海浪破碎对海洋上混合层影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋上混合层在大气和海洋之间的水汽、热量和动量的交换过程中有着重要的作用。海浪为存在于海气界面上的一种重要运动形态,研究其对混合层的动力学结构和热力学结构的影响具有重要科学意义。
     本文综述了海洋上混合层研究的现状和存在问题,系统地研究了海浪破碎对混合层动力学结构的影响。
     海洋上混合层的动力学和热力学结构特征主要受到海表风应力、净热通量和浮力通量的影响,而混合层的形成与维持依赖于混合层内的湍流生成和湍流垂向混合。文中简要描述了混合层内的湍流生成和湍流与其它形式能量相互转化的物理机制。
     利用NODC提供的Levitus(1994)全球气候月平均混合层深度资料,分析了三种不同混合层深度定义下的混合层深度的空间分布特征和季节变化规律。分析表明,基于温度阶跃0.5℃得到的MLD较深,尤其在1~4月,这可能主要是因为没考虑MLD此时受到的盐度变化的影响;基于温差为0.5℃对应的密度定义的MLD最浅。尽管如此,三种定义下得到的MLD的空间分布特征及季节变化规律却是大体一致的。整体而言,夏季由于太阳辐射增强,风应力减小,导致MLD变浅,不超过50米;冬季相反,MLD较深,且在局部海域(如西北太平洋、北大西洋和南大洋)出现MLD显著加深的现象,约在100~300米之间,最深处在600米以上,具有明显的季节变化规律。而在10°S~10°N之间的赤道附近海域,因风应力和净热通量的季节变化不大,且该区降水量较大,浮力通量增加,MLD较浅,低于50米,且没有明显的季节变化。
     以现有的理论研究为基础,通过分析海洋上混合层中考虑波浪运动的能量平衡方程,探讨了混合层中波—湍相互作用的物理机制,并对波浪破碎导致混合层内湍流混合加强和耗散增加的现象进行了分析。由于海浪理论和湍流理论都存在着一些目前无法解决的问题,所以文中对混合层中波—湍相互作用物理机制的探讨只是一个初步的尝试,远不是完善。同时,由于无法获得观测资料,本文所得的波浪破碎对海洋上混合层影响的数值研究结果没能与现场观测结果比较。
     采用一维2.5阶湍封闭混合层模式,根据参数化方法对波浪破碎导致的能量耗散率进行了估计,通过改变湍动能方程的上边界条件引入波浪破碎对湍动能生成的影响,计算了不同风应力强迫下的混合层流场结构和湍能量收支(下述给出的结果是取风速为20m/s得到的)。模拟结果表明,当考虑波浪破碎的影响时,混合层深度比无波浪影响时的结果加深了约50cm;随着风应力作用的增加,波
    
    浪破碎加强了混合层中的湍流混合,促使加深幅度也增加。当混合层内温度分布
    均匀时,在混合层底部形成一温度跃层,并且考虑波浪破碎影响时,混合层内的
    温度比无波浪影响时均匀分布的温度降低了0.013℃。
     一维模式的流场结果表明,混合层中的流场是由惯性波动与时间平均流两部
    分叠加而成,且通过时间平均消去惯性波动后得到平均流,其不同深度的流速矢
    量构成一Ekman螺旋,表层流速矢量相对风向右偏了30.3’。当考虑波浪破碎的
    影响时,湍流混合的加强,促使上层流场趋于均匀分布,混合层内速度切变减小,
    表层流速分量均有明显减小,流速分量U减小了19.8 cm/s,流速分量V减小3.2
    cm/s,表层流速矢量相对风向右偏了49.70,比无波浪影响时向右多偏了19.40,
    并且随着风速的增加,这种右偏角度的增加量也相应地增加,而取10m/s风速
    时,右偏增加的角度只有12’。
     通过对一维模式湍动能方程中各项进行深度积分,可以分析混合层中的湍动
    能收支问题。结果表明,当不考虑波浪的影响时,混合层中的湍流生成和耗散间
    的局部平衡主要通过湍动能的剪切生成项、耗散项和浮力生成项来实现。当考虑
    波浪破碎对混合层中湍流生成的影响时,混合层上部的垂直扩散项和耗散项都有
    显著的增加,由于流速减小,剪切生成项也相应地减小。同时,湍动能方程中各
    项的垂向分布表明,波浪破碎在海表输入的湍动能通量主要在近海表2.5米以内
    的水层内被耗散掉,在该深度内,被耗散掉的湍动能占整个混合层内耗散总能量
    的92.0%,与无波浪影响的结果48.2%相比,增加了约1倍,而剪切生成的作用
    减小了3.5%。
     为了更全面地研究波浪破碎对混合层的影响,将国际上盛行的主维海洋模式
    一POM模式和海浪模式一认叭M模式相结合,利用认认M模式计算的海浪破碎导
    致的能量耗散率,作为POM模式湍动能方程的上边界条件,引入波浪破碎在海
    表产生的一向下输入的湍能量通量。受垂向分辨率限制,三维联合模式试验只计
    算了风速为10m/s的情况。结果表明,当考虑波浪破碎对混合层的影响时,混
    合层深度加深了约50cm,并且在混合层加深过程中,混合层达到某一深度所需
    时间明显提前,即在同一时刻,考虑波浪破碎的混合层深度比无波浪影响的要深,
    例如当混合层深度为30米时,前者比后者提前46.9小时。同时,混合层内均匀
    分布的温度也降低了0.013℃。这也说明,在三维模式计算中,波浪破碎对上混
    合层的影响要比一维模式中明显,这可能是因为三维模式中全面地考虑了混合层
    中一些其它物理过程(如水平平流项的影响)。
     当考虑波浪破?
The ocean surface mixed layer plays an important role in the processes of the exchange of heat and momentum between the upper ocean and the atmosphere. The effect of wind waves on the dynamical and thermal structure of the ocean mixed layer is significant.
    Previous work on ocean mixed layer and about the effect of wave breaking on the mixed layer structure are first summarized. Then the effects are studied using numerical models.
    The understanding of the effects of atmospheric forcings, including mainly the surface wind stress, net heat flux and buoyant flux, on the dynamical and thermal structure of the ocean surface mixed layer necessitates a proper knowledge of the mechanisms and influences of the different turbulent mixing processes involved in the upper ocean. A brief description of the physical mechanism of the turbulence production and its transform with the other forms of the energy is given.
    The global climatological monthly mean data of the mixed layer depth (MLD) supplied by Levitus (1994) in NODC based on three different criteria, are used to analyze the space distribution and seasonal variability of MLD. It is found that MLD based on a temperature change from the ocean surface of 0.5 degree Celsius is deeper, especially from Jan. to Apr., while MLD based on a variable density change from the ocean surface with a temperature change of 0.5 degree Celsius is shallower. However, the space distribution and seasonal variability of MLD obtained from different criteria are consistent with each other. In general, MLD becomes shallower and less than 50 meters with solar radiation intensifying and wind stress weakening in summer, and becomes deeper in winter, especially in oceans (such as the northwest Pacific, the north Atlantic and the Southern Ocean), where the MLD's are between 100 and 300 meters (the deepest depth being 600 m) and have evident seasonal variability. The MLD of the ocean near the Equator from 10?S to 10?N are less than 50 m and have no evident seasonal variability.
    We analyze the energy balance equations for mean flow, turbulence and wave motion in the ocean surface mixed layer, and discuss the wave-turbulence interaction involved. The observed phenomena, in which vertical turbulence mixing and turbulence dissipation are enhanced by the action of breaking wave, are explained.
    
    
    
    However, there are some inextricable problems in the theories of both wind waves and turbulence, so our theoretical analysis about the wave-turbulence interaction is rudimentary and incomplete. Furthermore, because of the scarcity of measurements and data, our work has to be limited to investigating the effect of wave breaking on the ocean surface mixed layer by the numerical models.
    A one-dimensional oceanic mixed layer model with the M-Y level-2.5 turbulence closure schemes is employed. The rate of energy loss by breaking waves is estimated by parameterization and incorporated into the model as a source of turbulence kinetic energy (TKE) by modifying the existing surface boundary condition of TKE equation. The velocity field and turbulence energy budget are calculated under different forcing conditions (The results given below are for a wind speed of 20 m/s.). When the effect of surface wave breaking is considered, MLD is 50 cm deeper than that obtained without wave breaking, and with the enhancement of wind stress forcing, the deepening of MLD is increased. When the temperature is uniform within the mixed layer, a thermocline appears at the bottom of this layer, and when the effect of surface wave breaking is considered, the temperature is 0.013 癈 lower than the result without wave breaking.
    On the other hand, it is indicated that the velocity field consists of a depth-independent inertial oscillation and a time-mean shear flow, which can be obtained by subtracting the inertial oscillations time mean in one inertial period. The hodograph of the velocity vector of time-mean flow at the different depths consists of a Ekman spiral, and the surface velocity is 30.3?to the right of the wind. When the
引文
1.文圣常,余宙文.海浪理论与计算原理.科学出版社.1985.
    2.冯士笮,孙文心.物理海洋数值计算.河南科学技术出版社.1990.
    3.国家技术监督局.中华人民共和国国家标准:海洋调查规范—海洋调查资料处理,GB12763.7-91.北京,中国标准出版社,1992,68-70.
    4.叶安乐,李凤歧.物理海洋学。青岛海洋大学出版社.1992.
    5.杜岩.青岛海洋大学博士论文:南海混合层和温跃层的季节动力过程.2002.
    6.管长龙,孙群.风浪成长关系的分析及其对3/2指数律的支持.青岛海洋大学学报,2001,31(5):633-639.
    7.管长龙.我国海浪理论及其预报研究的回顾与展望.青岛海洋大学学报.2000,30(4),549-556.
    8.贾旭晶.青岛海洋大学硕士论文:1998年南海季风爆发期间海洋上混合层动力特征及形成机制.2000.
    9.刘秦玉,贾旭晶等.1998年夏季风爆发前后南海上混合层的特征及成因.气候与环境研究.2000,5(4):469-481.
    10.刘秦玉,孙即霖等.春季南海北部上混合层的数值模拟与数值实验.海洋与湖沼,2002,33(5):526-535.
    11.刘秦玉,孙即霖等.春季南海南部上混合层数值模拟与数值实验.青岛海洋大学学报,2001,31(2):149-157.
    12.徐锡祯,邱章,龙小敏.南海温跃层基本特征及一维预报模式.海洋与湖沼,1993,24(5):494-502.
    13.于卫东,袁业立.耦合大气-海浪模式(LMD-WAM)的全球海气动量通量研究.水动力学研究与进展,1999,14(4).
    14.袁业立,华锋等.破碎波统计及其在上层大洋动力学中的应用.中国科学B辑,1988,10:1084-1091.
    15.袁业立,潘增弟等.LAGFD-WAM海浪数值模式.Ⅰ基本物理模型.海洋学报,1992,14(5),1-7.
    16.袁业立,潘增弟等.LAGFD-WAM海浪数值模式.Ⅰ区域性特征线嵌入格式及其应用.海洋学报,1992,14(6),12-24.
    17.赵亮,魏皓.渤海垂直湍流混合强度季节变化的数值模拟.青岛海洋大学学报,2001,31(3):313-318.
    18. Agrawal, Y.C., E. A. Terray, M. A. Donelan, P. A. Hwan, A. J. Williams, W. M. Drennan, K. K.Kahma, and S. A. Kitaigorodskii. Enhanced dissipation of kinetic energy beneath surface waves. Nature, 1992, 359: 219-220.
    19. Alexander, M.A., and J. D. Scott. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 2000, 105(C7): 16,823-16,842.
    20. Andre, J.C., and P. Lacarrere. Mean and turbulent structures of the oceanic surface layer as determined from one-dimensional, third-order simulations. J. Phys. Oceanogr., 1985, 15: 121-132.
    21. Anis, A., and J. N. Moum. Surface wave-turbulence interactions: scaling ∈(z) near the sea surface. J. Phys. Oceanogr., 1995, 25: 2025-2045.
    
    
    22. Banner, M. L., and J. B., Song, On determining the onset and strength of breaking for deep water waves. Part I: Influence of wind forcing and surface shear. J. Phys. Oceanogr., 2002, 32: 2559-2570.
    23. Banner, M.L., and D. H. Peregrine. Wave breaking in deep water. Ann. Rev. Fluid Mech., 1993, 25: 373-397.
    24. Banner, M.L., and I. R. Young. Modeling spectral dissipation in the evolution of wind waves. Part Ⅰ: Assessment of existing model performance. J. Phys. Oceanogr., 1994, 24: 1550-1571.
    25. Banner, M.L.. Equilibrium spectra of wind waves. J. Phys. Oceanogr., 1990, 20: 966-984.
    26. Baturin, N.G, and P. P. Niiler. Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 1997,102(C13) : 27,771-27,793.
    27. Beckmann, A., and D. B. Haidvogel. Numerical simulation of flow around a tall isolated seamount. part Ⅰ: Problem formulation and model accuracy. J. Phys. Oceanogr., 1993, 23: 1736-1753.
    28. Bonmarin, P.. Geometric properties of deep-water breaking waves. J. Fluid Mech., 1989, 209: 405-433.
    29. Brainerd, K.E., and M. C. Gregg. Diurnal restratification and turbulence in the oceanic surface mixed layer. 2. Modeling. J. Geophys. Res., 1993, 98(C12) : 22,657-22,664.
    30. Brainerd, K.E., and M. C. Gregg. Diurnal restratification and turbulence in the oceanic surface mixed layer. 1. Observations. J. Geophys. Res., 1993,98(C12) : 22,645-22,656.
    31. Brainerd, K.E., and M. C. Gregg. Surface mixed and mixing layer depths. Deep-Sea Res., 1995, 42(9) : 1521-1543.
    32. Bryan, F.. Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 1987, 17: 970-985.
    33. Burchard, H., and H. Baumert, On the performance of a mixed-layer model based on the k-ε turbulence closeur. J. Geophys. Res., 1995,100: 8523-8540.
    34. Burchard, H., and O. Petersen. Models of turbulence in the marine environment-a comparative study of two-equation turbulence models. J. Mar. Sys., 1999, 21: 29-53.
    35. Burchard, H., Energy-conserving discretization of turbulent shear and buoyancy production. Ocean Modelling, 2002,4: 347-361.
    36. Burchard, H., O. Petersen, and T. P. Rippeth, Comparing the performance of the Mellor-Yamada and the k-tequation turbulence models. J. Geophys. Res., 1998,103(C5) : 10,543-10,554.
    37. Burchard, H., On the q2l equation by Mellor and Yamada (1982) . J. Phys. Oceanogr., 2001, 31: 1377-1387.
    38. Burchard, H., Simulation of the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 2001, 31: 3133-3145.
    39. Burgers, G, and V. K. Makin, Boundary-layer model results for wind-sea growth. J. Phys. Oceanogr., 1993,23: 372-385.
    40. Burnett, W., J. Harding, and G Hebum, Overview of operational ocean forecasting in the U. S. Navy: past, present & future. Oceanography, 2002,15:4-12.
    41. Bye, J.A.T., The coupling of wave drift and wind velocity profiles. J. Mar. Res., 1988, 46: 457-472.
    42. Chalikov, D.V., and V. K. Makin, Models of the wave boundary layer. Bound.-Layer Meteor., 1991, 56: 83-99.
    
    
    43. Charnock, H., Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 1955, 81: 639-640.
    44. Chen, D., A. J. Busalacchi, and L. M. Rothstein, The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 1994, 99(C10) : 20,345-20359.
    45. Cheung, T.K., and R. L. Street, The turbulent layer in the water at an air-water interface. J. Fluid Mech., 1988,194: 133-151.
    46. Craig, P.D., and M. L. BANNER, Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 1994,24: 2546-2559.
    47. Craig, P.D., Velocity profiles and surface roughness under breaking. J. Geophys. Res., 1996, 101(C1) : 1265-1277.
    48. Cronin, M.F., and J. Sprintall, Upper ocean structure: wind and bouyacy-forced upper ocean. Encyclopedia of Ocean Sciences, 2000.
    49. D'alessio, S.J.D., K. Abdella, and N. A. Mcfarlane, A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr., 1998, 28: 1624-1641.
    50. D'asaro, E.A., and G T. Dairiki, Turbulence intensity measurements in a wind-driven mixed layer. J. Phys. Oceanogr., 1997,27: 2009-2022.
    51. Davies, A.M., and J. Lawrence, Modeling the effect of wave-current interaction on the three-dimensional wind-driven circulation of the eastern Irish Sea. J. Phys. Oceanogr., 1995, 25: 29-45.
    52. Deardorff, J.W., Comments on "A numerical investigation of mixed-layer dynamics". J. Phys. Oceanogr., 1980, 10: 1695-1696.
    53. Deleersnijder, E., and P. Luyten, On the practical advantages of the quasi-equilibrium version of the Mellor and Yamada level 2. 5 turbulence closure applied to marine modelling. Appl. Math. Modelling, 1994,18: 281-287.
    54. Denman, K.L., A time-dependent model of the upper ocean. J. Phys. Oceanogr., 1973, 3: 173-184.
    55. Denman, K.L., and M. Miyake, Upper layer modification at ocean station Papa: observations and simulation. J. Phys. Oceanogr., 1973, 3: 185-196.
    56. Dillon, T.M., J. G Richman, C. GHansen, and M. D. Pearson, Near surface turbulence measurements in a lake. Narure, 1981,290: 390-392.
    57. Ding, L., and D. M. Farmer, Observations of breaking surface wave statistics. J. Phys. Oceanogr., 1994, 24: 1368-1387.
    58. Donelan, M.A., Air-sea interaction. The sea, 1990, 9: 239-292.
    59. Donelan, M.A., F. W. Dobson, S. D. Smith, and R. J. Anderson, On the dependence of sea surface roughness on wave development. L Phys. Oceanogr., 1993,23: 2143-2149.
    60. Donelan, M.A., W. M. Drennan, and K. B. Katsaros, The air-sea momentum flux in condition of wind sea and swell. J. Phys. Oceanogr., 1997,27: 2087-2099.
    61. Drennan, W.M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 1996,26: 808-815.
    62. Ezer, T., and G L. Mellor, Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model. Dyn. Atmos. Oceans, 2000, 32: 185-208.
    63. Ezer, T., and G L. Mellor, Simulation of the Atlantic Ocean with a free surface sigma coordinate ocean model. J. Geophys. Res., 1997,102(C7) : 15647-15657.
    64. Forristall, G Z., Measurements of a saturated range in the ocean wave spectra. J. Geophys.
    
    Res., 1981, 86: 8075-8084.
    65. Galperin, B., and G L. Mellor, A time-dependent, three-dimensional model of the Delaware Bay and river system. Part 2: Three-dimensional flow fields and residual circulation. Estuarine, Coastal and Shelf Science, 1990, 31:255-281.
    66. Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 1988, 45: 55-62.
    67. Gargett, A.E., Ocean turbulence. Ann. Rev. Fluid Mech., 1989,21: 419-451.
    68. Gargett, A.E., T. B. Sanford, and T. R. Osbom, Surface mixing layers in the Sargasso Sea. J. Phys. Oceanogr., 1979,9: 1090-1111.
    69. Garrett, C., Processes in the surface mixed layer of the ocean. Dyn. Atmos. Oceans, 1996, 23: 19-34.
    70. Garwood Jr., R.W., Air-sea interaction and dynamics of the surface mixed layer. Rev. Geophys. Space Phys., 1979, 17(7) : 1507-1524.
    71. Garwood, R.W., Jr., An oceanic mixed layer model capable of simulating cyclic states. J. Phys. Oceanogr., 1977, 7: 455-468.
    72. Caspar, P., Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 1988, 18: 161-180.
    73. Caspar, P., Y. Gregorid, and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res., 1990, 95(C9) : 16,179-16,193.
    74. Geernaert, GL., and S. E. Larsen, Air-sea Interaction in the Coastal Zone. The Sea, 1998, 10: 89-112.
    75. Geernaert, GL., S. E. Larsen, and F. Hansen, Measurements of the wind stress, hear flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res., 1987, 92: 13,127-13,139.
    76. Gemmrich, J.R., and D. M. Farmer, Wear-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 1999, 29: 480-499.
    77. Gill, A.E., and P. P. Niller, The theory of the seasonal variability in the ocean. Deep-Sea Res., 1973,20: 141-177.
    78. Guan, C.L., and Q. Sun, Analytically derived wind wave growth relations. China Ocean Engineering, 2002, 16(3) : 359-389.
    79. Guan, C.L., Q. Sun, and F. Philippe, The fractional power law of wind wave growth in deep water for short fetch. J. Ocean Univ. Qingdao, 2002,1(2) : 105-108.
    80. Guan, C.L., V. Rey, and P. Forget, Improvement of the WAM wave model and its application to the Rhone River mouth area. J. Coastal Res., 1999,15(4) : 966-973.
    81. Hasselmann, K., D. B. Ross, P. Muller, and W. Sell, A parametric wave prediction model. J. Phys. Oceanogr., 1976, 6: 200-228.
    82. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Krusemann, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell and H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., 1973, A8(Suppl.): 95pp.
    83. Janssen, P.A.E.M., and P. Viterbo, Ocean waves and the atmospheric climate. J. Climate, 1996, 9:1269-1286.
    84. Janssen, P.A.E.M., Quasi-linear theory of wind-wave generation applied to wave forecasting. J.
    
    Phys. Oceanogr., 1991, 21: 1631-1642.
    85. Janssen, P.A.E.M., Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 1989,19: 745-754.
    86. Jones, I.S.F., and B. C. Kenney, The scaling of velocity fluctuations in the surface mixed layer. J. Geophys. Res., 1977, 82: 1392-1396.
    87. Jones, I.S.F., and Y. Toba, Wind Stress Over The Ocean. 2001. Cambridge University Press..
    88. Kantha, L.H., and C. A. Clayson, Aw improved mixed layer model for geophysical applications. J. Geophys. Res., 1994, 99(C12) : 25,235-25,266.
    89. Kara, A.B., P. A. Rochford, and H. E. Hurlburt, An optimal definition for ocean mixed layer depth. J. Geophys. Res., 2000, 105(C7) : 16,803-16,821.
    90. Kelly, K.A., and B. Qiu, Heat flux estimates for the western North Atlantic, I, Assimilation of satellite data into a mixed layer model. J. Phys. Oceanogr., 1995,25: 2344-2360.
    91. Kitaigorodskii, S.A., and J. L. Lumley, Wave-turbulence interactions in the upper ocean. Part I: The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence. J. Phys. Oceanogr., 1983a, 13: 1977-1987.
    92. Kitaigorodskii, S.A., M. A. Donelan, J. L. Lumley, and E. A. Terray, Wave-turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 1983b, 13: 1988-1999.
    93. Kitaigorodskii, S.A., On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr., 1983, 13: 816-827.
    94. Klein, P., A simulation of the effects of sir-sea transfer variability on the structure o marine upper layers. J. Phys. Oceanogr., 1980, 10: 1824-1841.
    95. Klein, P., and M. Coantic, A numerical study of turbulent processes in the marine upper layers. J. Phys. Oceanogr., 1981, 11: 849-863.
    96. Komen, G J., M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Dynamics and Modelling of Ocean Waves. 1994. Cambridge University Press.
    97. Komen, GJ., S. Hasselmann, and K. Hasselmann, On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 1984, 14: 1271-1285.
    98. Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. Ⅱ. The general theory and its consequences. Tellus, 19, 98-105.
    99. Kudryavtsev, V.N., V. K. Makin, and B. Chapron, Coupled sea surface-atmosphere model. 2. Spectrum of short wind waves. J. Geophys. Res., 1999, 104(C4) : 7625-7639.
    100. Kundu, 1981: Self-similarity in stress-driven entrainment experiments. J. Geophys. Res., 86, 1979-1988.
    101. Kundu, P.K., A numerical investigation of mixed-layer dynamics. J. Phys. Oceanogr., 1980, 10: 220-236.
    102. Lamarre, E., and W. K. Melville, Air entrainment and dissipation in breaking waves. Nature, 1991,351(6) : 469-472.
    103. Large, W.G, and G B. Crawford, Observations and Simulations of Upper-Ocean Response to Wind Events during the Ocean Storm Experiment. J. Phys. Oceanogr., 1995,25: 2831-2852.
    104. Large, W.G, and S. Pond, Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 1981,11: 324-336.
    105. Large, W.G, J. C. Me Williams, and S. C. Doney, Oceanic vertical mixing: A review and model
    
    with a nonlocal boundary layer parameterization. Rev. Geophys., 1994, 32(4) : 363-403.
    106. Leibovich, S., The form and dynamics of Langmuir circulations. Ann. Rev. Fluid Mech., 1983, 15: 391-427.
    107. Levitus, S., and T. P. Boyer, World Ocean Atlas 1994, vol. 4, Temperature, NOAA Atlas NESDIS 4,117pp, U.S. Govt. Print. Off., Washington, D.C., 1994.
    108. Levitus, S., R. Burgett, and T. P. Boyer, World Ocean Atlas 1994, vol. 3, Salinity, NOAA Atlas NESDIS 3,99pp, U.S. Govt. Print. Off., Washington, D.C., 1994.
    109. Lewis, J.K., A three-dimensional ocean circulation model with wave effects. Estuarine and Coastal Modeling, 1998: 585-600.
    110. Li, M., and C. Garrett, Is Langmuir circulation driven by surface waves or surface cooling? J. Phys. Oceanogr., 1995, 25: 64-76.
    111. Li, M., and C. Garrett, Mixed layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 1997,27:121-132.
    112. Lin, R.Q., and N. E. Huang, The goddard coastal wave model. Part I: Numerical method. J. Phys. Oceanogr., 1996, 26: 833-847.
    113. Lionello, P., K. Hasselmann, and G L. Mellor, On the coupling between a surface wave model and a model of the mixed layer in the ocean. Proc. of the Air-Sea Interface Symp., Marseille, France, University of Miami, 1993,195-201. (personal communication)
    114. Lionello, P., P. Malguzzi, and A. Buzzi, Coupling between the atmospheric circulation adn the ocean wave field: An idealized case. J. Phys. Oceanogr., 1998,28: 161-177.
    115. Liu, Q. Y., J. L. Sun, X. J. Jia, Dynamic features of the heat flux and the upper mixed layer in the South China Sea during summer monsson onset in 1998. Acta Meteorologica Sinica, 2003, 17:201-212.
    116. Liu, Q.Y., Response of the ocean upper mixed layer to atmospheric forcing. China Journal Oceanol. Limnol., 1994,12(3) : 280-283.
    117. Longuet-Higgins, M.S., and R. W. Stewart, The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech., 1961, 10: 529-549.
    118. Longuet-Higgins, M.S., On wave breaking and the equibrium spectrum of wind-generated waves. Proc. Roy. Soc. London, 1969, A310: 151-159.
    119. Longuet-Higgins, M.S., On wave breaking and the equilibrium spectrum of wind-generated waves. Proc. Roy. Soc. London, 1969, A310: 151-159.
    120. Ly, L.N., and R. W. Garwood, Jr., Numerical modeling of wave-enhanced turbulence in the oceanic upper layer. Journal of Oceanography, 2000, 56:473-483.
    121. Madsen, O.S., A realistic model of the wind-induced Ehnan boundary layer. J. Phys. Oceanogr., 1977, 7: 248-255.
    122. Makin, V.K., and V. N. Kudryavtsev, Coupled sea surface-atmosphere model. 1. Wind over waves coupling. J. Geophys. Res., 1999,104(C4) : 7613-7623.
    123. Makin, V.K., V. N. Kudryavtsev, and C. Mastenbroek, Drag of the sea surface. Bound.-Layer Meteor., 1995, 73: 159-182.
    124. Martin, P.J., Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 1985,90(C1) : 903-916.
    125. Mastenbroek, C., G Burgers, and P. A. E. M. Janssen, The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J. Phys. Oceanogr., 1993,23: 1856-1866.
    
    
    126. McGillicuddy Jr., D.J., and A. R. Robinson, Interaction between the oceanic mesoscale and the surface mixed layer. Dyn. Atmos. Oceans, 1997, 27: 549-574.
    127. Mellor, G L., 1996: User's guide for a three-dimensional, primitive equation, numerical ocean model. AOS Program Rep., Princeton University, Princeton, NJ.
    128. Mellor, GL., and P. A. Durbin, The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 1975, 5: 718-728.
    129. Mellor, GL., and T. Yamada, A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 1974, 31: 1791-1806.
    130. Mellor, GL., and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 20(4) : 851-875.
    131. Mellor, GL., One-dimensional, ocean surface layer modeling: a problem and a solution. J. Phys. Oceanogr., 2001, 31: 790-809.
    132. Melville, W.K., and R. J. Rapp, Momentum flux in breaking waves. Nature, 1985, 317(10) : 514-516.
    133. Melville, W.K., Energy dissipation by breaking waves. J. Phys. Oceanogr., 1994, 24: 2041-2049.
    134. Melville, W.K., The role of surface-wave breaking in air-sea interaction. Ann. Rev. Fluid Mech., 1996,28:279-321.
    135. Melville, W.K., Wind stress and roughness length over breaking waves. J. Phys. Oceanogr., 1977, 7: 702-710.
    136. Middleton, J.F., Wind-forced Upwelling: the role of the surface mixed layer. J. Phys. Oceanogr., 2000, 30: 745-763.
    137. Miller, J.R., The salinity effect in a mixed layer ocean model. J. Phys. Oceanogr., 1976, 6: 29-35.
    138. Mitsuyasu, H., A historical note on the study of ocean surface waves. J. Oceano., 2002, 58: 109-120.
    139. Mitsuyasu, H., A note on the momentum transfer from wind to waves. J. Geophys. Res., 1985, 90(C2) : 3343-3345.
    140. Monterey, G and Levitus, S., 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, U.S. Gov. Printing Office, Wash., D.C., 96 pp. 87 figs.
    141. Niiler, P.P., Deepening of the wind-mixed layer. J. Mar. Res., 1975, 33(3) : 405-422.
    142. Nomitsu, T., A theory of the rising stage of drift current in the ocean (Ⅰ and Ⅱ). Mem. Coll. Sci., Kyoto, 1933, 16(2) .
    143. Oakey, N.S., and J. A. Elliott, Dissipation within the surface mixed layer. J. Phys. Oceanogr., 1982, 12: 171-185.
    144. Ohlmann, J.C., D. A. Siegel, and C. Gautier, Ocean mixed layer radiant heating and solar penetration: a global analysis. J. Climate, 1996, 9: 2,265-2,280.
    145. Osbom, T.R., Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 1980,10: 83-89.
    146. Phillips, O.M., A note on the turbulence generated by gravity waves. J. Geophys. Res., 1961, 66:2889-2893.
    147. Phillips, O.M., Spectral and statistical properties of the equlibrium range in wind-generated gravity waves. J. Fluid. Mech., 1985,156: 505-531.
    148. Price, J.F., and R. A. Weller, Diurnal Cycling: Observations and Models of the upper ocean
    
    response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 1986, 91(C7) : 8411-8427.
    149. Price, J.F., On the scaling of stress-driven entrainment experiments. J. Fluid Mech., 1979, 90: 509-529.
    150. Rapp, R.J., and W. K. Melville, Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, 1990, A331: 735-800.
    151. Richman, J., and C. Garrett, The transfer of energy and momentum by the wind to the surface mixed layer. J. Phys. Oceanogr., 1977, 7: 876-881.
    152. Richtmyer, R. D., and K. W. Morton, Difference methods for initial value problems, 2nd ed., Inerscience, New York, 1967.
    153. Rosati, A., and K. Miyakoda, A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 1988,18: 1601-1626.
    154. Signell, R.P., R. C. Beardsley, H. C. Graber, and A. Capotondi, Effect of wave-current interacton on wind-driven circulation in narrow, shallow embayment. J. Geophys. Res., 1990, 95(C6) : 9671-9678.
    155. Skyllingstad, E.D., and D. W. Denbo, An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 1995, 100 (C5) : 8501-8522.
    156. Smagorinsky, J., General circulation experiments with the primitive equations: Ⅰ. The basic experiment. Mon. Wea. Rev., 1963, 91: 99-164.
    157. Song, J. B., and M. L. Banner, On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups. J. Phys. Oceanogr., 2002, 32: 2541-2558.
    158. Sprintall, J., and D. Roemmich, Characterizing the structure of the surface layer in the Pacific Ocean. J. Geophys. Res., 1999,104(C10) : 23,297-23,311.
    159. Sprintall, J., and M. Tomczak, Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 1992,97(C6) : 7305-7316.
    160. Stacey, M.W., S. Pond, On the Mellor-Yamada turbulence closure scheme: the surface boundary condition for q2. J. Phy. Oceano., 1997, 27: 2081-2086.
    161. Stacey, M.W., Simulation of the wind-forced near-surface circulation in knight inlet: a parameterization of the roughness length. J. Phys. Oceanogr., 1999, 29: 1363-1367.
    162. Sterl, A., and A. Kattenberg, Embedding a mixed layer model into an ocean general circulation model of the Atlantic: The importance of surface mixing for heat flux and temperature. J. Geophys. Res., 1994, 99(C7) : 14,139-14,157.
    163. Stewart, R.W., and H. L. Grant, Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. 1962, 67(8) : 3177-3180.
    164. Sun, J. L., Q. Y., Liu, Characteristic of intraseasonal variations in the mixed layer of "warm poor areas. Chin. J. Ocenaol. Limnol., 1996, 14 (4) : 365-372.
    165. Taylor, P.K., and M. J. Yelland, The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 2001, 31: 572-590.
    166. Terray, E.A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams Ⅲ, P. A. Hwang, and S. A. Kitaigorodskii, Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 1996,26: 792-807.
    167. The WAMDI group (S. Hasselmann, K. Hasselmann, E. Bauer, P. A. E. M. Janssen et. al.), The
    
    WAM model-A third generation ocean wave prediction model. J. Phys. Oceanogr., 1988, 18: 1775-1810.
    168. Thompson, R.O.R.Y., Climatological numerical models of the surface mixed layer of the ocean. J. Phys. Oceanogr., 1976, 6: 496-503.
    169. Thorpe, S.A., Energy loss by breaking waves. J. Phys. Oceanogr., 1993, 23: 2498-2502.
    170. Weber, J.E., and A. Melsom, Volume flux induced by wind and waves in a saturated sea. J. Geophys. Res., 1993, 98: 4739-4745.
    171. Weber, S.L., Statistics of the air-sea fluxes of momentum and mechanical energy in a coupled wave-atmosphere model. J. Phys. Oceanogr., 1994, 24: 1388-1398.
    172. Wen, S.C., C. C. Qian, A. L. Ye, K. J. Wu, Z. M. Wu, C. L. Guan, and D. L. Zhao, Wave modeling based on an adopt wind-wave directional spectrum. J. Ocean Univ. of Qingdao, 1999, 29(3) : 345-397.
    173. Wu, J., Wind-stress coefficient over sea surface from breeze to hurricane. J. Geophys. Res., 1982, 87: 9704-9706.
    174. Xie, L.A., K. J. Wu, L. Pietrafesa, and C. Zhang, A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res., 2001, 106(C8) : 16,841-16,855.
    175. Xue, H., Z. Pan, and J. M. Bane Jr., A 2D coupled atmosphere-ocean model study of air-sea interactions during a cold air outbreak over the Gulf Stream. Mon. Wea. Rev., 2000, 128: 973-996.
    176. Yuan, Y. L., A combined model for the resomance-coupling of normal pressure, shearing stress and eddy viscisity dissipation. Oceanologia et Limiologia Sinica, 1978, 2, 128.
    177. Yuan, Y. L., et al., Statistical characteristics of breaking waves. Wave Dynamics and Radio Probing of Ocean Surface, Plenum Press, 1981:694.
    178. Zhang, M.Y., and Y. S. Li, The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers. Cont. Shelf Res., 1997, 17(10) : 1141-1170.