochitosan microcapsules. Colloids Surf. A:Physichem. Eng. Aspects.2002,204(1-3),117-124.
    30. Forster S., Hermsdorf N., Bottcher C., Lindner P. Structure of polyelectrolyte block copolymer micelles. Macromolecules,2002,35(10),4096-4105.
    31. Orive G., Ponce S., Hernandez R. M., Gascon A. R., Igartua M., Pedraz J. L. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials,2002,23(18):3825-3831.
    32. Drury J. L., Mooney D. J. Hydrogels for tissue engineering:scaffold design variables and applications. Biomaterials,2003,24(24):4337-4351.
    33. Lai H. L., AbuKhalil A., Craig D. Q. The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int. J. Pharm.,2003,251(1-2):175-181.
    34. Hu Y., Jiang X., Ding Y., Ge H., Yuan Y, Yang C. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials,2002,23(15):3193-201.
    35. Mauser T., Dejugnat C., Sukhorukov G. B. pH-Dependent properties of multilayer microcapsules made of weak polyelectrolytes. Macromol. Rapid Commun.,2004,25(20): 1781-1785.
    36. Cordes E. H., Jencks W. P. The mechanism of hydrolysis of schiff bases derived from aliphatic amines. J. Am. Chem. Soc.,1963,85(18):2843-2848.
    1. Mainardes R. M., Silva L. P. D Drug delivery systems:past, present, and future. Curr. Drug. Targets.,2004,5(5):449-455.
    2. El Maghraby G.M.M., Williams A.C., Barry B.W. Drug interaction and location in liposomes: correlation with polar surface area. Int. J. Pharm.,2005,292(1-2):179-185.
    3.Nicolas A., Patrick S., CedricG, EmilienP., SandyV., Jean-Pierre B. Aqueous-Core Lipid Nanocapsules for Encapsulating Fragile Hydrophilic and/or Lipophilic Molecules. Langmuir, 2009,25(19):11413-11419.
    4. Imoto T., Kida T., Matsusaki M., Akashi M. Preparation and unique pH-responsive properties of novel biodegradable nanocapsules composed of poly(y-glutamic acid) and chitosan as weak polyelectrolytes. Macromol. Biosci.,2010,10(3):271-277.
    5. Borodina T., Markvicheva E., Kunizhev S., MOhwald H., Sukhorukov G, B., Kreft O. Controlled release of DNA from self-degrading microcapsules. Macromol. Rapid Commun., 2007,28(18-19):1894-1899.
    6. Mu B., Liu P., Dong Y., Lu C. Y., Wu X. L. Superparamagnetic multilayer hybrid hollow microspheres with pH-sensitive shell for targeted controlled release. J. Polym. Sci., part A: Polym. Chem.,2010,48(14):3135-3144.
    7. Boyer C., Whittaker M. R., Nouvel C., Davis T. P. Synthesis of hollow polymer nanocapsules exploiting gold nanoparticles as sacrificial templates. Macromolecules,2010,43 (4): 1792-1799
    8. Radtchenko I. L., Sukhorukov G. B., Mohwald H. Incorporation of macromolecules into polyelectrolyte micro and nanocapsules via surface controlled precipitation on colloidal particles. Colloids Surf. A,2002,202(2-3):127-133.
    9. Paiphansiri U., Tangboriboonrat P., Landfester K. Antiseptic nanocapsule formation via controlling polymer deposition onto water-in-oil miniemulsion droplets. Macromol. Symp., 2007,251(1):54-62.
    10. Grigoriev D. O., Bukreeva T., Moehwald H., Shchukin D. G. New method for fabrication of loaded micro- and nanocontainers:emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir,2008,24(3):999-1004.
    11. Sukhorukov G. B., Fery A., Brumen M., Mohwald H. Physical chemistry of encapsulation and release. Phys. Chem. Chem. Phys.2004,6(16),4078-4089.
    12. Gao C. Y., Moya S., Lichtenfeld H., Casoli A., Fiedler H., Donath E., Mohwald H. The decomposition process of melamine formaldehyde cores:the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol. Mater. Eng.,2001,286(6):355-361.
    13. Kreft O., Georgieva R., Baumler H., Steup M., Muller-Rober B., Sukhorukov G. B., Mohwald H. Red blood cell templated polyelectrolyte capsules:a novel vehicle for the stable encapsulation of DNA and proteins. Macromol. Rapid Commun.2006,27(6):435-440.
    14. Gomes J. F. P. S., Rank A., Kronenberger A., Fritz J., Winterhalter M., Ramaye Y. Polyelectrolyte-coated unilamellar nanometer-sized magnetic liposomes. Langmuir,2009, 25(12):6793-6799.
    15. Fujimoto K., Toyoda T., Fukui Y. Preparation of Bionanocapsules by the Layer-by-Layer Deposition of Polypeptides onto a Liposome. Macromolecules,2007,40 (14):5122-5128.
    16. Szczepanowicz K., Dronka-Gora D., Para G., Warszynski P. Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. J. Microencapsulation,2010,27(3):198-204.
    17. Georgieva R., Moya S., Donath E., Baumler H. P. Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir,2004, 20(5):1895-1900.
    18. An Z. H., Mohwald H., Li J. B. pH Controlled Permeability of Lipid/Protein Biomimetic Microcapsules. Biomacromolecules,2006,7(2):580-585.
    19. Tong W. J., Gao C. Y., Mohwald H. Stable Weak Polyelectrolyte Microcapsules with pH-Responsive Permeability. Macromolecules,2006,39(1):335-340.
    20. Kohler K., Mohwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules:2. Insight into Molecular Mechanisms for the PDADMAC/PSS System. J. Phys. Chem. B 2006,110(47),24002-24010.
    21. Ichikawa H., Fukumori Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J. Controlled release,2000,63(1-2):107-119.
    22. De Geest B. G., Jonas A. M., Demeester J., De Smedt S. C. Glucose-responsive polyelectrolyte capsules. Langmuir,2006,22(12),5070-5074.
    23. Menager C., Cabuil V. Reversible Shrinkage of Giant Magnetoliposomes under an Osmotic Stress. J. Phys. Chem. B,2002,106(32),7913-7918.
    24. Elmi M. M., Sarbolouki M. N. A simple method for preparation of immuno-magnetic liposomes. Internl. J. Pharm.,2001,215(1-2):45-50.
    25. Grigoriev D. O., Bukreeva T., Mohwald H., Shchukin D. G. New method for fabrication of loaded micro- and nanocontainers:emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir,2008,24(3):999-1004.
    26. Khapli S., Kim J. R., Monclare J. K., Levicky R., Porfiri M., Sofou S. Frozen cyclohexane-in-water emulsion as a sacrificial template for the synthesis of multilayered polyelectrolyte microcapsules. Langmuir,2009,25(17):9728-9733.
    27. Szczepanowicz K., Hoel H. J., Szyk-Warszynska L., Bielanska E., Bouzga A. M., Gaudernack G., Simon C., Warszynsk P. Formation of biocompatible nanocapsules with emulsion core and pegylated shell by polyelectrolyte multilayer adsorption. Langmuir,2010,26(15): 12592-12597.
    28. Wang T., He N. Y. Preparation, characterization and applications of low-molecular-weight alginate-oligochitosan nanocapsules. Nanoscale,2010,2:230-239.
    29. Lee D. H., Condrate R. A. FTIR spectral characterization of thin film coatings of oleic acid on glasses:Ⅰ. Coatings on glasses from ethyl alcohol. J. Mater. Sci.,1999,34(1):139-146.
    30. Park J. Y., Daksha P., Lee G. H., Woo S., Chang Y. M. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology,2008,19(36):365603.
    31. Hong J., Xu D. M., Yu J. H., Gong P. J., Ma H. J., Yao S. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging. Nanotechnology,2007,18(13):135608.
    32. Tan T. W., Hu B., Jin X. H., Zhang M, Release Behavior of Ketoprofen from Chitosan/Alginate Microcapsules. J.Bioact. Compat. Pol.2003,18(3),207-218.
    33. El-Sherbiny I. M. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs:Preparation and in-vitro assessment. Carbohydr. Polym.,2010,80(4):1125-1136.
    34. Patil G. V. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res.,2003, 58(3):219-247.
    35. Billotey C., Wilhelm C., Devaud M., Bacri J. C., Bittoun J., Gazeau F. Cell internalization of anionic maghemite nanoparticles:quantitative effect on magnetic resonance imaging. Magn. Reson. Med.,2003,49(4):646-654.
    36. Shargel L., Yu A. Applied biopharmaceutics and pharmacokinetics (4th ed.), New York: McGraw-Hill,1999,110-111.
    37. Orive, G.; Ponce, S.; Hernandez, R.M.; Gascon, A.R.; Igartua, M.; Pedraz, J. L. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002,23(18),3825-3831.
    38. Drury J. L., Mooney D. J. Hydrogels for tissue engineering:scaffold design variables and applications. Biomaterials,2003,24(24):4337-4351.
    39. Lai H. L., Abu'Khalil A., Craig D.Q.M. The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int. J. Pharm.,2003,251(1-2):175-181.
    40. Shu X. Z., Zhu K. J., Song W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm.,2001,212(1):19-28.
    41. Mi F. L., Shyu S. S., Lee S. T., Wong T. B. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J. Polym. Sci. Part B:Polym. Phys.,1999,37(14): 1551-1564.
    42. Kim B. S., Vinogradova O. I. pH-Controlled swelling of polyelectrolyte multilayer microcapsules. J. Phys. Chem. B,2004,108(24):8161-8165.
    43. Qiu X. P., Leporatti S., Donath E., Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir,2001,17(17): 5375-5380.
    44. Jain S., Mishra V., Singh P., Dubey P. K., Saraf D. K., Vyas S. P. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm.,2003,261(1-2): 43-55.
    45. Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114.
    46. Caruso F., Spasova M., Susha A., Giersig M., Caruso R. A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater.,2001,13(10): 109-116.
    47. Shchukin D. G., Radtchenko I. L., Sukhorukov G. B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. J. Phys. Chem. B,2003,107(1):86-90.
    48. Nakamura M., Katagiri K., Koumoto K. Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process. J. Colloid Interface Sci.,2010,341(1):64-68.
    49. Shchukin D. G., Sukhorukov G. B. Synthesis of binary polyelectrolyte/inorganic composite capsules of micron size. Colloid Polym. Sci.,2003,281(12):1201-1204.
    50. Mu B., Liu P., Dong Y., Lu C. Y., Wu X. L. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J. Polym. Sci., part A:Polym. Chem., 2010,48(14):3135-3144.
    51. Liu G. Y, Wang H., Yang X. L. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer,2009,50(12):2578-2586.
    52. Guo J., Yang W. L., Deng Y. H., Wang C. C, Fu S. K. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsutes. Small,2005,1(7): 737-743.
    53. Qiao R., Zhang X. L. Qiu R., Li Y, Kang Y S. Fabrication of superparamagnetic cobalt nanoparticles-embedded block copolymer microcapsules. J. Phys. Chem. C,2007,111(6): 2426-2429.
    54. Li X. H., Zhang D. H., Chen J. S. S. Synthesis of Amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc.,2006,128(26):8382-8383.
    55. Mu B., Liu P., Du P. C., Dong Y., Lu C. Y Magnetic-Targeted pH-Responsive Drug Delivery System via Layer-by-Layer Self-Assembly of Polyelectrolytes onto Drug-Containing Emulsion Droplets and Its Controlled Release. J. Polym. Sci., part A:Polym. Chem.,2011, 49(9):1969-1976.