无线协同中继通信系统的分集理论及资源调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过无线网络节点的互相协作,无线协同通信能够充分利用多入多出(MIMO, Multiple Input Multiple Output)的技术优势,有效解决传统蜂窝的容量瓶颈和小区覆盖问题。无线协同通信已成为学术研究重点之一,并且已经获得了产业的广泛关注,将成为未来无线通信不可或缺的技术。本论文主要对无线协同中继通信的分集理论进行深入探讨,旨在完善相应的理论研究,在此基础上,对无线协同中继通信中的资源分配和传输策略进行研究以进一步优化系统性能。论文首先对衰落信道下单天线无线协同中继的容量特性展开研究,紧接着分析了无线协同中继系统多天线分集性能,然后对无线协同中继网络多用户分集理论进行探讨;基于这些理论研究,论文随后研究了无线协同中继功率分配策略,最后对多业务协同中继功率和带宽调度进行了探讨。论文主要工作和创新在于:
     1.衰落信道下单天线无线协同中继容量的研究
     单天线多中继系统为无线协同中继通信的经典结构。论文首先针对通信的基本问题——系统容量开展了研究,通过理论推导研究了衰落信道下单天线无线协同中继的遍历容量和中断容量。在此基础上,进一步研究了系统容量与中继数目和转发方式的关系,研究表明无线协同中继系统的遍历和中断容量均随中继数目的增加而降低。针对两种不同的转发方式,在低信噪比下,放大转发具备更高的系统容量,在高信噪比下,解码转发则可获取更高的系统容量。
     2.无线协同中继多天线分集的研究
     多天线技术是未来无线通信的关键技术之一。针对MIMO协同中继网络的分集相关理论进行了研究,特别针对空时块码在MIMO协同中继中的性能进行了分析。通过推导卡方随机变量调和平均的统计特性和相关概率论知识,研究了系统在不同转发方式下以及是否存在直接链路时的系统关键性能指标(包括符号错误概率、中断概率、系统容量等),分析了系统转发方式、天线数目等因素对协同中继系统分集性能的影响。研究表明,采用多天线技术可有效提高无线协同中继网络的分集度,空时块码可获得分集度上限,协同分集和多天线分集可有效融合。
     3.无线协同中继多用户分集的研究
     针对无线网络多用户特征,建立了协同中继网络的多用户分集理论分析框架,给出了在无线协同中继网络中的多用户分集性能分析,通过理论推导得出了在各种协作方式和转发方式下的多用户系统中断概率和符号错误概率的高信噪比渐进表达式。研究表明,多用户分集可以和协同分集有效融合,共同提高多用户协同中继网络的分集度增益,提升系统总体性能。
     4.不同优化目标下的无线协同中继功率分配研究
     灵活高效的无线资源管理算法是提升和优化无线网络性能的关键所在,也是需重点关注和研究的问题。本章主要通过功率资源的优化分配来进一步提升无线协同中继网络的性能,对多天线协同空时块码的功率分配问题进行了研究。本章针对源节点获知信道信息程度的不同,分别提出了以容量最大化为目标和以中断概率最小化为目标的功率分配策略。研究表明,提出的功率分配策略在各种信道条件和天线配置下均能依据信道状况优化分配功率,其性能优于传统平均分配策略,且增益随天线数目的变化和信道条件的变化各异。
     5.多业务场景下的无线协同中继功率和带宽联合调度研究
     正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing)技术被广泛认为是未来无线通信的核心技术之一。针对无线网络中多业务共存的特点,对OFDM无线协同中继系统中的多业务协同传输涉及的无线资源管理与调度问题进行了研究。利用优化论得出了单用户场景下多业务协同传输的资源分配策略,在此基础上提出了一种线性复杂度的次优分配算法。进一步对多用户场景下的业务传输资源分配问题进行了研究,得出了最优功率和带宽分配方案,提出了两种新型的线性复杂度多用户多业务资源分配策略。研究表明,提出的资源调度策略均能有效保障业务的QoS (Quality of Service),多用户场景下的资源分配策略能有效利用存在于多用户协同中继网络中的多用户分集增益提升系统性能。
     以上研究成果,分别以学术论文的形式被IEEE的期刊和会议以及国内期刊所录用。
With the cooperation between wireless network nodes, wireless cooperative communication can fully utilize the advantages of MIMO (Multiple Input Multiple Output) techniques without requiring multiple antennas at each node. It can efficiently cope with the capacity bottleneck and coverage issues encountered by traditional cellular networks. The concept of wireless cooperative communication has become one of the major research topics, and also has gained widely interest in the telecommunication industry, which is believed to be one of key techniques in next generation wireless communication systems.
     This dissertation focuses on the diversity theory in the wireless cooperative relay communication system, arming at perfecting the related theoretical framework. Based on this, the dissertation further presents a comprehensive study on the resource allocation and transmission strategy design with the goal of optimizing the system performance. First, the capacity study on the sing-antenna cooperative relay system in fading channels is presented, followed by the diversity performance analysis in multi-antenna cooperative relay networks. Then, the multiuser diversity theory is discussed in cooperative relay systems. Based on these theoretical analysis, the dissertation further presents various power allocation strategies with different optimization objectives under different channel state information (CSI) assumptions; finally, joint power and bandwidth allocation strategies aiming at providing heterogeneous services in orthogonal frequency division multiplexing (OFDM) cooperative relay systems are investigated. The major work and contributions of this dissertation consist in:
     1. Capacity study of single antenna cooperative relay systems in fading channels
     Cooperative relay system with multiple single-antenna relay nodes is the classical model for wireless cooperative communications. The dissertation first investigates the capacity issue of this classical model, which is the basic issue for any communication system. We theoretically analyze the ergodic capacity and outage capacity performance, based on which we further study the impact on the system capacity regarding the number of relay and the cooperation protocol. It shows that the capacity of cooperative relay systems decreases with the increasing of relay. Regarding two classical protocols, amplify-and-forward performs better than decode-and-forward at low SNR regions, while decode-and-forward performs better in high SNR regions.
     2. Diversity performance of multi-antenna wireless cooperative relay systems
     MIMO is one of key techniques in the next generation wireless communication. We present the theoretical diversity performance study in MIMO cooperative relay networks, with specially focus on the space-time coding strategy in obtaining the spatial diversity gain. By deriving the statistics of the harmonic mean of Chi-square distributed random variables and using the related theory in Probability Theory, we present closed form expressions regarding key system performance metrics, including symbol error probability, outage probability and system capacity, by which we further study the impact of various system configurations on the system performance, including cooperation protocols, antenna configurations etc. It shows that by adopting multiple antennas, the system can achieve higher diversity order, while the space-time coding discussed in this dissertation can obtain the full diversity gain. The cooperative diversity and antenna diversity can be efficiently combined.
     3. Multiuser diversity in multiuser wireless cooperative relay networks
     Multiuser diversity is an inherent diversity in multiuser wireless systems. A theoretical framework to analyze the multiuser diversity in cooperative relay networks is presented, based on which the performance of multiuser diversity in cooperative multi-relay networks is presented. We first derive asymptotic expressions of outage probability and symbol error probability for various cooperation protocols with joint multiuser and cooperative diversity. Both the theoretical analysis and simulations demonstrate that the multiuser diversity can be readily combined with the cooperative diversity, while the multiuser diversity dependent scheduling can efficiently exploit such gain to improve the system performance.
     4. Power allocation in the cooperative relay system with different optimization objectives
     Efficient and adaptive radio resource management (RRM) is very important for wireless systems. This dissertation discusses the optimizing power allocation in wireless cooperative relay systems. We specifically study power allocation problems in MIMO cooperative relay networks adopting space-time coding. With different CSI assumptions at the transmitter, both optimal power allocation strategies aiming at maximizing the system capacity and at minimizing the system outage probability are proposed. The study shows that the proposed schemes can allocate power adaptively according to channel conditions. All schemes perform far better than the traditional methods, while the gain depends on antenna configurations and channel conditions.
     5. Joint power and bandwidth allocation in wireless cooperative relay networks with heterogeneous services
     OFDM has been recognized as one of the key techniques for the next generation wireless communications. We discuss RRM strategies in OFDM cooperative relay networks with heterogeneous services. The optimal power and subcarrier allocation scheme for point-to-point transmission of heterogeneous sservices is derived, based on which a sub-optimal algorithm with linear complexity is proposed for the practical implementation. Then, the idea is extended to multiuser scenario. Optimal solution is provided, and two fastest-power-descending based power and subcarrier allocation algorithms are proposed. Simulation result shows that the proposed schemes improve the spectral efficiency while guaranteeing the QoS of each service. And it also demonstrates that the proposed algorithms in multiuser scenario can efficiently exploit multiuser diversity gain to improve the system performance.
     The research outputs related to this dissertation have been accepted as papers in IEEE journals and conferences.
引文
[1]http://www.itu.int/
    [2]T. S. Rappaport, Wireless Communications: Principles and Practice, Second Edition, Prentice Hall,2002.
    [3]L. Xie and P. R. Kumar, "A network information theory for wireless communication: scaling laws and optimal operation," IEEE Trans. Inform. Theory, vol.50, no.5, pp.748-767, May 2004.
    [4]M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels. New York: Wiley,2000.
    [5]A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge: Cambridge Univerisity Press,2003.
    [6]T. Cover and A. E. Gamal, Capacity theorems for the relay channel, IEEE Trans. Inform. Theory, vol.25, no.5, pp.572-584, Sep.1979.
    [7]A. Sendonaris, E. Erkip, B. Aazhang, Increasing uplink capacity via user cooperation diversity, in Proc. of IEEE ISIT'98, Cambridge, MA, Aug.1998, pp.156.
    [8]A. Sendonaris, E. Erkip, B. Aazhang, User cooperation diversity-part I:system description, IEEE Trans. Commun., vol.51, no.11. Nov.2003, pp.1927-1938.
    [9]A. Sendonaris, E. Erkip, B. Aazhang, User cooperation diversity-part II: implementation aspects and performance analysis, IEEE Trans. Commun., Nov.2003, vol.51, no.11. Nov. 2003, pp.1939-1947.
    [10]J. N. Laneman, G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inform. Theory, vol.49, no.10, Oct.2003, pp.2415-2425.
    [11]J. N. Laneman, D. N. C. Tse, G. W. Wornell, "Cooperative diversity in wireless networks: efficient protocols and outage behavior," IEEE Trans. Inform. Theory, vol.50, no.12, Dec. 2004, pp.3062-3080.
    [12]M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, "Coded cooperation in wireless communications: space-time transmission and iterative decoding," IEEE Trans. Sig. Proc., vol.52, no.2, pp.362-371, Feb.2004.
    [13]T. E. Hunter, S. Sanayei, and A. Nosratinia, "Outage analysis of coded cooperation," IEEE Trans. Inform. Theory, vol.52, no.2, pp.375-391, Feb.2006.
    [14]R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, "Fading relay channels: performance limits and space-time signal design," IEEE J. Select. Areas Commun., vol.22, no.6, pp. 1099-1109, Aug.2004.
    [15]3GPP Proposal, R1-082024, "A discussion on some technology components for LTE-Advanced," TSG-RAN WG1 #53, Kansas City, MO, USA, May 2008.
    [16]http://www.isi-winner.org/
    [17]Fundamental Research on Multi-domain Collaboration for Broadband Wireless Communications, National Basic Research Program of China (973 Program of China), http://www.973.gov.cn/English/Index.aspx.
    [18]R. Pabst, et al "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Commun. Magazine, vol.42, no.9, pp.80-89, Sep.2004.
    [19]A. El Gamal and S. Zahedi, "Capacity of a class of relay channels with orthogonal components," IEEE Trans. Inform. Theory, vol.51, no.5, pp.1815-1817, May 2005.
    [20]G. Kramer, M. Gasper, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inform. Theory, vol.51, no.9, pp.3037-3063, Sep.2005.
    [21]S. Chen, W. Wang, and X. Zhang, "Ergodic and outage capacity analysis of cooperative diversity systems under Rayleigh fading channels," in Proc. of IEEE ICC 2009 Workshops, Dresden, Germany, Jun.2009, pp.1-5.
    [22]G Farhadi and N. C. Beaulieu, "Ergodic capacity analysis of wireless relaying systems in Rayleigh fading," in Proc. of ICC’08, Beijing, China, May 2008, pp.3730-3735.
    [23]P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Trans. Inform. Theory, vol.46, no.2, pp.388-404. Mar.2002.
    [24]M. O. Hasna and M. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh fading channels," IEEE Trans. Wireless Commun., vol.2, no.6, pp. 1126-1131, Nov.2003.
    [25]P. A. Anghel and M. Kaveh, "Exact symbol error probability of a cooperative network in a Rayleigh-fading Enviroment," IEEE Trans. Wireless Commun., vol.3, no.5, pp.1416-1421, Sep.2004.
    [26]Y. Zhao, R. Adve, and T. J. Lim, "Outage probability at arbitrary SNR with cooperative diversity," IEEE Commun. Letters, vol.9, no.8, pp.700-702, Aug.2005.
    [27]M. O. Hasna and M. Alouini, "Harmonic mean and end-to-end performance of transmission systems with relays," IEEE Trans. Commun., vol.52, no.1, pp.130-135, Jan.2004.
    [28]T. A. Tsiftsis, G. K. Karaginnidis, S. A. Kotsopoulos, and F.-N. Pavlidou, "BER analysis of collaborative dual-hop wirelesss transmissions," IEE Electronic Letters., vol.40, no.11, May 2004.
    [29]G. Kargiannidis, T. Tsiftsis, and R. Mallik, "Bounds of multihop relayed communications in Nakagami-m fading," IEEE Trans. Commun., vol.54, no.1, pp.18-22, Jan.2006.
    [30]A. Ikki and M. H. Ahmed, "Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel," IEEE Commun. Letters, vol.11, no.4, pp. 334-336, Apr.2007.
    [31]Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Comumu., vol.6, no.8, pp. 3114-3123, Aug.2007.
    [32]A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Select. Areas Commun., vol.24, no.3, pp. 659-672, Mar.2006.
    [33]A. Bletsas, H. Shin, and M. Z. Win, "Outage optimality of opportunistic amplify-and-forward relaying," IEEE Commun. Letters, vol.11, no.3, pp.261-263, Mar.2007.
    [34]V. Sreng, H. Yanikomeroglu, and D. D. Falconer, "Relay selection strategies in cellular networks with peer-to-peer relaying," in Proc. of IEEE VTC 2003, Jeju Island, Korea, Apr. 2003, pp.1949-1953.
    [35]Y. Jing and H. Jafarkhani, "Single and multiple relay selection schemes and their diversity orders," in Proc. of IEEE ICC'08 Workshops, Beijing, China, Sep.2008, pp.349-353.
    [36]Q. Zhang, J. Zhang, C. Shao, Y. Wang, P. Zhang, "Power allocation for regenerative relay channel with Rayleigh fading," in Proc. of IEEE VTC 2004, Milan, Italy, May 2004, pp. 1167-1171.
    [37]J. Zhang, Q. Zhang, C. Shao, Y. Wang, P. Zhang, "Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relaying system," in Proc. of IEEE VTC 2004, Milan, Italy, May 2004, pp.1213-1217.
    [38]M. O. Hasna and M.-S. Alouini, "Optimal power allocation for relayed transmissions over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol.3, no.6, pp.1999-2004, Nov.2004.
    [39]Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp.3114-3123, Aug.2007.
    [40]G. Yu, Z. Zhang, Y. Chen et al. "Power allocation for non-regenerative OFDM relaying channels," in Proc. of 2005 Int. Conf. on Wireless Comm., Networking and Mobile Comput.,2005, pp.185-188.
    [41]Y. Wang, X. C Qu, et al. "Power allocation and subcarrier pairing algorithm for regenerative OFDM relay system," in Proc. of IEEE VTC 2007, Dublin, Ireland, pp.2727-2731.
    [42]Y. Li, J. Kong, W. Hong, X. Zhang, M. Peng, and W. Wang, "Optimal power allocation and subcarrier paring in OFDM-based relaying networks," in Proc. of ICC 2008, Beijing, China, May 2008, pp.2602-2608.
    [43]B. Can, H. Yomo, and E. D. Carvalho, "Hybrid forwarding scheme for cooperative relaying in OFDM based networks," Proc. IEEE ICC'06, Istanbul, Turkey, June 2006, vol.10, pp. 4520-4525.
    [44]H. Ochiai, P. Mitran, and V. Tarokh, "Design and analysis of collaborative diversity protocols for wireless sensor networks," in Proc. IEEE VTC 2004, Los Angeles, USA, Sep. 2004, vol.7, pp.4645-4649.
    [45]E. G. Larsson and Y. Cao, "Collaborative transmit diversity with adaptive radio resource and power allocation," IEEE Commun. Letters, vol.9, no.6, pp.511-513, June 2005.
    [46]G. Li and H. Liu,“Resource allocation for OFDMA relay networks with fairness constraints,” IEEE J. on Select Areas on Commun., vol.24, no.11, pp.2061-2069,2006.
    [47]H. Bolcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, "Capacity scaling laws in MIMO relay networks," IEEE Trans. Wireless Commun., vol.5, no.6, pp.1433-1444, June 2006.
    [48]B. Wang, J. Zhang, and A. H.-Masen, "On the capacity of MIMO relay channels," IEEE Trans. Inform. Theory, vol.51, no.1, pp.29-43, Jan.2005.
    [49]M. Yuksel and E. Erkip, "Multiple-antenna cooperative wireless systems: a diversity-multiplexing tradeoff perspective," IEEE Trans. Inform. Theory, vol.53, no.10, pp. 3371-3393, Oct.2007.
    [50]Shuping Chen, Wenbo Wang, and Xing Zhang, "Asymptotic Analysis of Multiuser Diversity and Selection Diversity in Multiple-Relay Networks," in Proc. of IEEE ICC 2009, Dresden, Germany, Jun.2009.
    [51]Shuping Chen, Wenbo Wang, Xing Zhang, and Zuo Sun, "Performance analysis of OSTBC transmission in amplify-and-forward cooperative relay networks," IEEE Trans. Vehicular Tech., vol.59, no.1, pp.105-113, Jan.2010.
    [52]陈书平,王文博,张兴,付雷,“放大转发OFDM协同中继系统多业务资源分配机制”,通信学报,第31卷,第4期,第116-121页.
    [1]. J. N. Laneman, D. N. C. Tse, and G. W.Wornell, "Cooperative diversity in wireless networks: effcient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50, no.12, pp.3062-3080, Dec.2004.
    [2]. R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, "Fading relay channels:performance limits and space-time signal design," IEEE J. Sel. Areas Commun., vol.22, no.6, pp.1099-1109, Aug.2004.
    [3]. E. C. van der Meulen, "Three-terminal communication channels," Adv. Appl. Probab., vol.3, pp.12-154,1971.
    [4]. T. M. Cover and A. A. El Gamal, "Capacity theorems for the relay channels," IEEE Trans. Info. Theroy,vol.IT-23,no.l,pp.1-37, Jan.1977.
    [5]. A. El Gamal and S. Zahedi, "Capacity of a class of relay channels with orthogonal components," IEEE Trans. Info. Theroy, vol.51, no.5, pp.1815-1817, May 2005.
    [6]. G. Kramer, M. Gasper, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Infor. Theory, vol.51, no.9, pp.3037-3063, Sep.2005.
    [7]. G. Li and H. Liu "On the capacity of broadband relay netowrks," in Proc. of the Asilomar Conf. Sig., Sys. and Compu., Nov.2004, pp.1318-1322.
    [8]. B. Wang, J. Zhang, and A. Host-Madsen, "On the capacity of MIMO relay channels," IEEE Trans. Inf. Theory, vol.51, no.1, pp.29-43, Jan.2005.
    [9]. P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Trans. Infor. Theory, vol.46, no.2, pp.388-404, Mar.2000.
    [10]. M. Gasper and M. Vetterli, "On the asymptotic capacity of Gaussian relay channels," in Proc. of IEEE ISIT'02, Lausanne, Switzerland, Jun.2002, pp.195.
    [11]. A. El Gamal, N. Hassanpour, and J. Mammen, "Relay networks with delays," IEEE Trans. Infor. Theory, vol.53, no.10, pp.3413-3431, Oct.2007.
    [12]. G. Farhadi and N. C. Beaulieu, "Ergodic capacity analysis of wireless relaying systems in Rayleigh fading," in Proc. of IEEE ICC’08, Beijing, China, May 2008, pp.3730-3735.
    [13]. S. Shrestha and K.-H Chang, "Analysis of outage capacity performance for cooperative DF and AF relaying in dissimilar rayleigh fading channels," in Proc. of IEEE ISIT'08, Toronto, Canada, Jul.2008, pp.494-498.
    [14]. M. O. Hasna and M.-S. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh fading channels," IEEE Trans. On Wireless Commun., vol.2, no.6, pp. 1126-1131, Nov.2003.
    [15]. P. Anghel and M. Kaveh, "Exact symbol error probability of a cooperative network in a Rayleigh-fanding enviroment," IEEE Trans. On Wireless Commun., vol.3, no.5, pp.1416-1421, Sep.2004.
    [16]. J. Perez, J. Ibanez, L. Vielva, and I. Santamaria, "Closed-form approximation for the outage capacity of orthogonal STBC," IEEE Commun. Letters, vol.9, no.l, pp.961-963, Nov.2005.
    [17]. A. Paulraj, R. Nabar and D. Gore, Introduction to Space-Time Communications. UK: Cambridge University Press,2003.
    [18]. Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp. 3114-3123, Aug.2007.
    [19]. J. N. Laneman and G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inform. Theory, vol.49, no.10, pp. 2414-2425, Oct.2003.
    [20]. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,5th ed. San Diego, CA: Academic,1994.
    [21]. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,9th ed. New York: Dover,1970.
    [22]. Shuping Chen, Wenbo Wang, and Xing Zhang, "Ergodic and outage capacity analysis of cooperative diversity system under Rayleigh fading channels," in Proc. of IEEE ICC 2009 workshops, Dresden, German, Jun.2009.
    [1]. J. N. Laneman, D. N. C. Tse, and G. W.Wornell, "Cooperative diversity in wireless networks: effcient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50, no.12, pp.3062-3080, Dec.2004.
    [2]. J. N. Laneman and G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inf. Theory, vol.49, no.10, pp. 2414-2425, Oct.2003.
    [3]. E. C. van der Meulen, "Three-terminal communication channels," Adv. Appl. Probab., vol.3, pp.12-154,1971.
    [4]. T. M. Cover and A. El Gamal, "Capacity theorems for the relay channel," IEEE Trans. Inf. Theory, vol. IT-25, pp.572-583, Sep.1979.
    [5]. Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp.3114-3123, Aug.2007.
    [6]. G. Farhadi, and N. C. Beaulieu, "Ergodic capacity analysis of wireless relaying systems in Rayleigh fading," in Proc. of ICC’08, Beijing, May 2008, pp.3730-3735.
    [7]. Shuping Chen, Wenbo Wang, Xing Zhang and Dong Zhao, "Ergodic and outage capacity analysis of cooperative diversity systems under rayleigh fading channels," in Proc. of IEEE ICC 2009 workshops, Dresden, Germany, Jun.2009.
    [8]. Fundamental Research on Multi-domain Collaboration for Broadband Wireless Communications, National Basic Research Program of China (973 Program in China), http://www.973.gov.cn/English/Index.aspx.
    [9]. L. Xie and P. R. Kumar, "A network information theory for wireless communication:scaling laws and optimal operation," IEEE Trans. Inf. Theory, vol.50, no.5, pp.748-767, May 2004.
    [10]. M. Gastpar and M. Vetterli, "On the capacity of large gaussian relay networks," IEEE Trans. Inf. Theory, vol.51, no.3, pp.765-779, Mar.2005.
    [11].V. I. Morgenshtern and H. Bocskei, "Crystallization in large wireless networks," IEEE Trans. Inf. Theory, vol.53, no.10, pp.3319-3349, Oct.2007.
    [12].S. Yeh and O. Leveque, "Asymptotic capacity of multi-level amplify-and-forward relay networks," in Proc. of IEEE Int. Symp. Inf. Theory, Nice, France, June 2007, pp.1436-1440.
    [13]. P. A. Anghel, G. Leus, and M. Kaveh, "Distributed space-time coding in cooperative networks," in Proc. of Intl. Conf. on Acoustics, Speech and Signal Proc., Hongkong, China, Apr.2003, vol.4, pp.73-76.
    [14].Y. Hua, Y. Mei, and Y. Chang "Parallel wireless mobile relays with space-time modulations," in Proc. of IEEE Workshop on Statistical Signal Proc., St. Louis, MO, Sep.-Oct.2003, pp.375-378.
    [15].H. E. Gamal and Aktas, "Distributed space-time filtering for cooperative wireless networks," in Proc. of IEEE GLOBECOM 2003, San Francisco, USA, Dec.2003, pp.1826-1830.
    [16].R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, "Fading relay channels:performane limits and space-time signal design," IEEE J. Select. Areas Commun., vol.22, no.6, pp.1099-1109, Aug.2004.
    [17].Y. Jing and H. Jafarkhani, "Using orthogonal and quasi-orthogonal designs in wireless relay networks," IEEE Trans. on Inf. Theory, pp.4106-4118, Nov.2007.
    [18]. Y. Jing and H. Jafarkhani, "Distributed space-time coding in wireless relay networks," IEEE Trans. Wireless Commun., vol.5, no.12, pp.3524-3536, Dec.2006.
    [19]. S. Yiu, R. Schober, and L. Lampe, "Distributed space-time block coding," in Proc. of IEEE GLOBECOM2005, vol.3, St. Louis, USA, Nov.2005, pp.1592-1597.
    [20].T. Unger and A. Klein, "On the performance of distributed space-time block codes in cooperative relay networks," IEEE Commun. Letters, vol.11, no.5, pp.411-413, May 2007.
    [21].B. Maham and S. Nader-Esfahani, "Performance analysis of distributed space-time codes in amplify-and-forward mode," in Proc. of IEEE Workshop on Sig. Process. Advances for Wireless Commun., Helsinki, Swden, Jun.2007, pp.17-20.
    [22]. B. Maham and A. Hjorungnes, "Amplify-and-forward space-time coded cooperation via incremental relaying," in Proc. of IEEE Inter. Symp. On Wireless Commun. Sys., Norway, Oct.2007, pp.407-411.
    [23].A. Bletsas, H. Shin, and M. Z. Win, "Cooperative communications with outage-optimal opportunistic relaying," IEEE Trans. Wireless Commun., vol.6, no.9, pp.1-11, Sep.2007.
    [24]. B. Wang, J. Zhang, and A. Host-Madsen, "On the capacity of MIMO relay channels," IEEE Trans. Inf. Theory, vol.51, no.1, pp.29-43,2005.
    [25].M. Yuksel and E. Erkip, "Multiple-antenna cooperative wireless systems:a diversity-multiplexing trade-off perspective," IEEE Trans. Inf. Theory, vol.53, no.10, pp.3371-3393, Oct.2007.
    [26].B. K. Chalise and L. Vandendorpe, "Outage probability analysis of MIMO relay channel with orthogonal space-time block codes," IEEE Commun. Letters, vol.12, no.4, pp.280-283, Apr.2008.
    [27]. J. Vazifehdan and J. H. Weber, "Symbol error rate of space-time coded multi-antenna wireless cooperative networks," in Proc. of IEEE VTC 2008, Singapore, May 2008, pp. 1453-1457.
    [28]. Y. Han, S. H. Ting, and C. K. Ho, "Moments of harmonic mean and rate analysis for two-way amplify-and-forward relaying," in Proc. of IEEE ICC 2008, Beijing, China, May 2008, pp.365-369.
    [29].R. Louie, Y. Li, and B. Vucetic, "Performance analysis of beamforming in two hop amplify and forward relay networks," in Proc. of IEEE ICC 2008, Beijing, China, May 2008, pp. 4311-4315.
    [30].In-Ho Lee and D. Kim, "End-to-end BER analysis for dual-hop OSTBC transmissions over Rayleigh fading channels," IEEE Trans. Commun., vol.56, no.3, pp.347-351, Mar.2008.
    [31].In-Ho Lee and D. Kim, "Coverage extension and power allocation in dual-hop space-time transmission with multiple antennas in each node "IEEE Trans. Vehicular Tech., vol.56, no. 6, pp.3524-3532, Nov.2007.
    [32]. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from otherogonal designs," IEEE Trans. Inf. Theory, vol.45, no.5, pp.1456-1467, Jul.1999.
    [33].X. Li, T. Luo, G. Yue, and C. Yin, "A squaring method to simplify the decoding of orthogonal space-time block codes," IEEE Trans. Commun., vol.49, no.10, pp.1700-1703, Oct.2001.
    [34].J. N. Laneman and G. W. Wornell, "Energy-efficient antenna sharing and relaying for wireless networks," in Proc. of IEEE WCNC 2000, Chicago, Sep.2000, pp.7-12.
    [35].M. O. Hasna and M.-S. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh fading channels," IEEE Trans. Wireless Commun., vol.2, no.6, pp. 1126-1131, Nov.2003.
    [36]. Springer M D. The Algebra of Random Varibales. New York: Wiley,1979.
    [37]. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,9th ed. New York:Dover,1970.
    [38]. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,5th ed. San Diego, CA:Academic,1994.
    [39]. M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels. New York: Wiley,2000.
    [40].J. Abate and W. Whitt, "Numerical inversion of Laplace transform of probability distribution," ORSA J. Comput., vol.7, no.1, Winter 1995, pp.36-43.
    [41].Shuping Chen, Wenbo Wang, Xing Zhang, and Dong Zhao,"Performance of amplify-and-forward MIMO relay channels with transmit antenna selection and maximal-ratio combining," in Proc. of IEEE WCNC'09, Budapest, Hungary, Apr.2009, pp.808-813.
    [42].Shuping Chen, Xing Zhang, Mugen Peng, et al., "Capacity performance of amplify-and-forward MIMO relay channels with transmit antenna selection and maximal-ratio combining," in Proc. of IEEE GLOBECOM09, Hawaii, USA, Nov.2009.
    [43].Shuping Chen, Wenbo Wang, Xing Zhang, and Zuo Sun, "Performance analysis of OSTBC transmission in amplify-and-forward cooperative relay networks," IEEE Trans. Vehicular Tech., vol.59, no. 1,pp.105-113, Jan.2010.
    [44].Shuping Chen, Xing Zhang, and Wenbo Wang et al., "Amplify-and-forward MIMO relay channels with OSTBCs: ergodic and outage capacity analysis," in Proc of IEEE WCNC 2010, Sydeny, Australia, Apr.2010.
    [45].Shuping Chen, Wenbo Wang, and Xing Zhang, "Symbol error rate analysis of DF MIMO relay channels with OSTBCs," accepted by IEEE WCNIS 2010, Beijing, China, June 2010.
    [1]. R. Knopp and P. A. Humblet, "Information capacity and power control in single cell multiuser communications," in Proc. IEEE ICC 1995, Seattle, USA, June 1995, pp.331-335.
    [2]. D. N. C. Tse, "Optimal power allocation over parallel Gaussian channels," in Proc. of Int. Symp. Infom. Theory, Ulm, Germany, June 1997.
    [3]. P. Viswanath, D. N. C. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," IEEE Trans. Inform. Theory, vol.48, no.6, pp.1277-1294, June 2002.
    [4]. R. Gozali, R. M. Buehrer, and B. D. Woerner, "The impact of multiuser diversity on space-time block coding," IEEE Commun. Letters, vol.7, no.5, pp.213-215, May 2003.
    [5]. E. G. Larsson, "On the combination of spatial diversity and multiuser diversity," IEEE Commun. Letters, vol.8, no.8, pp.517-519, Aug.2004.
    [6]. X. Zhang, Z. B. Lv, and W. B. Wang, "Performance analysis of multiuser diversity in MIMO systems with antenna selection," IEEE Trans. Wireless Commun., vol.7, no.1, pp.15-21, Jan. 2008.
    [7]. J. Chung, C.-S. Hwang, K. Kim, and Y. Kim, "A random beamforming technique in MIMO systems exploiting multiuser diversity," IEEE J. Select. Areas Commun., vol.21, no.5, pp. 848-855, Jun.2003.
    [8]. A. Senst, P. Schulz-Rittich, and U. Krause, "Random beamforimg in correlated MISO channels for multiuser systems," in Proc. of IEEE ICC 2004, vol.5, New York, USA, June 2004, pp.2909-2913.
    [9]. M. Grossglauser and D. N. C. Tse, "Mobility increase the capacity of Ad hoc wireless networks," IEEE/ACM Trans. on Networking, vol.10, no.4, pp.477-486, Aug.2002.
    [10]. J. N. Laneman and G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inform. Theory, vol.49, no.10, pp. 2414-2425, Oct.2003.
    [11]. J. N. Laneman, D. N. C. Tse, and G. W.Wornell, "Cooperative diversity in wireless networks: effcient protocols and outage behavior," IEEE Trans. Inform. Theory, vol.50, no.12, pp. 3062-3080, Dec.2004.
    [12].Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp. 3114-3123, Aug.2007.
    [13].Ribeiro A, Cai X, and Giannakis G B, "Symbol error probabilities for general cooperative links," IEEE Trans. on Wireless Comm., vol.4, no.3, pp.1264-1273, May 2005.
    [14]. A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Select. Areas Commun., vol.24, no.3, pp. 659-672, Mar.2006.
    [15]. A. Bletsas, H. Shin, and M. Z. Win, "Cooperative communications with outage-optimal opportunistic relaying," IEEE Trans. Wireless Commun., vol.6, no.9, pp.1-11, Sep.2007.
    [16]. Y. Zhao, R. Adve, and T. J. Lim, "Symbol error rate of selective amplify and forward relay systems," IEEE Commun. Letters, vol.10, no.11, pp.757-759, Nov.2006.
    [17].R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, "Fading relay channels: performance limits and space-time signal design," IEEE J. Select. Areas Commun., vol.22, no.6, pp.1099-1109, Aug.2004.
    [18].L. Xie and P. R. Kumar, "A network information theory for wireless communication: scaling laws and optimal operation," IEEE Trans. Inform. Theory, vol.50, no.5, pp.748-767, May 2004.
    [19]. M. Gastpar and M.Vetterli, "On the capacity of large gaussian relay networks," IEEE Trans. Inform. Theory, vol.51, no.3, pp.765-779, Mar.2005.
    [20]. G. Farhadi, and N. C. Beaulieu, "Ergodic capacity analysis of wireless relaying systems in Rayleigh fading," in Proc. of IEEE ICC 2008, Beijing, China, May 2008, pp.3730-3735.
    [21].Shuping Chen, Wenbo Wang, Xing Zhang and Dong Zhao, "Ergodic and outage capacity analysis of cooperative diversity systems under rayleigh fading channels," in Proc. of IEEE ICC’09, Dresden, Germany, Jun.2009.
    [22]. W. Siriwongpairat, A. Sadek, K. J. R. Liu, "Cooperative communications protocol for multi-user OFDM networks," IEEE Trans. Wireless Commun., vol.7, no.7, pp.2430-2435, July 2008.
    [23].G. Li and H. Liu, "On the capacity of broadband relay networks," in Proc. of Asilomar Conf. Sig., Sys. and Comput., pp.1318-1322,2004.
    [24].H. Zhu, T. Himsoon, W. Siriwongpairat, and K. J. R. Liu, "Resource allocation for multiuser cooperative OFDM networks: who helps whom and how to cooperate," IEEE Trans. Vehicular Tech., vol.58, no.5, pp.2378-2391, June 2009
    [25].B Can, H. Yomo, E. D. Carvalho, "Hybrid forwarding scheme for cooperative relaying in OFDM based networks," in Proc. of IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 4520-4526.
    [26].M. O. Hasna and M.-S. Alouini, "Optimal power allocation for relayed transmissions over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol.3, no.6, pp.1999-2004, Nov.2004.
    [27].P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi, "CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users," IEEE Commun. Mag., vol.38, no.7, pp.70-77, Jul.2000.
    [28].C.-J Chen and L.-C. Wang, "A unified capacity analysis for wireless systems with joint multiuser scheduling and antenna diversity in Nakagami fading channels," IEEE Trans. Commun., vol.54, no.3, pp.469-478, Mar.2006.
    [29]. J. M. Holtzman, "Asymptotic analysis of proportional fair algorithm," in Proc. of IEEE PIMRC 2001, vol.2, San Diego, USA, Sep.-Oct.2001, pp. F33-F37.
    [30]. K. Azarian, H. E. Gamal, and P. Schniter, "On the achievable diversity vs multiplexing trade-off in cooperative channels," IEEE Trans. Infom. Theory, vol.51, no.12, pp.4152-4172, Dec. 2005.
    [31]. John. G. Proakis. Digital Communications.4th ed. New York: McGraw-Hill,2001.
    [32]. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.5th ed. San Diego: Academic Press,1994.
    [33].H. A. David. Order Statistics.2nd ed. New York: Wiley,1981.
    [34]. Shuping Chen, Xing Zhang, and Wenbo Wang, "Performance analysis of multiuser diversity in cooperative multi-relay networks under Rayleigh fading channels," IEEE Trans. Wireless Commun., vol.8, no.7, pp.3415-3419, Jul.2009.
    [1]. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons,1991.
    [2]. A. J. Viterbi. CDMA:Principles of spread spectrum communication. MA, USA, Addison Wesley Publishing Co. Inc.,1995.
    [3]. K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver Jr., and C. E. Wheatley III, "On the capacity of a cellular CDMA system," IEEE Trans. Vehicular Tech., vol.40, no.2, pp.303-312, May 1991.
    [4]. A. Sampath, P. Sarath Kumar, and J. M. Holtzman, "Power control and resource management for a multimedia CDMA wireless system," in Proc. of IEEE PIMRC 1995, vol.1, Toronto, Canda, Sep.1995, pp.21-25.
    [5]. R. D. Yates, "A framework for uplink power control in cellular radio systems," IEEE J. Select. Areas Commun., vol.13, no.7, pp.1341-1347, Sep.1995.
    [6]. R. van Nee and R. Prasad. OFDM for Wireless Multimedia Communications. MA, USA, Artech House, Inc.,2000.
    [7]. C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, "Multiuser OFDM with adapative subcarrier, bit, and power allocation," IEEE J. Select. Areas Commun., vol.17, pp.1747-1758, Oct.1999.
    [8]. J. Jang, and K. B. Lee, "Transmit power adaptation for multiuser OFDM systems," IEEE J. Select. Areas Commun., vol.21, no.2, pp.171-178, Feb.2003.
    [9]. Y.-F. Chen and J.-W. Chen, "A fast subcarrier bit, and power allocation algorithm for multiuser OFDM-based systems," IEEE Trans. Vehicular Tech., vol.57, no.2, pp.873-881, Mar.2008.
    [10]J. Zhang, Q. Zhang, C. Shao, Y. Wang, and P. Zhang, "Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relaying system," in Proc. of IEEE VTC 2004, Milan, Italy, May 2004, pp.1213-1217.
    [11].Q. Zhang, J. Zhang, C. Shao, Y. Wang, and P. Zhang, "Power allocation for regenerative relay channel with Rayleigh fading," in Proc. IEEE VTC 2004., Milan, Italy, May 2004, pp. 1167-1171.
    [12].M. O. Hasna and M.-S. Alouini, "Optimal power allocation for relayed transmissions over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol.3, no.6, pp.1999-2004, Nov.2004.
    [13].X. Deng and A. M. Haimovich, "Power allocation for cooperative relaying in wireless networks," IEEE Commun. Letters, vol.9, no.11, pp.994-996, Nov.2005.
    [14]. J. Luo, R. S. Blum, L. Cimini, L. Greenstein, and A. Haimovich, "Power allocation in a transmit diversity system with mean channel gain information," IEEE Commun. Letters, vol. 9, no.7, pp.616-618, July 2005,
    [15]. Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp. 3114-3123, Aug.2007.
    [16]. I. Hammerstrom and A. Wittneben, "On the optimal power allocation for non-regenerative OFDM relay links," in Proc. IEEE ICC'06, Istanbul, Turkey, June 2006, vol.10, pp.4463-4468.
    [17].L. Vandendorpe, R. T. Duran, J. Louveaux, and A. Zaidi, "Power allocation for OFDM transmission with DF relaying," in Proc. of IEEE ICC'08. Beijing, China, May,2008, pp. 3795-3800.
    [18]. I. Hammerstrom and A. Wittneben, "Power allocation for amplify-and-forward MIMO-OFDM relay links," IEEE Trans. Wireless Commun., vol.6, no.8, pp.2798-2802, Aug. 2007.
    [19].In-Ho Lee and D. Kim, "Coverage extension and power allocation in dual-hop space-time transmission with multiple antennas in each node," IEEE Trans. Vehicular Tech., vol.56, pp. 3524-3532, Nov.2007.
    [20]. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge. UK: Cambridge University Press,2004.
    [21].S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., vol.16, no.8, pp.1451-1458, Oct.1998.
    [22]. R. C. Palat, Dr. A. Annamalai, and J. H. Reed, "Efficient computation of information outage probability and ergodic capacity of OSTBC system," in Proc. of IEEE VTC 2008, Singarpore, Apr.2008, pp.1428-1432.
    [23].A. Paulraj, R. Nabar and D. Gore. Introduction to Space-Time Communications. UK: Cambridge University Press,2003.
    [24]. C. F. Van Loan. Introduction to Scientific Computing. Englewood Cliffs. New Jersey, USA: Prentice-Hall Publishers,2000.
    [25]. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.5th ed. San Diego, CA: Academic,1994.
    [26]. Simon M K, Alouini M. Digital Communication Over Fading Channels. New York, USA: Wiley,2000.
    [27].Shuping Chen, Wenbo Wang, Xing Zhang, and Dong Zhao,"Performance analysis of OSTBC transmission in amplify-and-forward cooperative relay networks," IEEE Trans. Vehicular Tech., vol.59, no.1, pp.105-113, Jan.2010.
    [28].陈书平,王文博,张兴,李秦梓赵冬,"MIMO中继正交STBC性能及最优功率分配”,北京邮电大学学报,第32卷,第2期,第48-53页,2010.
    [29].Shuping Chen, Wenbo Wang, and Xing Zhang, "Symbol error rate analysis of DF MIMO relay channels with OSTBCs," accepted by IEEE WCNIS 2010, Beijing, China, June 2010.
    [1]. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons,1991.
    [2]. R. W. Chang, "Synthesis of band-limited orthogonal signals for multicahnnel data transmission," Bell Systems Tech. Journal, vol.45, pp.1775-1796, Dec.1966.
    [3]. Ortogonal Frequency Division Multiplexing. U. S. Patent No.3,488,4555, filed Nov.14,1996, issued Jan.6,1970.
    [4]. R. van Nee and R. Prasad. OFDM for Wireless Multimedia Communications. MA, USA, Artech House, Inc.,2000.
    [5]. A. Peled and A. Ruiz, "Frequency domain data transmission using reduced computational complexity algorithms," in Proc. of IEEE Inter. Conf. on Acoustics, Speech, and Sig. Processing, vol.5, Apr.1980, pp.964-967.
    [6]. G. L. STUBER, J. R. Barry, S. W. Mclaughlin, Y. Li, M. Ingram, and T. G. Pratt, "Broadband MIMO-OFDM wireless communications, " Proceedings of the IEEE, vol.92, no.2, pp.271-294, Feb.2004.
    [7]. C. Y. Wong, R. S. Cheng, Letaief K. B., et al., "Multiuser OFDM with adaptive subcarrier, bit, and power allocation," IEEE J. on Select Areas on Commun., vol.17, no.10, pp.1747-1758, Oct.1999.
    [8]. Y. Zhang and K. Letaief, "Multiuser adaptive subcarrier and bit allocation with adaptive cell selection for OFDM systems," IEEE Trans. Wireless. Commun., vol.3, no.5, pp.1566-1575, Sep.2004.
    [9]. K. Kim, H. Kim, Y. Han, et al. "Iterative and greedy resource allocation in an uplink OFDMA system," in Proc. of IEEE PIMRC 2004, vol.4, Istanbul, Turkey,2004, pp.2377-2381.
    [10].X. Zhang and W. Wang, "Adaptive multiuser radio resource allocation for OFDMA systems," in Proc. of IEEE GLOBECOM 2005, St. Louis, USA, Nov.2005, pp.3846-3850.
    [11].I. Hammerstrom and A. Wittneben, "On the optimal power allocation for non-regenerative OFDM relay links," in Proc. of IEEE ICC 2006, vol.10, Istanbul, Turkey,2006, pp.4463-4468.
    [12]. G. Yu, Z. Zhang, Y. Chen et al. "Power allocation for non-regenerative OFDM relaying channels," in Proc. of 2005 Int. Conf. on Wireless Comm., Networking and Mobile Comput., 2005, pp.185-188.
    [13]. Y. Wang, X. C Qu, T. Wu, et al. "Power allocation and subcarrier pairing algorithm for regenerative OFDM relay system," in Proc. of IEEE VTC 2007, Dublin, Ireland, Apr.2007, pp. 2727-2731.
    [14]. I. Hammerstrom and A. Wittneben, "Power allocation for amplify-and-forward MIMO-OFDM relay links," IEEE Trans. Wireless Commun., vol.6, no.8, pp.2798-2802, Aug.2007
    [15].B. Gui, and L. Cimini, Jr., "Bit loading algorithms for cooperative OFDM systems," in Proc. of IEEE MILCOM 2007, Orlando, USA, Oct.2007, pp.1-7.
    [16]. G. Li and H. Liu, "Resource allocation for OFDMA relay networks with fairness constraints," IEEE J. on Select Areas on Commun., vol.24, no.11, pp.2061-2069, Nov.2006.
    [17].Y. Pan, A. Nix, and M. Beach, "Resource allocation techniques for OFDMA-based decode-and-forward relaying networks," in Proc. of IEEE VTC 2008, Singapore, Apr.2008, pp.1717-1721
    [18].3GPP, TSG Services and System Aspects, QoS Concept and Architecture (3G TR 23.107).
    [19]. W. Wang, K. C. Hwang, K. B. Lee, and S. Bahk, "Resoure allocation for heterogeneous services in multiuser OFDM systems," in Proc. of IEEE GLOBECOM 2004, Dallas, USA, Nov.2004, pp.3478-3481.
    [20]. G. Yu, Z. Zhang, Y. Chen, and P. Qiu, "An efficient resource allocation algorithm for OFDMA systems with multiple services," in Proc. of IEEE GLOBECOM 2006, San Francisco, USA, Nov.2006, pp.1-5.
    [21].M. Hasna and M.-S. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol.2, no.6, pp.1126-1131, Jun.2003.
    [22]. Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol.6, no.8, pp. 3114-3123, Aug.2007.
    [23]. S. Boyd and L. Vandenberghes. Convex Optimization. Cambridge University Press,2004.
    [24]. J. Jang and K. B. Lee, "Transmit Power Adaptation for Multiuser OFDM Systems", IEEE J. on Selected Areas in Commun., vol.21, no.2, pp.171-178, Feb.2003.
    [25].Xing Zhang, Shuping Chen, and Wenbo Wang, "Multiuser radio resource allocation for multi-service transmission in OFDMA-based cooperative relay networks," EURASIP Journal on Wireless Commun. and Networking, vol.2009, Article ID:940518, Jan.2009.
    [26]. Shuping Chen, Xing Zhang, and Wenbo Wang, "Performance analysis of multiuser diversity in cooperative multi-relay networks under Rayleigh fading channels," IEEE Trans. Wireless Commun., vol.8, no.7, pp.3415-3419, Jul.2009.
    [27]. Shuping Chen, Wenbo Wang, Xing Zhang, Lei Fu, and Dong Zhao, "Resource allocation for heterogeneous services in two-hop OFDM cooperative relay systems," in Proc. of IEEE VTC 2009, Sep.2009, Alaska.