几类复杂拓扑结构混沌系统的生成、控制与同步
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂拓扑结构混沌吸引子是环状多涡卷、嵌套多翅膀、网格多涡卷和多环面、多折叠环面、高维广义猫映射等多类在相空间中具有复杂拓扑结构的混沌吸引子的总称。与简单拓扑结构双涡卷或双翅膀混沌吸引子相比,环状多涡卷、嵌套多翅膀、网格多涡卷和多环面、多折叠环面等混沌吸引子的特点体现在具有十分复杂的拓扑吉构和更复杂的动力学行为。本学位论文重点研究了若干新型的复杂拓扑结构混沌及引子的生成、控制与同步及其相关的一些问题,主要内容分为以下几个方面:
     1.随着对混沌研究的逐步深入,人们进一步发现了一些新型的多涡卷和多翅旁混沌系统,这些复杂拓扑结构混沌系统成为近年来非线性电路与系统领域中一个十分活跃的研究课题。本学位论文首先对几类典型复杂拓扑结构混沌吸引子的生成问题进行了深入研究,主要完成了以下三个方面的工作:
     (1)提出了一个新的多涡卷超混沌Chua系统
     尽管对于从三维Chua系统中产生多涡卷混沌吸引子进行了大量的研究,但是到目前为止从四维Chua系统产生多涡卷超混沌吸引子却鲜有报道。此外,构造四维超Chua系统有多种不同的方法,比如两个或两个以上三维蔡氏电路的耦合,π型电路的扩展,基于分解和基于结型场效应晶体管的方法,状态反馈控制法等。而状态反馈控制方法被认为是从已有的三维混沌系统产生不同的四维超混沌系统的好方法。鉴于上面已经完成的工作,本论文利用状态反馈控制,分别构造了带有光滑和分段光滑立方非线性项以及分段线性非线性项的四维Chua系统来产生多涡卷超混沌吸引子,并进一步研究了此系统的动力学行为,包括李亚普诺夫指数谱,分岔图和状态方程的解。此外,基于无量纲状态方程组和模块化电路设计,对构造的四维超Chua系统产生的双涡卷和三涡卷超混沌吸引子进行了电路设计。
     (2)提出了一个新的多翅膀混沌系统
     通过计算机模拟,对由改进的C-A投影同步得到的控制器进行修正,从而产生了一种特别的多翅膀混沌吸引子,并对受控Lorenz系统的一些基本的动力学性质进行了理论分析和数值模拟,研究结果表明此系统具有复杂有趣的混沌和超混沌行为。
     (3)由多涡卷Chua系统演化得到了两个四维分数阶多涡卷超混沌Chua系统
     在四维整数阶多涡卷超Chua系统的基础上进行演化得到了两个四维分数阶多涡卷超混沌Chua系统:带有光滑立方和分段光滑立方非线性项的四维分数阶超Chua系统以及带有分段线性非线性项的四维分数阶超Chua系统。通过使用分数阶微分理论和数值模拟,发现在阶数小于4的分数阶Chua系统中确实存在多涡卷超混沌吸引子。
     2.在复杂拓扑结构混沌吸引子的控制与同步的研究方面,本学位论文完成了以下四个方面的工作:
     (1)设计了分数阶混合反馈控制器,实现多涡卷Chua系统的混沌同步
     分数阶控制器将整数阶系统转化为分数阶系统,通过提供稳定性增加系统的自由度,整数阶混合反馈控制器可以减少同步的时间,而本文中提到的分数阶混合反馈控制器充分结合了分数阶和整数阶控制器的优点。此外,利用此控制器实现了多涡卷Chua系统的混沌同步。
     (2)提出了一种改进的C-A投影同步方法
     当混沌系统具有一定程度的对称性时,就能达到完全同步-反同步(简称C-A同步)。基于线性分离法,对C-A同步进行改进达到C-A投影同步,也就是说,在Lorenz系统中驱动向量和响应向量达到按照比例因子变化的C-A同步。
     (3)设计了统一的自适应控制器和参数更新规则,实现混沌连续时间系统的自适应全态混合函数投影时滞同步
     对于投影同步,大部分研究成果集中研究的是常数比例因子,该方法基于李亚普诺夫稳定性理论和全态混合投影同步方法(FSHPS),提出了一种混沌连续时间系统的自适应全态混合函数投影时滞同步方案(简称FSHFPLS),并且设计了统一的自适应控制器和参数更新规则以达到按要求的比例函数变化的投影时滞同步。此外,还将LFRBM混沌系统的同步应用到保密通信中,数值模拟表明所提方案的有效性。
     (4)改进的广义哈密尔顿系统方法的研究
     通过李亚普诺夫稳定性理论和一些矩阵技术,建立一种以线性矩阵不等式(LMI)形式表达的新的充分判据,从而保证以指数收敛速度达到混沌同步。然后用此方法去对Lu系统和带有双曲正切函数的修正Chua电路的n涡卷混沌吸引子进行同步。
     此外,还分别设计了分数阶积分型主动滑模控制器和线性控制器应用于响应系统实现了分数阶多涡卷超Chua系统的混沌同步。
     3.研究了粒子群优化算法(Particle Swarm Optimization, PSO)作为一种进化计算技术的若干问题。本学位论文鉴于基本粒子群算法存在初始化过程的随机性以及容易陷入局部最优解的不足,对基本粒子群算法进行改进,利用混沌运动的遍历性,产生大量初始群体,从中择优出初始群体,并且在粒子群优化算法执行的过程中,对当前粒子个体产生混沌扰动,以使解跳出局部极值区间,最后用混沌粒子群算法对综合GM(1,1)参数优化模型的参数进行优化。
     本学位论文的工作得到了禹思敏教授主持的国家自然科学基金(批准号:60871025,61172023)、教育部高等学校博士学科点(博导类)专项科研基金(批准号:20114420110003)、广东省自然科学基金(批准号:8151009001000060,S2011010001018)、广东省科技计划项目(批准号:2009B010800037)的资助。
Ring multi-scroll, nesting multi-wing, grid multi-scroll and multi-torus, multi-folded torus, high-dimension generalized cat map and so on in phase space are called chaotic attractors with complex topological structure. Compared with double scroll or double wing attractors with simple topological structure, the above-mentioned chaotic attractors with complex topological structure have very complex topological structure and more complicated dynamical behavior. Generation, control, synchronization and some issues concerned of several new types of chaotic attractors with complex topological structure are studied in this dissertation. The main content is devided into the following aspects:
     1. As the study on chaos becomes more in-depth, some new multi-scroll chaotic and multi-wing chaotic systems arises one after the other. In recent years, these systems become very active research focuses in nonlinear circuits and systems. First, generation of several typical chaotic attractors with complex topological structure are studied in this dissertation. The following three aspects are finished:
     (1) A new multi-scroll hyperchaotic Chua system is proposed
     Although many approaches for generating multi-scroll chaotic attractors from 3-D Chua system have been intensively studied, there are few detailed reports regarding the multi-scroll hyperchaotic attractors from 4-D Chua system up to now. In addition,4-D Hyperchaotic Chua system can be constructed so far by some different techniques, such as two or more 3-D coupled Chua circuits, expansion ofπtype circuit configuration, both decomposition-based and junction field-effect transistor-based approaches, state feedback control and so on. It is believed that state feedback control-based approach has some advantages for generating various 4-D hyperchaotic systems from many existing 3-D chaotic systems. Moving forward from the above-mentioned accomplished works, in this dissertation, a 4-D hyperchaotic Chua system via state feedback control is constructed, by introducing with both piecewise-linear nonlinearity and smooth and piecewise smooth cubic nonlinearity. Furthermore, dynamical behaviors of this hyperchaotic system are further investigated, including Lyapunov exponents spectrum. bifurcation diagram and solution of state equations. In addition, a circuit is designed for 4-D hyperchaotic Chua system such that the double-scroll and 3-scroll hyperchaotic attractors can be physically obtained.
     (2) A new multi-wing chaotic system is proposed
     The controller obtained by the improved C-A synchronization is modified by computer simulations to generate a special multi-wing chaotic attractor. By the theoretical analysis and numerical simulations, some basic dynamical properties of the controlled Lorenz system are investigated. Research results show that this system has complex and interesting chaotic and hyperchaotic dynamics.
     (3) Two four-dimensional fractional-order multi-scroll hyperchaotic Chua systems are proposed
     Two four-dimensional fractional-order multi-scroll hyperchaotic Chua systems are gained based on the four-dimensional integer-order multi-scroll hyperchaotic Chua systems, including a four-dimensional fractional-order hyperchaotic Chua system with both smooth and piecewise smooth cubic nonlinearity, and a four-dimensional hyperchaotic Chua system with piecewise-linear nonlinearity. By utilizing the fractional calculus theory and computer simulations, it is found that multi-scroll hyperchaotic attractor exists in this fractional-order Chua system with order less than 4.
     2. On study of control and synchronization of chaotic attractors with complex topological structure, the following four aspects are finished in this dissertation:
     (1) A fractional order hybrid feedback controller is designed to synchronize the multi-scroll Chua system
     The fractional controller converts the system behavior with integer derivatives into a system with fractional derivatives. This increases the degree of freedom of the system by means of providing the stability. In addition, an integer hybrid feedback controller is used to decrease the time of synchronization. The proposed controller makes use of the good of both integer and fractional order controllers. The performance of the controller is shown via numerical simulation when it is used to synchronize the multi-scroll Chua system.
     (2) An improved C-A projective synchronization scheme is proposed
     The complete synchronization and anti-synchronization(C-A synchronization) can be achieved when chaotic system has some degree of symmetry. In this paper, C-A synchronization is improved based on the linear separation method to achieve the C-A projective synchronization, that is, the drive and response vectors synchronize up to the scaling factor in the Lorenz system.
     (3) A unified adaptive controller and parameters update law are designed for achieved the adaptive full state hybrid function projective lag synchronization (FSHFPLS) in chaotic continuous-time system
     For the projective synchronization, most of research efforts have concentrated on studying the constant scaling factor. Based on the Lyapunov stability theory and FSHPS, this scheme is investigated in chaotic continuous-time system, and a unified adaptive controller and parameters update law are designed for achieved the projective lag synchronization up to a desired scaling function. In addition, a scheme for secure communication is presented. Numerical simulations are performed to verify and illustrate the analytical results.
     (4) An improved generalized Hamiltonian systems approach is proposed
     By using the Lyapunov stability theory and some matrix techniques, a new sufficient criterion, formulated in the LMI form, is established. The new sufficient criterion can guarantee that chaotic synchronization is achieved at an exponential convergence rate. Then this improved approach is used to synchronize Lu system and n-scroll chaotic attractors in a modified Chua's circuit with hyperbolic tangent functions.
     Besides, synchronization between the fractional-order multi-scroll hyperchaotic Chua systems is achieved by a fractional active sliding mode controller and a suitable linear controller applied to the response system.
     3. Particle Swarm Optimization (PSO) which is an evolutionary computation is studied in this dissertation. Its research and application are not interrupted since it was put forward. In this dissertation, there are some problems of the randomness of initialization process and easy to fall into a local optimal solution when using PSO algorithm. In this paper, PSO algorithm is improved. The basic idea is:at the beginning, a great deal of initial population are produced by ergodicity of chaos, and then the initial particle swarm is preferred out; during the running time of PSO algorithm, to adjust the current particle by chaos so that the solution jumps out local convergence. In the end,Chaos PSO algorithm is proposed to optimize the integrated GM(1,1) parameter optimization model.
     This work was supported by the National Natural Science Foundation of China under Grant Nos.60871025 and 61172023, the Specialized Research Foundation of Doctoral Subject Point of Education Ministry under Grant No.20114420110003, the Natural Science Foundation of Guangdong Province under Grant Nos. 8151009001000060 and S2011010001018, and the Science and Technology Program of Guangdong Province under Grant No.2009B010800037.
引文
[1]A. Hubler. Adaptive control of chaotic system[J]. Helv. Phys. Acta,1989,62: 343-346.
    [2]方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社,2002.
    [3]胡岗,萧井华,郑志刚.混沌控制[M].上海:上海科技教育出版社,2000.
    [4]L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems[J]. Phys. Rev. Lett.,1990,64(8):821-824.
    [5]W. L. Ditto, S. N. Rausco, M. L. Spano. Experimental control of chaos[J]. Phys. Rev. Lett.,1990,65(26):3211-3214.
    [6]R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, E.R. Hunt. Dynamical control of a chaotic laser:Experimental stabilization of a globally coupled system[J]. Phys. Rev. Lett.,1992,68(9):1259-1262.
    [7]T. L. Carroll, L. M. Pecora. Synchronization in chaotic circuit[J]. IEEE Trans. Circuits Syst.,1991,38(4):453-456.
    [8]O. E. Rossler. An equation for hyperchaos[J]. Phys. Lett. A,1979,71(2-3): 155-157.
    [9]T. Matsumoto, L. O. Chua, M. Komuro. The double scroll[J]. IEEE Trans. Circuits Syst.-Ⅰ,1985,32(8):797-818.
    [10]R. N. Madan. Chua's Circuit:A paradigm for chaos[M]. Singapore. World Scientific,1993.
    [11]L. O. Chua. Chua's circuit 10 years later[J]. Int. J. Circuit Th. Appl.,1994,22(4): 279-305.
    [12]C. Mira. Chua's circuit and the qualitative theory of dynamical systems[J]. J. Franklin Inst. B,1997,334(5-6):737-744.
    [13]S. M. Yu. Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems[J]. Int. J. Bifurc. Chaos.,2010,20(1):29-41.
    [14]S. M. Yu. Wallace K. S. Tang, J. H. Lu, G. R. Chen. Generating 2n-wing attractors from Lorenz-like systems[J]. Int. J. Circ. Theor. Appl.,2010,38:243-258.
    [15]S. M. Yu, Wallace K. S. Tang, J. H. Lu, G. R. Chen. Generation of n×m-wing Lorenz-like attractors from a modified Shimizu-Morioka model[J]. IEEE Trans. Circuits Syst.-II,2008,55(11):1168-1172.
    [16]B. B. Mandelbort. The fractal geometry of nature[M]. New York:Freeman,1983.
    [17]A. V. Gaponov-Grckhov, M. I. Rabinovich, I. M. Starobinets. Dynamic model of the spatial development of turbulence[J]. Pis'ma Zh. Eksp. Teor. Fiz.,1984,39(12): 561-564.
    [18]H. G. Winful, L. Rahman. Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers[J]. Phys. Rev. Lett.,1990,65(13):1575-1578.
    [19]T. Sugawara, M. Tachikawa, T. Tsukamoto, T. Shimizu. Observation of synchronization in laser chaos[J]. Phys. Rev. Lett.,1994,72(22):3502-3505.
    [20]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):139-199.
    [21]N. F. Rulkov, M. M. Sushchik, L. S. Tsimring. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys. Rev. E,1995,51(2): 980-994.
    [22]K. J. Jolly, R. E. Amritkar. Synchronization of unstable orbits using adaptive control[J]. Phys. Rev. E,1994,49(6):4843-4848.
    [23]G. Grassi, S. Mascoio. Synchronization hyperchaotic systems by observer design[J]. IEEE Trans. Circuits Syst.-Ⅱ,1999,46(4):478-483.
    [24]L. Kolarev, U. Parlitz. General approach for chaotic synchronization with application to communication[J]. Phys. Rev. Lett.,1995,74(25):5028-5031.
    [25]L. Kolarev, U. Parlitz. Generalized synchronization, predictability, and requivalence of unidirectionally coupled dynamical systems[J]. Phys. Rev. Lett., 1996,76(11):1816-1819.
    [26]N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel. Generalized synchronization of directionally coupled chaotic systems[J]. Phys. Rev. E,1995, 51(2):980-994.
    [27]T. Yang, L. B. Yang, C. M. Yang. Breaking chaotic switching using generalized synchronization:Examples[J]. IEEE. Trans. Circuits Syst.-I,1998,45(10): 1062-1067.
    [28]Q. S. Ren, J. Y. Zhao. Impulsive synchronization of coupled chaotic systems via adaptive feedback approach[J]. Phys. Lett. A,2006,355(4-5):342-347.
    [29]刘洋.混沌同步控制及其在保密通信中的应用[D].湖南:湖南师范大学,2008.
    [30]J. H. Lu, G. R. Chen. Multi-scroll chaos generation:Theories, methods and applications[J]. Int. J. Bifurc. Chaos,2006,16(4):775-858.
    [31]S. M. Yu, Wallace K. S. Tang, G. R. Chen. Generation of nxm-scroll attractors under a Chua-circuit framework[J]. Int. J. Bifurc. Chaos,2007,17(11):3951-3964.
    [32]D. Cafagna, G. Grassi. Hyperchaotic coupled Chua circuits:An approach for generating new n×m-scroll attractors [J]. Int. J. Bifurcat. Chaos,2003,13(9): 2537-2550.
    [33]B. Cannas, S. Cincotti. Hyperchaotic behaviour of two bi-directionally coupled Chua's circuits[J]. Int. J. Circ. Theor. Appl.2002,30(6):625-637.
    [34]D. Cafagna, G. Grassi. Dynamics of hyperchaotic coupled Chua circuits: Generation of new n×m-scroll attractors[C]. Proc. Int. Symp. on Nonlinear Theory and its Applications(NOLTA'02), Xi'an, China,2002:873-876.
    [35]X. S. Luo, B. H. Wang, G. R. Chen, P. Q. Jiang, J. Q. Fang, H. J. Quan. Controlling chaos and hyperchaos by switching modulation of systems parameters[J]. Int. J. Mod. Phys. B,2004,18(17-19):2686-2690.
    [36]K. Thamilmaran, M. Lakshmanan, A. Venkatesan. Hyperchaos in a modified canonical Chua's circuit[J]. Int. J. Bifurcat. Chaos,2004,14(1):221-243.
    [37]R. Barboza. Hyperchaos in a Chua's circuit with two new added branches[J]. Int. J. Bifurcat. Chaos,2008,18(4):1151-1159.
    [38]D. Cafagna, G. Grassi. Decomposition method for studying smooth Chua's equation with application to hyperchaotic multiscroll attractors[J]. Int. J. Bifurcat. Chaos,2007,17(1):209-226.
    [39]P. B. Mital, U. Kumar, R. S. Prasad. A new high performance realization of hyperchaotic modified canonical Chua circuit using JFETs[J]. Chin. Phys. Lett., 2008,25(8):2803-2805.
    [40]R. Barboza. Dynamics of a hyperchaotic Lorenz system[J]. Int. J. Bifurcat. Chaos, 2007,17(12):4285-4294.
    [41]G. L. Cai, S. Zheng, L. X. Tian. Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system[J]. Chin. Phys. B,2008,17(7): 2412-2419.
    [42]G. R. Chen, T. Ueta. Yet another chaotic attractor[J]. Int. J. Bifurcat. Chaos,1999, 9(7):1465-1466.
    [43]T. G. Gao, Q. L. Gu, Z. Q. Chen. Analysis of the hyper-chaos generated from Chen's system[J]. Chaos Solit. Fract.,2005,39(4):1849-1855.
    [44]T. G. Gao, Z. Q. Chen, Z. Z. Yuan, G. R. Chen. A hyperchaos generated from Chen's system[J]. Int. J. Mod. Phys. C,2006,17(4):471-478.
    [45]Y. X. Li, W. K. S. Tang, G. R. Chen. Generating hyperchaos via state feedback control[J]. Int. J. Bifurcat. Chaos,2005,15(10):3367-3375.
    [46]J. H. Lu, G. R. Chen. A new chaotic attractor coined[J]. Int. J. Bifurcat. Chaos, 2002(3),12:659-661.
    [47]B. C. Bao, Z. Liu. A hyperchaotic attractor coined from chaotic Lu system[J]. Chin. Phys. Lett.2008,25(7):2396-2399.
    [48]A. M. Chen, J. A. Lu, J. H. Lii, S. M. Yu. Generating hyperchaotic Lu attractor via state feedback control[J]. Physica A,2006,364:103-110.
    [49]G. Y. Wang, X. Zhang, Y. Zheng, Y. X. Li. A new modified hyperchaotic Lu system[J]. Physica A,2006,371(2):260-272.
    [50]T. Matsumoto, L. O. Chua, K. Kobayashi. Hyperchaos:Laboratory experiment and numerical confirmation [J]. IEEE Trans. Circuits Syst.,1986,33(11): 1143-1147.
    [51]P. C. Rech, H. A. Albuquerque. A hyperchaotic Chua system [J]. Int. J. Bifurcat. Chaos,2009,19(11):3823-3828.
    [52]G.. L. Cai, H. Wang. A novel four-dimensional hyperchaotic system and its dynamic analysis[C]. Proc. Second Int. Conf. on Information and Computing Science(ICIC'09), Manchester, England,2009:333-336.
    [53]I. Stewart. The Lorenz attractor exists[J]. Nature,2002,406:948-949.
    [54]A. S. Elwakil, S. Ozoguz, M. P. Kennedy. Creation of a complex butterfly attractor using a novel Lorenz-type system[J]. IEEE Trans. Circuits Syst.-I,2002,49(4): 527-530.
    [55]A. S. Elwakil, S. Ozoguz, M. P. Kennedy. A four-wing butterfly attractor from a fully autonomous system[J]. Int. J. Bifurc. Chaos,2003,13(10):3093-3098.
    [56]陈关荣,吕金虎Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社,2003.
    [57]T. S. Zhou, G. Chen. Classification of chaos in 3-D autonomous quadratic system-1. Basic framework and methods[J]. Int. J. Bifurc. Chaos,2006,16(9): 2459-2479.
    [58]T. S. Zhou, Y. Tang, G. Chen. Chen's attractor exists[J]. Int. J. Bifurc. Chaos,2004, 14(9):3167-3177.
    [59]J. Lii, G. Chen, D. Z. Cheng. A new chaotic system and beyond:the generalized Lorenz-like system[J]. Int. J. Bifurc. Chaos,2004,14(5):1507-1537.
    [60]Q. G. Yang, Y. J. Liu. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci[J]. J. Math. Anal. Appl.,2009,360(1):293-306.
    [61]Q. G. Yang, K. M. Zhang, G. Chen. Hyperchaotic attractors from a linearly controlled Lorenz system[J]. Nonlinear Analysis:Real World Applications,2009, 10(3):1601-1617.
    [62]王兴元,王明军.超混沌Lorenz系统[J].物理学报,2007,56(9):5136-5141.
    [63]Z. Q. Chen, Y. Yang, G. Y. Qi, et al. A novel hyperchaos system only with one equilibrium[J]. Phys. Lett. A,2007,360(6):696-701.
    [64]Y. X. Li, G. Chen, W. K. S. Tang. Controlling a unified chaotic system to hyperchaotic[J]. IEEE Trans. Circuits Syst.-Ⅱ,2005,52(4):204-207.
    [65]Y. X. Li, W. K. S. Tang, G. Chen. Hyperchaotic evolved from the generalized Lorenz system[J]. Int. J. Circuit Theory Appl.,2005,33(4):235-251.
    [66]汪纪锋,李元凯.分数阶控制器系统稳定性分析与控制器设计:扩展频率法[J].控制理论与应用,2006,25(5):7-12.
    [67]高心,周红鸥.分数阶系统的混沌特性及其控制[J].西南民族大学学报自然科学学报,2006,32(2):290-294.
    [68]陈志盛,孙克辉,张泰山.Liu混沌系统的非线性反馈同步控制[J].物理学报,2005,54(6):2580-2583.
    [69]陈保颖.线性反馈实现Liu系统的混沌同步[J].动力学与控制学报,2006,4(1):1-4.
    [70]G. P. Jiang, W. Tang, G. R. Chen. A simple global synchronization criterion for coupled chaotic systems[J]. Chaos, Solit. Fract.,2003,15(5):925-935.
    [71]S. Chen, J. Lu. Parameters identification and synchronization of chaotic systems based upon adaptive control[J]. Phys. Lett. A,2002,299(4):353-358.
    [72]K. Li, L. Yang, Z. Y. He. Stability analysis of nonlinear observer with application to chaos synchronization[J]. Science in China(Information Sciences),2001,44(6): 430-447.
    [73]E. Sanchez, J. Perez, L. Ricalde. Neural network design for chaos synchronization[M]. Lecture Notes in Control and Information Sciences,2004, 292:137-158.
    [74]J. Barajas-Ramirez, G. Chen, L. Shieh. Fuzzy chaos synchronization via sampled driving signals[J]. Int. J. Bifurc. Chaos,2004,14(8):2721-2733.
    [75]X. X. Liao, G. R. Chen. Chaos synchronization of general Lur'e systems via time-delay feedback control[J]. Int. J. Bifurc. Chaos,2003,13(1):207-213.
    [76]H. T. Yau. Design of adaptive sliding mode controller for chaos synchronization with uncertainties[J]. Chaos, Solit. Fract.,2004,22(2):341-347.
    [77]J. M.V. Grzybowski, M. Rafikov, J. M. Balthazar. Synchronization of the unified chaotic system and application in secure communication[J]. Commun. Nonlinear Sci. Numer. Simulat.,2009,14(6):2793-2806.
    [78]S. Fahy, D. R. Haman. Transition from chaotic to nonchaotic behavior in randomly driven systems[J]. Phys. Rev. Lett.1992,69(5):761-764.
    [79]A. Neiman. Synchronizationlike phenomena in coupled stochastic bistable systems[J]. Phys. Rev. E,1994,49(4):3484-3487.
    [80]X. F. Wang, G. R. Chen. Synchronization in small-world dynamical networks[J]. Int. J. Bifurc. Chaos,2001,11(1):1254-1262.
    [81]H. Abarbanel, N. F. Rulkov, M. Sushchik. Generalized synchronization of chaos: the auxiliary system approach[J]. Phys. Rev. E,1996,53(5):4528-4535.
    [82]J. P. Yan, C. P. Li. Generalized projective synchronization of a unified chaotic system[J]. Chaos, Solit. Fract.,2005,26(4):1119-1124.
    [83]J. P. Yan, C. P. Li. Generalized projective synchronization for the chaotic Lorenz system and the Chen system[J]. J. Shanghai University.2006,10(4):299-304.
    [84]G. H. Li. Modified projective synchronization of chaotic system[J]. Chaos, Solit. Fract.,2007,32(5):1786-1790.
    [85]S. M. Yu, J. Lii, G. Chen. A module-based and unified approach to chaotic circuit design and its applications[J]. Int. I. Bifurc. Chaos,2007,17(5):1785-1800.
    [86]X. H. Hu. Particle Swarm Optimization[W].2006. http://www.swarmintelligence. org/index.php.
    [87]邓聚龙.灰色系统理论与应用[M].台北:高立图书有限公司,2000.
    [88]L. Gamez-Guzman, C. Cruz-Hernandez, R. M. Lopez-Gutierrez, E. E. Garcia-Guerre-ro. Synchronization of chua's circuits with multi-scroll attractors: Application to communication[J]. Commun. Nonlinear Sci. Numer. Simulat.,2009, 14(6):2765-2775.
    [89]E. N. Lorenz. Deterministic nonperiodic flow[J]. J. Atmospheric Sci.,1963,20: 130-141.
    [90]O. E. Rossler. An equation for continuous chaos[J]. Phys. Lett. A.,1976,57(5): 397-398.
    [91]K. Murali, M. Lakshmanan. Synchronization through compound chaotic signal in Chua's circuit and Murali-Lakshmanan-Chua circuit[J]. Int. J. Bifurcat. Chaos, 1997,7(2):415-421.
    [92]J. A. K. Suykens, A. Huang, L. O. Chua. A family of n-scroll attractors from a generalized Chua's circuit[J]. Int. J. Electron. Commun.,1997,51(3):131-138.
    [93]H. A. Albuquerque, P. C. Rech. A parameter-space of a Chua system with a smooth nonlinearity[J]. Int. J. Bifurcat. Chaos,2009,19(7):1351-1355.
    [94]E. Bilotta, G. Di Blasi, F. Stranges, P. Pantano. A gallery of Chua attractors. Part Ⅳ[J]. Int. J. Bifurcat. Chaos,2007,17(6):1017-1077.
    [95]F. Q. Wang, C. X. Liu. Generation of multi-scroll chaotic attractors via the saw-tooth function[J]. Int. J. Mod. Phys. B,2008,22(15):2399-2405.
    [96]S. M. Yu, J. H. Lu, H. Leung, G. R. Chen. Design and implementation of n-scroll chaotic attractors from a general jerk circuit[J]. IEEE Trans. Circuits Syst.-Ⅰ,2005, 52(7):1459-1476.
    [97]S. M. Yu, J. H. Lu, W. K. S. Tang, G. R. Chen. A general multiscroll Lorenz system family and its realization via digital signal processors[J]. Chaos,2006,16: 033126-033126-10.
    [98]A. S. Hornby. Oxford Advanced Dictionary[M]. Oxford:Oxford University Press, 1974.
    [99]C. Huygens (Hugenii). Horologium Oscillatorium[M]. Parisiis:Apud F. Muguet, 1673.
    [100]Z. M. Ge, J. K. Lee. Chaos synchronization and parameter identification for gyroscope system[J]. Appl. Math. Comput.,2005,163(2):667-682.
    [101]Y. W. Wang, Z. H. Guan. Generalized synchronization of continuous chaotic system[J]. Chaos Solit. Fract.,2006,27(1):97-101.
    [102]L. Junge, U. Parlitz. Phase synchronization of coupled Ginzburg-Landau equations[J]. Phys. Rev. E.,2000,62(1):438-441.
    [103]E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Lag synchronization in time-delayed systems[J]. Phys. Lett. A.,2002,292(6):320-324.
    [104]Z. Y. Yan. A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems[J]. Chaos,2005,15(1): 013101-013110.
    [105]R. Mainieri, J. Rehacek. Projective synchronization in three-dimensional chaotic systems[J]. Phys. Rev. Lett.,1999,82(15):3042-3045.
    [106]G. L. Wen, D. Xu. Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension[J]. Phys. Lett. A.,2004, 333(5-6):420-425.
    [107]R. H. Li. A special full-state hybrid projective synchronization in symmetrical chaotic systems[J]. Appl. Math. Comput.,2008,200(1):321-329.
    [108]王兴元,王勇.基于线性分离的自治混沌系统的投影同步[J].物理学报,2007,56(5):2498-2503.
    [109]S. M. Yu, K. S. Tang, J. H. Lii, G. R. Chen. Multi-wing butterfly attractors from the modified lorenz systems[C]. IEEE International Symposium on Circuits and Systems(ISCAS 2008), Seattle, Washington, USA,2008:768-771.
    [110]S. M. Yu, K. S. Tang, J. H. Lu, G. R. Chen. Generation of n×m-wing Lorenz-like attractors from a modified Shimizu-Morioka model [J]. IEEE Trans. Circuits Syst.-II,2008,55(11):1168-1172.
    [111]R. Hilfer. Applications of Fractional Calculus in Physics[M]. Singapore. World Scientific,2000.
    [112]P. Butzer, U. Westphal. An introduction to fractional calculus[M]. Singapore. World Scientific,2000.
    [113]S. Kenneth, R. Bertram. An introduction to the fractional calculus and fractional differential equations[M]. Wiley-Interscience. USA,1993.
    [114]T. Hartley, C. Lorenzo, H. Qammer. Chaos in a fractional order Chua's system[J]. IEEE Trans. Circuits Syst.-I,1995,42(8):485-490.
    [115]P. Arena, R. Caponetto, L. Fortuna, D. Porto. Nonlinear noninteger order circuits and systems-An introduction[M]. Singapore. World Scientific,2003.
    [116]S. Momani, Z. Odibat. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method[J]. Appl. Math. Comput.,2006, 177(2):488-494.
    [117]J. J. Lu, C. X. Liu. Realization of fractional-order Liu chaotic system by circuit[J]. Chin. Phys.,2007,16(6):1586-1590.
    [118]S. Q. Shao, X. Gao, X. W. Liu. Projective synchronization in coupled fractional order chaotic Rossler system and its control[J]. Chin. Phys.,2007,16(9): 2612-2615.
    [119]D. Cafagna, G. Grassi. Bifurcation and chaos in the fractional-order Chen system via a time-domain approach[J]. Int. J. Bifurcat. Chaos,2008,18(7):1845-1863.
    [120]D. Cafagna, G. Grassi. Fractional-order Chua's circuit:Time-domain analysis, bifurcation chaotic behavior and test for chaos[J]. Int. J. Bifurcat. Chaos,2008, 18(3):615-639.
    [121]J. H. Chen, W. C. Chen. Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos Solit. Fract.,2008,35(1):188-198.
    [122]W. H. Deng, C. P. Li. The evolution of chaotic dynamics for fractional unified system[J]. Phys. Lett. A,2008,372(4):401-407.
    [123]Z. M. Ge, C. Y. Ou. Chaos synchronization of fractional order modified Duffing systems with parameters excited by chaotic signal [J]. Chaos Solit. Fract.,2008, 35(4):705-717.
    [124]M. S. Tavazoei, M. Haeri. Synchronization of chaotic fractional-order systems via active sliding mode controller [J]. Phys. A,2008,387(1):57-70.
    [125]X. Y. Wang, Y. J. He. Projective synchronization of fractional order chaotic system based on linear separation[J]. Phys. Lett. A,2008,372:435-441.
    [126]D. Matignon. Stability results of fractional differential equations with applications to control processing[C]. Proc. IMACS, IEEE-SMC, Lille, France,1996:963-968.
    [127]W. H. Deng, C. P. Li, J. H. Lu. Stability analysis of linear fractional differential system with multiple time delays[J]. Nonlin. Dyn.,2007,48(4):409-416.
    [128]L. J. Sheu, H. K. Chen, J. H. Chen, L. M. Tam. Chaos in a new system with fractional orde[J]. Chaos Solit. Fract.,2007,31(5):1203-1212.
    [129]C. P. Li, J. P. Yan. The synchronization of three fractional differential systems[J]. Chaos Solit. Fract.,2007,32(2):751-757.
    [130]J. G. Lu. Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity[J]. Int. J. Mod. Phys. B.,2005,19(20): 3249-3259.
    [131]J. W. Wang, X. H. Xiong, Y. B. Zhang. Extending synchronization scheme to chaotic fractional-order Chen systems[J]. Phys. A,2006,370(2):279-285.
    [132]C. P. Li, W. H. Deng, D. Xu. Chaos synchronization of the Chua system with a fractional order [J]. Phys. A,2006,360(2):171-185.
    [133]H. Zhu, S. B. Zhou, J. Zhang. Chaos and synchronization of the fractional-order Chua's system[J]. Chaos Solit. Fract.,2009,39(4):1595-1603.
    [134]X. J. Wu, J. Li, G. R. Chen. Chaos in the fractional order unified system and its synchronization[J]. J. Franklin Instit.,2008,345(4):392-401.
    [135]Y. G. Yu, H. X. Li. The synchronization of fractional-order Rossler hyperchaotic systems[J]. Phys. A,2008,387(5-6):1393-1403.
    [136]H. M. Deng, T. Li, Q. H. Wang, H. B. Li. A fractional-order hyperchaotic system and its synchronization[J]. Chaos Solit. Fract.,2009,41(2):962-969.
    [137]X. Y. Wang, J. M. Song. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control [J]. Commun. Nonlinear Sci. Numer. Simulat.,2009,14(8):3351-3357.
    [138]X. J. Wu, H. T. Lu, S. L. Shen. Synchronization of a new fractional-order hyperchaotic system[J]. Phys. Lett. A,2009,373(27-28):2329-2337.
    [139]Z. Odibat, N. Corson, M. Aziz-Alaoui, C. Bertelle. Synchronization of chaotic fractional-order systems via linear control[J]. Int. J. Bifurcat. Chaos,2010,20(1): 81-97.
    [140]T. Matsumoto, L. O. Chua, K. Kobayashi. Hyper chaos:Laboratory experiment and numerical confirmation[J]. IEEE Trans. Circ. Syst.1986,33(11):1143-1147.
    [141]E. Ott, C. Grebogi, J. Yorke.Controlling chaos[J]. Phys. Rev. Lett.,1990,64(11): 1196-1199.
    [142]J. H. Park, O. M. Kwon. A novel criterion for delayed feedback control of time-delay chaotic systems[J]. Chaos Solit. Fract.,2005,23(2):495-501.
    [143]J. Lu, X. Wu, X. Han, J. Lu. Adaptive feedback synchronization of a unified chaotic system[J]. Phys. Lett. A.,2004,329(4-5):327-333.
    [144]J. H. Park. Adaptive synchronization of a unified chaotic system with an uncertain parameter[J]. Int. J. Nonlinear Sci. Numer. Simulat.,2005,6:201-206.
    [145]X. Wu, J. Lu. Parameter identification and backstepping control of uncertain Lu system[J]. Chaos Solit. Fract.,2003,18(4):721-729.
    [146]H. N. Agiza, M. T. Yassen. Synchronization of Rossler and Chen dynamical systems using active control[J]. Phys. Lett. A.,2001,278(4):191-197.
    [147]H. H. Sun, A. A. Abdelwahad, B. Onaral. Linear approximation of transfer function with a pole of fractional order[J]. IEEE. Trans. Automat. Contr.,1984, 29(5):441-444.
    [148]M. Ichise, Y. Nagayanagi, T. Kojima. An analog simulation of non-integer order transfer functions for analysis of electrode processes[J]. J. Electro-anal. Chem., 1971,33(2):253-265.
    [149]O. Heaviside. Electromagnetic Theory[M]. Chelsea. New York,1971.
    [150]R.L. Bagley, R.A. Calico. Fractional order state equations for the control of viscoelastic structures [J]. J. Guid. Control Dynam.,1991,14(2):304-311.
    [151]D. Kusnezov, A. Bulgac, G. Dang. Quantum levy processes and fractional kinetics[J]. Phys. Rev. Lett.,1999,82(6):1136-1139.
    [152]N. Laskin. Fractional market dynamics[J]. Physica A,2000,287(3-4):482-492.
    [153]A. M. A. El-Sayed. Fractional-order diffusion-wave equation[J]. Int. J. Theor. Phys.,1996,35(2):311-322.
    [154]M. S. Tavazoei, M. Haeri. Chaos control via a simple fractional-order controller[J]. Phys. Lett. A.,2008,372(6):780-798.
    [155]S. H. Hosseinnia,, R. Ghaderi, A. Ranjbar, F. Abdous, S. Momani. Control of chaos via fractional-order state feedback controller[J], New Trends in Nanotechnology and Fractional Calculus Applications,2010, Part 5,511-519.
    [156]L. X. Yang, Y. D. Chu, J. G. Zhang, X. F. Li, Y. X. Chang. Chaos synchronization in autonomous chaotic system via hybrid feedback control [J]. Chaos Solit. Fract., 2009,41(1):214-223.
    [157]E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka. Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models[J]. J. Math. Anal. Appl.,2007,325(1):542-553.
    [158]D. Matignon. Stability results for fractional differential equations with applications to control processing[C]. Proceeding of IMACS, Lille, France,1996:963-968.
    [159]J. A. K. Suykens, A. Huang, L. O. Chua. A family of n-scroll attractors form a generalized Chua's circuit[J]. Archiv fur Elektronik und Ubertragungstechnik, 1997,51(3):131-138.
    [160]G. R.Chen, X. N. Dong. From chaos to order[M]. Singapore. World Scientific, 1998.
    [161]L. Q. Chen. A general formalism for synchronization in finite dimensional dynamical systems[J]. Chaos Solit. Fract.,2004,19(5):1239-1242.
    [162]J. A. Lu, X. Q. Wu, J. H. Lu. Synchronization of a unified chaotic system and the application in secure communication[J]. Phys. Lett. A.,2002,305(6):365-370.
    [163]J. G. Zhang, X. F. Li, Y D. Chu, Y X. Chang. Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system[J]. Chaos Solit. Fract.,2009,39(5):2150-2168.
    [164]M. Y. Chen, Z. Z. Han. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control[J]. Chaos Solit. Fract.,2003,17(4):709-716.
    [165]J. A. K. Suykens, P. F. Curran, L. O. Chua. Master-slave synchronization using dynamic output feedback[J]. Int. J. Bifurcat. Chaos.,1997,7(3):671-679.
    [166]Z. M. Ge, T. C. Yu, Y S. Chen. Chaos synchronization of a horizontal platform system[J]. J. Sound. Vib.,2003,268(4):731-749.
    [167]S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou. The synchronization of chaotic systems[J]. Phys. Rep.,2002,366(1-2):1-101.
    [168]Y D. Chu, J. G. Zhang, X. F. Li, Y X. Chang, G. W. Luo. Chaos and chaos synchronization for a non-autonomous rotational machine systems[J]. Nonlinear Anal.:Real World Appl.,2008,9(4):1378-1393.
    [169]M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase synchronization of chaotic oscillators[J]. Phys. Rev. Lett.,1996,76(11):1804-1807.
    [170]N. F. Rulkov, M. M. Sushchik, L.S. Tsimring. Generalized synchro-nization of chaos in directionally coupled chaotic systems[J]. Phys. Rev. E.,1995,51(2): 980-994.
    [171]M. G. Rosenblum, A. S. Pikovsky, J. Kurth. From phase to lag synchronization in coupled chaotic oscillators[J]. Phys. Rev. Lett.,1997,78(22):4193-4196.
    [172]D. L. Xu. Control of projective synchronization in chaotic systems[J]. Phys. Rev. E.,2001,63(2):27201-27204.
    [173]D. L. Xu, Z. G. Li, S. R. Bishop. Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems[J]. Chaos,2001,11(3): 439-442.
    [174]D. L. Xu, C. Y Chee. Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension[J]. Phys. Rev. E.,2002,66(4): 046218-046222.
    [175]Z. G. Li, D. L. Xu. Stability criterion for projective synchronization in three-dimensional chaotic systems[J]. Phys. Lett. A.,2001,282(3):175-179.
    [176]D. L. Xu, W. L. Ong, Z. G. Li. Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension[J]. Phys. Lett. A., 2002,305(3-4):167-172.
    [177]G. L. Wen, D. L. Xu. Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems[J]. Chaos Solit. Fract.,2002, 26(1):71-77.
    [178]J. H. Park. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter[J]. Chaos Solit. Fract.,2007,34(5): 1552-1559.
    [179]Y Chen, X. Li. Function projective synchronization between two identical chaotic systems[J]. Internal. J. Modern Phys. C.,2007,18(5):883-888.
    [180]M. F. Hu, Z. Y Xu, R. Zhang, A. H. Hu. Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order[J]. Phys. Lett. A.,2007,365(4):315-327.
    [181]G. H. Li. Projective lag synchronization in chaotic systems[J]. Chaos Solit. Fract., 2009,41(5):2630-2634.
    [182]Q. J. Zhang, J. A. Lu. Full state hybrid lag projective synchronization in chaotic(hyperchaotic) systems[J]. Phys. Lett. A.,2008,372(9):1416-1421.
    [183]C. F. Feng, Y Zhang, J. T. Sun, et al. Generalized projective synchronization in time-delayed chaotic systems[J]. Chaos Solit. Fract.,2008(3),38:743-747.
    [184]唐新华,陆君安,张伟伟.基于反步法的混沌系统函数投影同步[J].动力学与控制学报,2007,5(3):216-219.
    [185]H. Y Du, Q. S. Zeng, C. H. Wang, et al. Function projective synchronization in coupled chaotic systems[J]. Nonlinear Anal.:Real World Appl.,2010,11(2): 705-712.
    [186]H. Y. Du, Q. S. Zeng, N. Lu, et al. A general method for modified function projective lag synchronization in chaotic systems[J]. Phys. Lett. A.,2010, 374(13-14):1493-1496.
    [187]R. B. Leipnik, T. A. Newton. Double strange attractors in rigid body motion with linear feedback control[J]. Phys. Lett. A.,1981,86(2):63-67.
    [188]J. H. Lu, G. R. Chen, S. C. Zhang. Dynamical analysis of a new chaotic attractor[J]. Int. J. Bifurcat. Chaos,2002,12(5):1001-1015.
    [189]L. O. Chua, M. Komuro, T. Matsumoto. The double scroll family, Part Ⅰ:Rigorous proof of chaos [J]. IEEE Trans. Circuits Syst.,1986,33:1072-1096.
    [190]L. O. Chua, G.-N. Lin. Canonical realization of Chua's circuit family[J]. IEEE Trans. Circuits Syst.,1990,37(7):885-902.
    [191]S. ozoguz, A. S. Elwakil, K.N. Salama. N-scroll chaos generator using nonlinear transconductor[J]. Electron Lett.,2002,38(14):685-686.
    [192]C. C. Penga, C. L. Chen. Robust chaotic control of Lorenz system by backstepping design[J]. Chaos, Solit. Fract.,2008,37(2):598-608.
    [193]B. Wang, G. J. Wen. On the synchronization of a class of chaotic systems based on backstepping method[J]. Phys. Lett. A.,2007,370(1):35-39.
    [194]J. M. Nazzal. A. N. Natsheh. Chaos control using sliding-mode theory [J]. Chaos, Solit. Fract.,2007,33(2):695-702.
    [195]M. Haeri, M. S. Tavazoei, M. R. Naseh. Synchronization of uncertain chaotic systems using active sliding mode control[J]. Chaos, Solit. Fract.,2007,33(4): 1230-1239.
    [196]J. H. Park. On synchronization of unified chaotic systems via nonlinear control[J]. Chaos, Solit. Fract.,2005,25(3):699-704.
    [197]Q. J. Zhang, J. A. Lu. Chaos synchronization of a new chaotic system via nonlinear control[J]. Chaos, Solit. Fract.,2008,37(1):175-179.
    [198]Sh. H. Chen, J. H. Lu. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solit. Fract.,2002,14(4):643-647.
    [199]J. Zhou, J. A. Lu, J. H. Lu. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica,2008,44(4):996-1003.
    [200]J. Zhou, J. A. Lu, J. H. Lu. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Trans. on Automatic Control,2006,51(4):652-656.
    [201]L. Q. Shen, M. Wang. Adaptive control of chaotic systems based on a single layer neural network[J]. Phys. Lett. A.,2007,368(5):379-382.
    [202]S. Kuntanapreeda. An observer-based neural network controller for chaotic Lorenz system[J]. Lect. Notes Comput. Sci.,2008,5370:608-617.
    [203]H. T. Yau, C. S. Shieh. Chaos synchronization using fuzzy logic controller[J]. Nonlinear Anal.:Real World Appl.,2008,9(4):1800-1810.
    [204]L. L. Zhang, L. H. Huang, Z. Z. Zhang, Z. Y. Wang. Fuzzy adaptive synchronization of uncertain chaotic systems via delayed feedback control[J]. Phys. Lett. A.,2008,372(39):6082-6086.
    [205]X. Liu, J. Z. Wang, L. Huan. Global synchronization for a class of dynamical complex networks[J]. Physica A.,2007,386(1):543-556.
    [206]L. Wang, X. J. Kong, H. Shi, H. P. Dai, Y. X. Sun. LMI-based criteria for synchronization of complex dynamical networks[J]. J. Phys. A:Math. Theor., 2008,41(28):285102.
    [207]J. H. Park. S. M. Lee, H. Y. Jung. LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks[J]. J. Optim. Theory Appl., 2009,143(2):357-367.
    [208]J. G. Lu, D. J. Hill. Global asymptotical synchronization of chaotic Lur'e systems using sampled data:A linear matrix inequality approach[J]. IEEE Trans. Circ. Syst. II:Exp Briefs,2008,55(6):586-590.
    [209]Y. He, G. L. Wen, Q. G. Wang. Delay-dependent synchronization criterion for Lur'e systems with delay feedback control[J]. Int. J. Bifur. Chaos,2006,16(10): 3087-3091.
    [210]G. L. Wen, Q. G. Wang, C. Lin, X. Han, G. Y. Li. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays[J]. Chaos Solit. Fract.,2006,29(5):1142-1146.
    [211]M. M. Asheghan, M. T. H. Beheshti. An LMI approach to robust synchronization of a class of chaotic systems with gain variations[J]. Chaos Solit. Fract.,2009, 42(2):1106-1111.
    [212]R. C. Wu, W. W. Zhang. Synchronization of delayed chaotic neural networks by LMI[C]. Proceedings of the 2008 Second International Conference on Future Generation Communication and Networking Symposia(FGCNS), Hinan, China, 2008,55-59.
    [213]F. X. Chen, W. D. Zhang. LMI criteria for robust chaos synchronization of a class of chaotic systems[J]. Nonlinear Analysis:Theroy, Methods and Applications, 2007,67(12):3384-3393.
    [214]B. Li, D. Yang, X. H. Zhang, L. T. Ma. Chaotic lag synchronization of coupled time-delayed neural networks with two neurons using LMI approach[J]. Acta Automatica Sinica,2007,33(11):1196-1200.
    [215]K. Y. Lian, C. S. Chiu, T. S. Chian, P. Liu. LMI-based fuzzy chaotic synchronization and communications[J]. IEEE Trans. on Fuzzy Systems,2001, 9(4):539-553.
    [216]K. Tanaka, T. Ikeda, H. O. Wang. A unified approach to controlling chaos via an LMI-based fuzzy control system design[J]. IEEE Trans. Circ. and Syst.-I,1998, 45(10):1021-1040.
    [217]C. D. Li, X. F. Liao, X. Y. Zhang. Impulsive synchronization of chaotic systems[J Chaos,2005,15(2):023104-023104-5.
    [218]F. X. Chen, W. Wang, L. Chen, W. D. Zhang. Adaptive chaos synchronizatior based on LMI technique[J]. Phys. Scr.,2007,75(3):285-288.
    [219]H. Sira-Ramirez, C. Cruz-Hernandez. Synchronization of chaotic systems:a generalized Hamiltonian systems approach[J]. Int. J. Bifurc. Chaos,2001,11(5): 1381-1395.
    [220]S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan. Linear matrix inequalities in system and control theory[C]. SIAM, Philadelphia,1994.
    [221]Q. Yang, C. Zeng. Chaos in fractional conjugate Lorenz system and its scaling attractors[J]. Commun. Nonlinear Sci. Numer. Simulat.,2010,15(12):4041-4051.
    [222]J. G. Lu, G. Chen. A note on the fractional-order Chen system[J]. Chaos Solit. Fract.,2006,27(3):685-688.
    [223]J. G. Lu. Chaotic dynamics of the fractional-order Lu system and its synchronization[J]. Phys. Lett. A,2006,354(4):305-311.
    [224]H. L. Xi, S. M. Yu, C. X. Zhang, Y. L. Sun. Generation and implementation of hyperchaotic Chua system via state feedback control [J]. Int. J. Bifurc. Chaos, 2012.(accepted)
    [225]S. H. Hosseinnia, R. Ghaderi, N. A. Ranjbar, M. Mahmoudian, S. Momani. Sliding mode synchronization of an uncertain fractional order chaotic system[J]. Comput. Math. Appl.,2010,59(5):1637-1643.
    [226]S. Bhalekar, V. Daftardar-Gejji. Synchronization of different fractional order chaotic systems using active control[J]. Commun. Nonlinear Sci. Numer. Simul., 2010,15(11):3536-3546.
    [227]M. Yahyazadeh, A. Ranjbar Noei, R. Ghaderi. Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control[J]. ISA Trans.,2011,50(2):262-267.
    [228]I. Podlubny. Fractional differential equations[M]. New York:Academic Press, 1999.
    [229]肖俊.基于粒子群算法的GM(1,1)模型及其应用[D].武汉:华中科技大学,2004.
    [230]李希灿.动态平差灰色预测优化模型[J].测绘工程,1999,8(1):34-40.
    [231]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
    [232]秦元庆,陈少鸿,孙德宝等.灰色模型在春运客流量预测应用中的优化[J].控制与决策,2003,18(4):507-509.
    [233]张俊芳,吴伊昂,吴军基.基于灰色模型负荷预测的应用研究[J].电力自动化设备,2004,24(5):24-27.
    [234]谢开贵,李春燕,周家启.基于遗传算法的GM(1,1)模型[J].系统工程学报,2000,15(2):168-172.
    [235]周铭,王洪发.基于遗传算法的灰色GM(1,1)模型[J].南昌大学学报(理科版),2002,26(4):331-333.
    [236]张曙红,陈绵云,宋业新等.基于遗传算法的SCGM(1,1)优化模型[J].华中科技大学学报,2001,29(6):31-33.
    [237]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.
    [238]J. Chen, F. Pan, T. Cai, X. Y. Tu. Stability nalysis of particle swarm optimization without Lipschitz constraint [J]. Journal of Control Theory and Applications,2003, 86-90.
    [239]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [240]Y. H. Shi, P. C Eberhart. A modified particle swarm optimizer[C]. IEEE International Conference on Evolutionary Computation, Alaska,1998:69-73.
    [241]戴冬雪,王祁,阮永顺等.基于混沌思想的粒子群优化算法及其应用[J].华中科技大学学报,2005,33(10):53-55.
    [242]刘华蓥,林玉娥,张君施.基于混沌搜索解决早熟收敛的混合粒子群算法[J].计算机工程与应用,2006,13:77-79.
    [243]Z. S. Lii, Z. R. Hou. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica,2004,3(1):416-420.
    [244]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [245]杨秋平,王卫平.不同切削力预测建模方法的比较研究[J].工具技术,2002,36(12):21-24.