新叔铵类药物对梭曼膦酰化AChE增强重活化作用机理的GC/MS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梭曼抑制乙酰胆碱酯酶(AChE)后,生成的膦酰化乙酰胆碱酯酶随时间延长将发生两种主要形式的转化:一种是自发或在药物作用下的脱膦酰基重活化过程,中毒酶恢复活力,重活化过程的主要产物是甲基膦酸嚬哪酯(PMPA);另一种是脱烷基老化过程,中毒酶失去重活化能力,主要产物是甲基膦酸(MPA)。梭曼膦酰化AChE的迅速老化和难重活化一直是梭曼难防难治的主要原因和抗毒药物研发的难点之一。即使像HI-6这样有效的重活化剂对梭曼膦酰化酶的重活化作用也是有限的。近年来,国外研究者发现一些季铵类化合物可显著提高肟类的重活化作用,与此同时,我所研究发现叔铵类药物L-1978和L-1655等也能增强肟类的重活化作用,因此,揭示药物增强重活化的作用机理将对梭曼抗毒药物的设计开发具有重大意义。
     在评价梭曼抗毒药物的重活化效率时,通常人们采用酶活力测定法和同位素测定法等研究抗毒药物增强重活化的作用机理,但结果并不十分理想。本课题首次采用GC/MS等现代仪器分析技术,建立药物作用于梭曼膦酰化AChE后定量释放出PMPA和MPA的样品处理和检测方法,研究药物对梭曼膦酰化酶重活化过程和老化过程的影响,探寻新叔铵类药物对梭曼膦酰化AChE增强重活化的可能作用机理。
     论文分为三章:
     第一章前言,简要介绍了重活化剂发展的主要历程,影响膦酰化AChE重活化的主要因素,以及肟类重活化剂的几种作用机理;介绍了我所对梭曼膦酰化AChE重活化药物和作用机理的研究现状和存在问题,并在此基础上提出了论文的研究目的和研究内容。
After acetylcholinesterase (AChE) inhibited by pinacolyl methylphospho-nofluidate (soman), the phosphonylated AChE could go through two processes which may affect oxime effectiveness. One is that the phosphonylated AChE complex may undergo spontaneous dephosphonylation ("spontaneous reactivation"), a process which can be accelerated by several orders of magnitude by the addition of some oxime compounds. The activity of AChE would recover and the main degradation product of this process is pinacolyl methylphosphonate (PMPA). The other process is spontaneous dealkylation through alkyl-oxygen bond scission ("aging"), irreversibly resulting in an inactivated enzyme. The main degradation product of this process is methylphosphonate (MPA). The most difficulties in developing soman antidotes are the fast aging and resistance to the reactivation of soman-inhibited AChE. The high efficient oxime, 1-(((4-(aminocarbonyl) pyridino)-methoxy) methyl-2-(hydroxyimino methyl) pyridinium) dicholoride (HI-6), shows the better reactivation efficiency for phosphonylated AChE inhibited by most nerve agents, but gives only limit effect when treated soman inhibited AChE. However, some foreign researchers have discovered that the reactivation efficiency of oximes for the soman phosphonylated AChE could be significantly increased when they cooperated with quaternary ammonium compounds. Our institute has also found that tertiary ammonium compounds, such as L-1978 and L-1655 had the same ability to improve the reactivation effects, In order to exploit more powerful reactivators, it is very important to investigate the mechanism of
    the enhanced reactivation of these drugs.Ellman colorimetric method and isotopic determination method have been widely used to evaluate the efficiency of reactivators. But the results obtained by these methods were indirect, and were greatly influenced by some experimental factors. In this dissertation, the gas chromatography-mass spectrometric method (GC/MS) and other modern techniques were used to quantitatively determine PMPA and MPA, which were released from the phosphonylated AChE complex after which was digested with trypsin and alkaline phosphatase calf intestinal (CIAP). The influence of the drugs on the course of reactivation and aging were studied. The accurate mechanisms of retardation aging or enhanced reactivation were explored.This dissertation consists of three chapters.Chapter one was the preface of the dissertation. The development of reactivators' drugs, the main influence factors of reactivation efficiency and several reactivation mechanisms were briefly d escribed. The progress of reactivators of soman inhibited AChE and their mechanism studied in our institute were also introduced. The research proposals and contents to be carried out were brought forward based on the present difficulties.In chapter two, a simple and accurate GC/MS method was developed to simultaneously determine the dissociative PMPA and MPA in water samples and human plasma samples, as their trimethylsilyl derivatives. Solid-phase extraction method was chosen as the sample preparation method after compared with liquid-liquid extraction method. The selectivity of different solid-phase extraction cartridges and efficiency of various deproteinization reagents were investigated. The loaded pH and concentration of eluent were also optimized.Based on the above method, we established the determination method of PMPA and MPA which were quantitatively released from phosphonylated AChE after
    digestion. The quantity of soman inhibited AChE, the preparation method and digestion conditions of phosphonylated AChE were discussed. The influences of metal ions and residual drugs have also been investigated. At the optimum conditions, linear calibration curves were obtained over concentrations ranging from 50 ng/mL to 5 jig/mL in selected ion monitoring mode, and the quantification limits for PMPA and MPA were 10 ng/mL and 15 ng/mL, respectively. The within-day and between-day accuracy were less than 10% and 13%, respectively. This present method eliminated the influence of residual inhibitor and drugs and could offer relatively high sensitivity and reliable reproducibility of recoveries. Thus, it should become a powerful method for studying the mechanism of enhanced reactivation of drugs.In chapter three, the enhanced reactivation mechanism of novel tertiary ammonium drugs were studied. We proved that L-1978 and L-1655 did have the ability to augment the reactivation effect of obidoxime (LiiH6) by above established GC/MS method. The possible mechanism of enhanced reactivation was investigated on three aspects.Firstly, the influence of inhibition effect on the reactivation of soman phosphonylated AChE was discussed. Among the tested AChE inhibitors, only Huperzine A (8151) could significantly improve the reactivation ability of LuH6 at the concentration of 1 X 10" mol/L. This suggested that there was no necessary relationship between inhibition and reactivation action. The cholinesterase inhibitors were not necessarily having the ability in improving the reactivation effect.Secondly, the influence of the allosteric effect on the reactivation of soman phosphonylated AChE was investigated. Among the tested AChE allosteric agents, only decamethonium bromide (CIO) could significantly improve the reactivation ability of LiiH6 at the concentration of 1 X 10"3 mol/L. This indicated that allosteric agents maybe could augment the reactivation effect. But, it was not means that all the allosteric agents would improve the reactivation effect.
引文
1.赵德禄,张英鸽,周文霞.神经性毒剂防护在防化中地位、国外现况和未来.卫生毒理学杂志,1999,13(3):170.
    2.夏德意.90年代国外神经性毒剂毒理学研究进展.解放军医学情报,1994,8(5):233.
    3.赵德禄.有机磷酸酯的神经毒性和对国外急救治疗的评述.国外防化医学研究进展,1997,10:31.
    4. Bignami G, Rosic N, Michalek H, Milosevic M, Ghatti GL. Behavioral toxicity of anticholinesterase agents: Methodological, neurochemical, and neurophysiological aspects. In Behavioral Toxicology (B Weiss and V G Laties Eds), New York, Plenmum, pp 155.
    5. Koelle GB. Organophosphate poisoning-An overview. Fundam. Appl. Toxicol., 1981, 1: 129.
    6.何凤生.中华职业医学.北京,人民卫生出版社,1999,746.
    7.许绍芬.神经生物学.上海,上海医科大学出版社,1999,135.
    8. Asheson SA, QuinnDM. Anatomy of acetylcholinesterase catalysis: reaction dynamics analogy for human erythrocyte and electric eel enzymes. Biochim. Biophys Acta, 1990, 1040 (2): 199.
    9. Mileson BE, Chambers JE, Chen WL. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol. Sci., 1998, 41(1): 8.
    10.吴加金.有机磷酸酯结构与中毒乙酰胆碱酯酶老化速度关系的分子轨道理论分析.生物化学与生物物理进展,1982,2:46.
    11. Berry WK, Davies DR. Factors influencing the rate of "aging" of a series of alkyl methylphosphonylacetylcholinesterases. Biochem. J., 1966, 100: 572.
    12. Michel HO, Hackley BE, Berkovita L, List G, Hackely EB, Gillilan W. Agine and dealkylation of soman (pinacolylmethylphosphonofluoridate)-inactivated eel cholinesterase. Arch. Biochem. Biophys., 1967, 121: 29.
    13.罗春元.胆碱酯酶结构与功能及磷酰化酶重活化机理.生物化学与生物物理进展,1996,23(4):329.
    14. Pazdernik TL, Emerson MR, Cro ss R, Sam son FE. Soman-in-duced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl. Toxicol., 2001, 21(Suppl 1): S587.
    15. Kee WK, Sim MK, Go ML. O-Substituted derivatives of pralidoxime: muscarinic properties and protection against soman effects in rats. Eur. J Pharmacol., 2002, 10: 279.
    16. Bajgar J. Present views on toxidynamics of soman poisoning. Acta Med., 1996, 39: 101.
    17. Fieisher JH, Harris L W. Dealkylation a s mechanism for aging of cholinesterase after poisoning with pinacolyl methylphosphonofluoridate. Biochem. Phamacol., 1965, 14: 641.
    18. Kadar T, Raveh L, Cohen G, Oz N, Baraness I, Balon A, Ashani Z, Shapira S. Distribution of ~3H-soman in mice. Arch. Toxicol., 1985, 58: 45.
    19. Wilson IB. Molecular complementarity and antidotes for alkylphosphate poisoning. Fed. Proc., 1959, 18: 752.
    20. Kondritzer AA, Ellin RI, Edberg LJ. Investigation of methyl pyridinium-2-aldoxime salts. J Pharm Sci., 1961, 50: 109.
    21. Ellin RI, Carlese JS, Kondritzer AA. Stability of pyridine-2-aldoxime methiodide. Ⅱ. Kinetics of deterioration in dilute aqueous solutions. J Pharm Sci., 1962, 51: 141.
    22.军事医学科学院编.防化医学.北京,中国人民解放军战士出版社,1979,62.
    23. Poziomek EJ, Vaughan LG. Synthesis and configurational analysis of picolinaldehyde oximes. J Pharm Sci., 1965, 54(5): 811.
    24. Poziomek EJ. Photochemical isomerization synthesis of antiisonicotinaldehyde oxime derivatives. J Pharm. Sci., 1965, 54: 333.
    25. Hagedorn I, Stark I, Schoene K, Schenkel H. Reactivation of phosphorylated acetylcholinesterase isomeric bisquaternary salts of pyridine aldoximes. Arzneimittelforschung, 1978, 28 (11): 2055.
    26. Steeri SH, Kloster O, Valdal G. Reduction of blood cholinesterase activities follwing administration of soman by different routes in guinea-pigs. Acta Pharma. Toxicol., 1982, 50: 326.
    27.邹圣山.国外重活化剂的研究和发展.中国人民解放军军事医学科学院硕士研究生毕业论文,1992.
    28. Jovanovic D. The effect of bis-pyridinium oximes on neuromuscular blockade induced by highly toxic organophosphates in rat. Arch Int, Pharmacodyn Ther., 1983, 262 (2): 231.
    29. Boskovic B. The treatment of soman poisoning and its perspectives. Fundam. Appl. Toxicol., 1981, 1(2): 203.
    30. Kepner LA, Wolthuis OL. A comparison of the oximes HS-6 and HI-6 in the therapy of soman intoxication in rodents. Eur. J. Pharmacol., 1978, 48: 377.
    31. Maksimovic M, BosKovic B, Radovic L, Tadic V, Deljac V, Binenfeld Z. Antidotal effects of bis-pyridinium-2-monooxime carbonyl derivatives in intoxications with highly toxic organophosphorus compounds. Acta Pharm. Jugosl., 1980, 30: 151.
    32. Hauser W, Wegar N. Therapeutic effects of the bis-pyridinium salts HGG-12, HGG-42, and atropine, benzctyzine in organophosphate poisoning of dogs. Arch. Toxicol. Suppl, 1979, 2: 393.
    33. Maksimovic M, Bregovec I, Deljac V, Binenfeld Z. Reactivators of organophosphate inhibited cholinesterase, 4-cycloalkylcarbonyl substituted bis-pyridinium monvoximes. Arch. Toxicol., 1984, 55 (3): 199.
    34. Clement JG, Hansen AS, Bouler CA. Efficacy of HLo-7 and pyrimidoxime as antidotes of nerve agent poisoning in mice. Arch. Toxicol., 1992, 66 (3): 216.
    35. De Jong LPA, Verhagen MA, Langenberg JP, Hagedorn I, Loffier M. The bispyridinium-dioxime HLo-7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers oftabun and soman. Biochem. Pharmacol., 1989, 38(4): 633.
    36. Van Helden HP, van der Wiel HJ, Zijlstra JJ, Melchers BP, Busker RW. Comparison of the therapeutic effects and pharmacokinetics of HI-6, HLo-7, HGG-12, HGG-42 and obidoxime following non-reactivatable acetylcholinesterase inhibition in rats. Arch. Toxicol., 1994, 68 (4): 224.
    37. Worek F, Szinicz L. Investigation of acute cardiovascular and respiratory toxicity of HLo-7 dimethanesulfonate and HI 6 dichloride in anaesthetized guinea-pigs. Pharmacol. Toxicol., 1993, 73 (2): 91.
    38. Lundy PM, Hansen AS, Hand BT, Boulet CA. Comparison of several oximes against poisoning by soman, tabun and GF. Toxicology, 1992, 72(1): 99.
    39 Eyer P, Hagedorn I, Klimmek R, Lippstreu P, Loftier M, Oldiges H, Spohrer U, Steidl I, Szinicz L, Worek F. HLo-7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases. Arch. Toxicol., 1992, 66(9): 603.
    40. Kenley RA, Bedford CD, Dailey OD Jr, Howd RA, Miller A. Nonquaternary cholinesterase reactivators. 2. Alpha-heteroaromatic aldoximes and thiohydroximates as reactivators of ethyl methylphosphonylacetylcholinesterase in vitro. J Med. Chem., 1984, 27 (9): 1201.
    41. Bedford CD, Miura M, Bottaro JC, Howd RA, Nolen HW. Nonquaternary cholinesterase reactivators. 4. Dialkylaminoalkyl thioesters of alpha-keto thiohydroximic acids as reactivators of ethyl methylphosphonyland 1,2,2-trimethylpropyl methylphosphonyl-acetylcholinesterase in vitro. J Med. Chem., 1986, 29 (9): 1689.
    42.焦克芳,卜志洁,宋鸿锵.一类“非季铵型重活化剂”的构效关系及其作用机理研究.军事医学科学院院刊,1993,17:7.
    43.卜志洁.新型叔铵型重活化剂的研究及其意义.解放军医学情报,1994,8(15):258.
    44. Hucho F, Weise C. Substrate-binding sites in acetylcholinesterase. Trends Pharmacol. Sci., 1991, 12: 422.
    45. Shafferman A. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J, 1992, 11: 3561.
    46. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpede californica: a prototypic acetylcholine-binding protein, Science, 1991, 253: 872.
    47 Hanke DW, Overton MA. Phosphylation kinetic constants and oxime-induced reactivation in acetylcholinesterase from fetal bovine serum, bovine caudate nucleus, and electric eel. J. Toxicol. Environ. Health., 1991, 34 (1): 141.
    48 Macllwain C. Study proves Iraq used nerve gas. Nature, 1993, 363: 3.
    49 Talbot BG, Anderson DR, Harris LW, Yarbrough LW. Lennos WJ. A comparison of in vivo and in vitro rates of aging of soman-inhibited erythrocyte acetylcholinesterase in different animal species. Drug Chem. Toxicol., 1988, 11 (3): 289.
    50. Wolthuis OL, Kepner LA. Successful oxime therapy one hour after soman intoxication in the rat. Eur. J Pharmacol., 1978, 15, 49 (4): 415.
    51. Clement JG. Effect of fasting on the acute toxicity of HI-6 and its efficacy in somanpoisoned mice. Fundam Appl Toxicol., 1982, 2 (2): 88.
    52. Clement JG. HI-6: reactivation of central and peripheral acetylcholinesterase following inhibition by soman, satin and tabun in vivo in the rat. Biochem Pharmacol., 1982, 31 (7): 1283.
    53. Clement JG, Lockwood PA. HI-6, an oxime which is an effective antidote of soman poisoning: a structure-activity study. Toxicol Appl Pharmacol., 1982, 64 (1): 140.
    54. Clement JG. Efficacy of mono-and bis-pyridinium oximes versus soman, sarin and tabun poisoning in mice. Fundam. Appl. Toxicol., 1983, 3 (6): 533.
    55. Boskovic B, Kovacevic V, Jovanovic D. PAM-2 Cl, HI-6 and HGG-12 in soman and tabun poisoning. Fundam. Appl. Toxicol., 1984, 4: S106.
    56. Dube SN, Kumar D, Sikder K, Jaiseal DK, Gupta SD. Therapeutic efficacy of bis-pyridinium oximes against diisopropylfluorophosphate (DFP) and soman intoxication inrodents. Pharmazine, 1992, 47: 68.
    57. Wilhelm K, Fajdetic A, Deljac V, Binenfeld Z. Protective effect of dexetimide and HI-6 in poisoning with highly toxic organophosphorus compounds. Arh. Hig, Rada Toksikol., 1979, 30: 147.
    58. Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of active centre. Biochem. J, 1996, 318: 833.
    59. Berry WK, Davies DR. Factors influencing the aging rate in a series of alkyl methylphosphonyl-acetylcholinesterase. Biochem. J, 1996, 100: 572.
    60.李风珍,孙曼霁.双吡啶单肟类化合物对人的膦酰化胆碱酯酶的重活化作用.军事医学科学院院刊,1985,9:67.
    61. De Jong LPA, Wolring GZ. Stereospecific reactivation by some Hagedorn-oximes of acetylcholinesteraes from various species including man inhibited by soman. Biochem. Pharmacol., 1984, 33: 1119.
    62. Taylor P, Wong L, Radic Z, Ysigelny I, Bruggemann R, Hosea N. Analysis of cholinesterase inactivation and reactivation by systematic structural modification and enantimeric selectivity. Chem. Bio. Interact., 1999, 119-120: 3.
    63. Kovarik Z, Radic Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylatedconjugates. Biochemistry, 2004, 43: 3222.
    64. Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP. Two possible ortentations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Biochem. Pharmacol., 2003, 66: 387.
    65. Wong L, Radic Z, Bruggemann JM, Hosea N, Berman HA, Taylor P. Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis. Biochemistry, 2000, 39: 5750.
    66. Wolthuis OL, Berends F, Meeter E. Problems in the therapy of soman poisoning. Fundam. Appl. Toxicol., 1981, 1: 183.
    67. Shih TM. Comparison of several oximes on reactivation of soman-inhibited blood, brain and tissue cholinesterase activity in rats. Arch. Toxicol., 1993, 67: 637.
    68. Kassa J, Cabal J. A. Comparison of the efficacy of a new asymmetric bispyridinium oxime BI-6 with currently available oxime and H oximes against soman by in vitro and in vivo methods. Toxicology, 1999, 132: 111.
    69 Kassa J, Cabal J. A. Comparison of the efficacy of a new asymmetric bispyridinium oxime BI-6 with currently available oxime and H oximes against satin by in vitro and in vivo methods. Hum. Exp. Toxicol., 1999, 18: 560.
    70. Kassa J, Cabal J. A. A comparison of efficacy of acetylcholinesterase reactivators against cyclohexylmethylphosphonofluoridate (GF agents) by in vitro and in vivo methods. Pharmacol. Toxicol., 1999, 84: 41.
    71. Kassa J. Review of oxime in antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol. Clini. Toxicol., 2002, 40 (6): 803.
    72. Poziomek EJ, Kramer DN, Mosher WA, Michel HO. Configurational analysis of 4-formyl-1-methylpyridinium iodide oxime and its relation on molecular complementarity theory on the reactivation of inhibited acetylcholinesterase. JACS, 1961, 83: 3916.
    73.鲁子贤,崔涛,施庆洛.园二色性和旋光色散在分子生物学中的应用.北京,科学出版社,1987,92.
    74.罗春元.塔崩作用于AChE的特点及药物重活化机理研究,中国人民解放军军事医学科学院博士研究生毕业论文,1993.
    75.焦克芳,李松,陈邦华.中国科学B辑,1993,23(10):1063.
    76. Bieger D, Wassermann O. Ionization constants of cholinesterase-reactivating bis-pyridinium aldoximes. J. Pharm. Pharmacol., 1978, 46: 429.
    77. Amitai G, Ashani Y, Gafni A, Sliman I. Novel pyrene-containing organophosphares as fluorescent probes for studying aging-induced conformational changes in organophosphate-inhibited acetylcholinesterase. Biochemistry. 1982, 21: 2060.
    78. Ashani Y, Gentry MK, Doctor BP. Differences in conformational stability between native and phosphorylated acetylcholinesterase as evidenced by monoclonal antibody. Biochemistry. 1990, 29: 2456.
    79. Berry D. Factors influencing the aging rate of series of alkyl methyl phosphonyl acetylcholinesterases. Biochem. J, 1966, 100: 1572.
    80. Harris LW, Heyl WC, Stitcher DL, Broomfield C. Effects of 1,1'-oxydimethylene bis-(4-tert-butylpyridinium chloride)(SAD-128) and decamethonium on reactivation of soman and sarin inhibited cholinesterase by oximes. Biochem. Pbarmacol., 1978, 27: 757.
    81 Schoene K. Aging of soman inhibited acetylcholinesterase: inhibitors and accelerators. Biochem. Biophys. Acta, 1978, 525: 468.
    82.于会信,张明晶,周廷冲.三种双季铵化合物对乙酰胆碱酯酶梭曼膦酰化和老化的影响.生物化学与生物物理学报,1984,16(4):370.
    83. Cetkovic S, Cvetkovic M, Jandric D, Cosic M, Boskovic B. Effect of PAM-2 Cl, HI-6, and HGG-12 in poisoning by tabun and its thiocholine-like analog in the rat. Fundam Appl. Toxicol., 1984, 4: s116.
    84.罗春元,李志秀,夏叔泉,孙曼霁,杨进生.不同有机磷酸酯磷酰化乙酰胆碱酯酶活性中心的构象差异.生物化学与生物物理进展,1995,22(2):141.
    85. Herkenhoff S, Szinicz L, Rastogi VK, Cheng TC, DeFrank JJ, Worek F. Effect of organophosphorus hydrolyzing enzymes on obidoxime induced reactivation of organophosphate-inhibited human acetylcholinesterase. Arch. Toxicl., 2004, 78: 338.
    86. Worek F, Thiermann H, Szinicz L, Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharma., 2004, 68: 2237.
    87.焦克芳,宋鸿锵,刘若庄.吡啶醛肟季铵类构效关系及其抗毒作用方式理论探讨.中国药理学与毒理学杂志,1988,2:267.
    88.赵德禄,卜志洁,李万华,王玉琛.新梭曼抗毒剂的评选及有效化合物药理毒理特点研究.六所内部归档资料,2000年2月.
    89.李万华,魏滨,赵德禄.L-1978、L-1655和HI-6抗小鼠梭曼中毒效能(PR)比较.六所内部归档资料,2000-28.
    90.李万华,魏滨,赵德禄.L-1978等哒嗪类化合物抗神经性毒剂的评选.六所内部归档资料,2000-29.
    91.李万华,王玉琛,赵德禄.L-1978等对狗肌注毒副反应的观察.六所内部归档 资料,2000-30.
    92.李万华,赵德禄.L-1978对小鼠自主活动的影响.六所内部归档资料,2000-61.
    93.赵德禄,李万华,魏滨.L-1978等化合物对小鼠抗M、N作用观察.六所内部归档资料,2000-62.
    94.赵德禄,李万华,王玉琛.L-1978等抗狗神经性毒剂中毒效价观察.六所内部归档资料,2000-64.
    95.于桂华,魏滨.1795和HI-6抗小鼠梭曼中毒效价比较.六所内部归档资料,1998-53.
    96.周文霞.L-1795等叔铵型重活化剂抗梭曼中毒机理的研究.中国人民解放军军事医学科学院博士研究生毕业论文,1998.
    97.钟玉绪.1655等叔铵型化合物对梭曼膦酰化AChE的增强重活化作用及其作用机理的研究.中国人民解放军军事医学科学院博士研究生毕业论文,2000.
    98.周文霞.L-1978等化合物对正常和梭曼抑制大鼠离体隔肌AChE活性的影响.六所内部归档资料,2001-9.
    99.于卫东.L-1978药代动力学及抗隔肌麻痹作用机制研究.中国人民解放军军事医学科学院博士研究生毕业论文,2004.
    100.潘东齐,赵德禄.1978对不同pH环境中梭曼中毒人红血球AChE的影响.六所内部归档资料,2000-52.
    1. Krummer S, Thiermann H, Worek F, Eyer P. Equipotent cholinesterase reactivation in vitro by the nerve agent antidotes HI-6 dichloride and HI-6 dimethanesulfonate. Arch. Toxicol., 2002, 76(10): 589.
    2. Worek F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta., 1999, 288: 73.
    3. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem., 2003, 312: 224.
    4. Worek F, Thiermann H, Szinicz L, Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharma., 2004, 68: 2237.
    5. Kuca K, Kassa J. Oximes-induced reactivation of rat brain acetylcholinesterase inhibited by VX agent. Hum. Exp. Toxicol., 2004, 23 (4): 167.
    6. Kuca K, Cabal J. In vitro reactivation of acetylcholinesterase inhibition by O-isopropylmethylfluorophosphonate using the bisquartemary oxime, HS-6. Ceska Slov. Farm., 2004, 53 (2): 93.
    7. Worek F, Reiter G, Eyer P, Szinicz L. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch. Toxicol., 2002, 76 (9): 523.
    8.潘东齐,赵德禄.1978对不同pH环境中梭曼中毒人红血球AChE的影响.六所内部归档资料,2000-52.
    9.周文霞.L-1978等化合物对正常和梭曼抑制大鼠离体隔肌AChE活性的影响.六所内部归档资料,2001-9.
    10.钟玉绪.1655等叔铵型化合物对梭曼膦酰化AChE的增强重活化作用及其作用机理的研究.中国人民解放军军事医学科学院博士研究生毕业论文,2000.
    11. Malany S, Baker N, Verweyst M, Medhekar R, Quinn DM, Velan B, Kronman C, Shafferman A. Theoretical and experimental investigations of electrostatic effects on acetylcholinesterase catalysis and inhibition. Chem. Biol. Interact., 1999, 14 (119-120): 99.
    12. Kataoka M, Tsunoda N, Ohta H, Tsuge K, Takesako H, Seto Y. Effect of cation-exchange pretreatment of aqueous soil extracts on the gas chromatographic-mass spectrometric determination of nerve agent hydrolysis products after tert.-butyldimethylsilylation. J Chromatogr. A, 1998, 824 (2): 211.
    13. Kovacic P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr. Med. Chem., 2003, 10 (24): 2705.
    14. Stuff JR, Creasy WR, Rodriguez AA, Durst HD. Gas chromatography with atomic emission detection as an aid in the identification of chemical warfare related material. J. Microcol. Sep., 1999, 11(9): 644.
    15. Noami M, Kataoka M, Seto Y. Improved tert-butyldimethylsilylation gas chromatographic/mass spectrometric detection of nerve gas hydrolysis products from soils by pretreatment of aqueous alkaline extraction and strong anion-exchange solid-phase extraction. Anal. Chem., 2002, 74 (18): 4709.
    16.胡绪英,娄艳红,周永新.染毒水样中神经性毒剂水解产物的分析.分析化学,2001,29(8):957.
    17. Mercier JP, M orin P, Dreux M, T ambute A. Liquid chromatography analysis of phosphonic acids on porous graphitic carbon stationary phase with evaporative light-scattering and mass spectrometry detection. J Chromatogr. A., 1999, 849(1): 197.
    18. Hooijschuur EW, Kientz CE, Brinkman UA. Determination of alkylphosphonic acids by microcolumn liquid chromatography with gradient elution coupled on-line with flame photometric detection. J Chromatogr A., 2001, 907 (1-2): 165.
    19. Liu Q, Hu X Y, Xie J W. Determination of nerve agent degradation products in environmental samples by liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. Anal. Chim. ACTA, 2004, 512: 93.
    20. Chernushevich IV, Loboda AV, Thomson BA.An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom., 2001, 36 (8): 849.
    21.刘勤,胡绪英,谢剑炜.液相色谱-电喷雾飞行时间质谱检测泥土中神经性毒剂降解产物.分析化学,2004,32(10):1309.
    22. Wang J, Pumera M, Collins GE, Mulchandani A. Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector. Anal Chem., 2002, 74 (23): 6121.
    23. Henderson TJ. Quantitative NMR spectroscopy using coaxial inserts containing a reference standard: purity determinations for military nerve agents. Anal. Chem., 2002, 74: 191.
    24. Black RM, Clarke RJ, Read RW, Reid MTJ. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J Chromatogr. A, 1994, 662: 301.
    25. D'Agostino PA, Hancock JR, Provost LR. Determination of sarin, soman and their hydrolysis products in soil by packed capillary liquid chromatography-electrospray mass spectrometry. J Chromatogr. A, 2001, 912: 291.
    26. Tsuchihashi H, Katagi M, Nishikawa M, Tatsuno M. Identification of metabolites of nerve agent VX in serum collected from a victim. J Anal. Toxicol., 1998, 22 (5): 383.
    27. Miki A, Katagi M, Tsuchihashi H, Yamashita M. Determination of alkylmethylphosphonic acids, the main metabolites of organophophorus nerve agents, in biofluids by gas chromatography-mass spectrometry and liquid-liquid-solid-phasetransfer-catalyzed pentafluorobenylation. J Anal. Toxicol., 1999, 23 (2): 86.
    28. Driskell WJ, Shis M, Needham L L, B arr DB. Q uantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography- tandem mass spectrometry. J Anal. Toxicol., 2002, 26: 6.
    29. Noort D, Hulst AG, Platenburg DH, Polhuijs M, Benschop HP. Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: estimation of internal dosage. Arch. Toxicol., 1998, 72 (10): 671.
    30. Shih ML, Simth JR, McMonagle JD, Dolzine TW, Gresham VC. Detection of metabolites of toxic alkylmethylphosphonates in biological samples. Biol. Mass Spectrom., 1991, 20: 717.
    31. Shih ML, McMonagle JD, Dolzine TW, Gresham VC. Metabolite pharmacokinetics of soman, sarin and GF in rates and biological monitoring of exposure to toxic organophosphorus agents. J Appl. Toxicol., 1994, 14 (3): 195.
    32. Katagi M, Nishikawa M, Tatsuno M, Ysuchihashi H. Determination of the main hydrolysis products of organophosphorus nerve agents, methylphosphonic acids, in human serum by indirect photometric detection ion chromatography. J Chromatogr. B, 1997, 698: 81.
    33. Sega GA, Tornkins BA, Griest WH. Analysis of methylphosphonie acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater. J Chromatogr. A, 1997, 790 (1-2): 143.
    34. Kataoka M, Tsuge K, Seto Y. Efficiency ofpretreatment of aqueous samples using a macroporous strong anion-exchange resin on the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry after tert.-butyldimethylsilylation. J Chromatogr. A, 2000, 891 (2): 295.
    35. Mui Tiang Sng, Wei Fang Ng. In-situ derivatisation of degradation products of chemical warfare agents in water by solid-phase microextraction and gas chromatographic-mass spectrometric analysis. J Chromatogr. A, 1999, 832 (1-2): 173.
    36. Hook GL, Kimm G, Koch D, Savage PB, Ding B, Smith PA. Detection of VX contamination in soil through solid-phase microextraction sampling and gas chromatography/mass spectrometry of the VX degradation product bis(diisopropylaminoethyl)disulfide. J Chromatogr. A, 2003, 992 (1-2): 1.
    37. Fredriksson S-A, Hammarastrtm L-G, Henriksson L, Lakso HA. Trace determination of a lkyl methylphosphonic Acids in Environmental and biological samples using gas chromatography/negative-ion chemical ionization mass spectrometry and tandem mass spectrometry. J Mass Spectro., 1995, 30 (8): 1133.
    38. Black RM, Harrison JM, Read RW. The interaction of sarin and soman with plasma proteins: the identification of a novel phosphonylation site. Arch. Toxicol., 1999, 73 (2): 123.
    39. Nagao M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadate K. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol. Appl. Pharmacol., 1997, 144(1): 198.
    40. Matsuda Y, Nagao M, Takatori T, Niijima H, Nakajima M, Iwase H, Kobayashi M, Iwadate K. Detection of the sarin hydrolysis product in formalin-fixed brain tissues of victims of the Tokyo subway terrorist attack. Toxicol. Appl. Pharmacol., 1998, 150 (2): 310.
    41. Adams TK, Capacio BR, Smith JR, Whalley CE, Korate WD. The application of fluoride reactivation process to the detection of sarin and soman nerve agent exposure in biological samples. Drug and Chem. Toxicol., 2004, 27(1): 77.
    42. Kataoka M, Seto Y. Discriminative determination of alkyl methylphosphonates and methylphosphonate in blood plasma and urine by gas chromatography-mass spectrometry after tert.-butyldimethylsilylation. J Chromatogr. B, 2003, 795(1): 123.
    43.李风珍,孙曼霁.微量羟胺比色法测量胆碱酯酶活性.军事医学科学院院刊,1986,10(3):211.
    44. Gilbert G, Wagner-Jauregg T, Steinberg GM. Hydroxamic acids: relationship between structure and ability to reactivate phosphonate-inhibited acetylcholinesterase. Arch. Biochem. Biophys, 1961, 93: 469.
    45. D'Agostino PA, Provost LR. Polyacrylamide gel polymerization under non-oxidizing conditions, as monitored by capillary zone electrophoresis. J Chromatogr., 1992, 589: 287.
    46. Black RM, Clarke RJ, Read RW, Reid MTJ. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J Chromatogr. A, 1994, 662: 301.
    47. Purdon JG, Pagotto JG, Miller RK. Preparation, stability and quantitative analysis by gas chromatography and gas chromatography—electron impact mass spectrometry of tert.-butyldimethylsilyl derivatives of some alkylphosphonic and alkyl methylphoshonic acids. J Chromatogr., 1989, 475: 261.
    48. Tornes JA, Johnsen BA. Gas chromatographic determination of methylphosphonic acids by methylation with trimethylphenylammonium hydroxide. J Chromatogr., 1989, 467: 129.
    49. Creasy WR, Rodriguez AA, Stuff JR, Warren RW. Atomic emission detection for the quantitation of trimethylsilyl derivatives of chemical-warfare-agent related compounds in environmental samples. J Chromatogr. A, 1995, 709: 333.
    50. Black RM, Muir B. Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J Chromatogr. A, 2003, 1000: 253.
    51. Bauer G, Vogt W. Chromatographic identification and quantitation of dimethyl sulfoxide. Anal. Chem., 1981, 53: 917.
    52.刘勤.神经性毒剂降解产物毛细管电泳分析方法的研究与应用.中国人民解放军军事医学科学院硕士研究生毕业论文,2000.
    53.胡绪英,谢剑炜.SPE-GC/MS法分析血浆中甲基膦酸酯类化合物.六所八室内部资料.2004年5月.
    54.康格非.临床生物化学与生物化学检验,人民卫生出版社,北京,2002年3月.
    55.任慧敏,郎红旗.分析化学手册,化学工业出版社,杭州,1997.
    56. Hanke DW, Overton MA. Phosphylation kinetic constants and oxime-induced reactivation in acetylcholinesterase from fetal bovine serum, bovine caudate nucleus, and electric eel. J. Toxicol. Environ. Health., 1991, 34(1): 141.
    57 Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Science Press, Beijing, 2002.8.
    58. Nagao M, Takatori T, Matsuda Y, Nakajima M, Niijima H, Iwase H, Iwadate K, Amano T. Detection of satin hydrolysis products from sarin-like organophosphorus agent-exposed human erythrocytes. J Chromatogr. B, 1997, 701: 9.
    59. Nagao M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadate K. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol. Appl. Pharmacol., 1997, 144: 198.
    60. Lundy PM, Hill I, Lecavalier P, Hamilton MG, Vair C, Davidson C, Weatherby KL, BergerBJ.The pharmacokinetics and pharmacodynamics of two HI-6 salts in swine andefficacy in the treatment of GF and soman poisoning. Toxicol., 2005, 30, 208(3): 399.
    61. Goransson-Nyberg A, Cassel G.Cardiopulmonary effects of HI-6 treatment in soman intoxication. J Appl. Toxicol., 2001, 21, Suppl 1: S79-81.
    62. Kassa J. A comparison of the therapeutic efficacy of conventional and modern oximes against supralethal doses of highly toxic organophosphates in mice. Acta Medica (Hradec Kralove)., 1998, 41 (1): 19-21.
    63. Grubic Z, Tomazic A. Mechanism of action of HI-6 on soman inhibition of acetylcholinesterase in preparations of rat and human skeletal muscle: comparison to SAD-128 and PAM-2. Arch. Toxicol. 1989, 63: 68.
    64. Hanke DW, Beckett MS, Overton MA, Burdick CK, Lieske CN. Oxime-induced reactivation of acetylcholinesterase inhibited by organophosphinates.J Appl Toxicol., 1990, 10(2): 87.
    65. Inns RH, Leadbeater L. The efficacy of bispyridinium derivatives in the treatment of organophosphonate poisoning in the guinea-pig. J Pharm Pharmacol., 1983, 35 (7): 427.
    1.周文霞.L-1795等叔铵型重活化剂抗梭曼中毒机理的研究.中国人民解放军军事医学科学院博士研究生毕业论文,1998.
    2.于卫东.L-L-1978药代动力学及抗隔肌麻痹作用机制研究.中国人民解放军军事医学科学院博士研究生毕业论文,2004.
    3.李万华 魏滨 赵德禄.L-L-1978、L-1655和HI-6抗小鼠梭曼中毒效能(PR)比较.六所内部归档资料,2000-28.
    4.潘东齐 赵德禄.L-1978对小鼠体内AChE活性的影.六所内部归档资料,2000-54.
    5.钟玉绪.1655等叔铵型化合物对梭曼膦酰化AChE的增强重活化作用及其作用机理的研究.中国人民解放军军事医学科学院博士研究生毕业论文,2000.
    6. Hagedorn I, Stark I, Lorenz HP. Reaktivierung phosphorylierter acetylcholinesterase-Abhangigkeit con der Aktivator-Aciditat. Angew. Chem., 1972, 84: 354.
    7. Cakar MM, Vasic VM, Petkovska LT, Stojic DL, Avramov-Ivic M, Milanovic GA. Spectrophotometric and electrochemical study of protolytic equilibria of some oximes-acetylcholinesterase reactivators. J Pharm. Biomed. Anal., 1999, 20: 655.
    8. Mager PP. Quantitative structure-reacitvaty and structure-toxicity relationships of reactivators ofphosphylated acetylcholinesterase. Pharmazie, 1981, 36: 450.
    9. Mager PP, Gupta S DAS. Quantitative structure-activity relationships of reactivators of phosphylated acetylcholinesterase Part 2. Pharmazie, 1982, 37: 607.
    10. Su CJ, Wang PH, Liu RF. Kinetic studies and structure-activity relationships of bispyridinium oxime as reactivators of acetylcholinesterase inhibited by organophosphorus compounds. Fundam. Appl. Toxicol., 1986, 6: 506.
    11.李风珍,孙曼霁.双吡啶单肟类化合物对人的膦酰化胆碱酯酶的重活化作用.军事医学科学院院刊,1985,9:67.
    12. Benschop HP, De Jong LP。Toxicokinetics of soman: species variation and stereospecificity in elimination pathways. Neurosci. Biobehav. Rev., 1991, 15(1):
    13 Herkenhoff S, Sxinicz L, Rastogi VK, Cheng TC, Defrank JJ, Worek F. Effect of organophosphorus hydrolyzing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase. Arch. Toxicol., 2004, 78: 338.
    14. Worek F, Diepold C, Eyer P. Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics. Arch. Toxicol., 1999a, 73: 7.
    15 罗春元,李志秀,夏叔泉,孙曼霁,杨进生.不同有机磷酸酯磷酰化乙酰胆碱酯酶活性中心的构象差异.生物化学与生物物理进展,1995,22(2):141.
    16 Svensson I, Waara L, Cassel G. Effects of HI-6, diazepam and atropine on soman-induced IL-1 beta protein in rat brain. Neurotoxicol., 2005, 26 (2): 173.
    17 Kassa J, Kxejcova G, Samnaliev I. A comparison of the neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in soman-poisoned rats. Acta Medica(Hradec Kralove)., 2003, 46 (3): 101.
    18.潘东齐,李万华,王玉琛,刘艳琴,赵德禄.1978等对神经性毒剂中毒AChE的重活化作用及抑制作用比较.六所内部归档资料,2000-51.
    19.周文霞,赵德禄.L-1978等哒嗪类化合物对soman,sarin及VX抑制的人红细胞AChE的重活化作用.六所内部归档资料,2000-65.
    20.潘东齐,赵德禄.1978对不同pH环境中梭曼中毒人红血球AChE的影响.六所内部归档资料,2000-52.
    21.周文霞,赵德禄.L-1978等化合物在不同条件下对soman抑制的人红细胞AChE的重活化作用的比较研究.六所内部归档资料,2000-66.
    22.潘东齐,李万华,王玉琛,刘艳琴,赵德禄.L-1978对梭曼中毒犬血中胆碱酯酶活力的影响.六所内部归档资料,2000-53.
    23. Thomsen T, Kewitz H, Pleul O. Estimation of cholinesterase activity (EC 3.3.7; 3.1.1.8) in undiluted and erythrocytes as a tool for measuring in vivo effects of reversible inhibitors. J clin. Chem. Clin. Biochem., 1998, 26: 469.
    24. Dawson RM. Reversibility of the inhibition of acetylcholinesterase by tacrine. Neurosci. Lett., 1990, 118: 85.
    25. Bermann HA, Leonard K. Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase. Mol. Pharmacol. , 1992, 41: 412.
    26. Ashani Y, Peggins JO, Doctor BR Mechanism of inhibition of cholinesterase by huperzine A. Biochem. And Biophys. Res. Comm. , 1992, 184: 719.
    27. Harris LW, Heyl WC, Stitcher DL, Broomfield C. Effects of 1,1'-oxydimethylene bis-(4-tert-butylpyridinium chloride)(SAD-128) and decamethonium on reactivation of soman and sarin inhibited cholinesterase by oximes. Biochem. Pharmacol. , 1978, 27: 757.
    28. Liu JS, Yu CM, Zhou YZ. The structure of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can. J. Chem. , 1986, 64: 837.
    29. Kozikowski AP, Xia Y, Reddy ER, Tuckmantel W, Hanin I, Tang XC. Synthesis of huperzine A and its analogues and their anticholinesterase activity. J Org. Chem. , 1991, 56: 4633.
    30.唐希灿,韩怡凡,陈小平,朱晓东.石杉碱甲对大鼠辨别学习与记忆再现的作用.中国药理学报,1986,7:507.
    31.严孝方,陆维华,楼伟建,唐希灿.石杉碱甲和乙对骨骼肌及脑点的作用.中国药理学报,1987,8:117.
    32. Tang XC, Sarno PD, Sugaya K, Giacobini E. Effect of huperzine A, a new cholinesterase i nhibitor, on the central cholinergic sy stem of the rat. J N eurosci. Res. , 1989, 24: 276.
    33. Lagantere S, Corey J, Tang XC, Wulfert E, Hanin I. Acute and chronic studies with the anticholinesterase huperzine A: effect on central nervous system cholinergic parameters. Parmacol. , 1991, 30: 763.
    34. Quinn DM. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. , 1987, 87: 955.
    35. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpede californica: a prototypic acetylcholine-binding protein, Science, 1991, 253: 872.
    36.王会信,张明晶,周廷冲.三种双季铵化合物对乙酰胆碱酯酶梭曼膦酰化和老 化的影响.生物化学与生物物理学报,1984,16 (4):370.
    37. Schoene K. Aging of soman inhibited acetylcholinesterase: inhibitors and accelerators. Biochem. Biophys. Acta, 1978, 525 (2) : 468.
    38 Kassa J, Samnaliev I. Assessment of the therapeutic and anticonvulsive efficacy of a drug combination consisting of trihexyphenidyle and HI-6 in soman-poisoned rats. Acta Medica(Hradec Kralove). , 2004, 47 (3) : 171-5.
    39 Kassa J, Krejcova G, Samnaliev I. A comparison of the neuroprotective efficacy of pharmacological pretreatment and antidotal treatment in soman-poisoned rats. Acta Medica(Hradec Kralove). , 2003, 46 (3) : 101.
    40 Kassa J, Fusek J. The positive influence of a cholinergic-anticholinergic pretreatment and antidotal treatment on rats poisoned with supralethal doses of soman. Toxicol. , 1998, 128 (1) : 1.
    41. Hagedorn I, Stark I, Schoene K, Schenkel H. Reactivation of phosphorylated acetylcholinesterase. Isomeric bisquaternary salts of pyridine aldoximes. Arzneim. Forsch. , 1978, 28, 11: 2055.
    42. Berry D. Factors influencing the rate of aging of series of alkyl methyl phosphonyl acetylcholinesterases. Biochem. J, 1966, 100: 1572.
    43. Kuhnen BH, Schrichten A, Schoene K. Influence of atropine upon aging and reactivation of soman inhibited acetylcholinesterase from human erythrocytes. Arzneim. Forsch. , 1985, 35: 1454.
    44. Tezuka A, Ishihata A, Aita T, Katano Y. Aging-related alterations in the contractile responses to acetylcholine, muscarinic cholinoceptors and cholinesterase activities in jejunum and colon of the male Fischer 344 rats. Exp Gerontol. , 2004, 39 (1) : 91.
    45. Van Dongen CJ, Elskamp RM, De Jong LP. Influence of atropine upon reactivation and ageing of rat and human erythrocyte acetylcholinesterase inhibited by soman. Biochem Pharmacol. , 1987 , 36 (7) : 1167.
    46. Clement JG, Filbert M. Antidote effect of sodium fluoride against organophosphate poisoning in mice. Life Sci. , 1983, 32 (16) : 1803.
    47. Dehlawi MS, Eldefrawi AT, Eldefrawi ME, Anis NA, Valdes JJ. Choline derivatives and sodium fluoride protect acetylcholinesterase against irreversible inhibition and aging by DFP and paraoxon. J Biochem Toxicol., 1994, 9(5): 261.
    48. Tian WX, Tsou CL. Determination of the rate constant of enzyme modification by measuring the subtrate reaction in the presence of the modifier. Biochem., 1982, 21: 1028.
    49. Puu G, Artursson E, Bucht G. Reactivation of nerve agent inhibited human acetylcholinesterases by HI-6 and obidoxime. Biochem. Pharma., 1986, 35 (9) : 1505.
    50. Bucht G, Puu G. Aging and reactivatability of plaice cholinesterase inhibited by soman and its steroisomers. Biochem. Pharma., 1984, 33 (22) : 3573.
    51. Kassa J, Cabal J. A comparison of the efficacy of a new asymmetric bispyridinium oxime BI-6 with currently available oximes and H oximes against soman by in vitro and in vivo methods. Toxicol., 1999, 132: 111.
    52. Johnson MK, Read DJ, Benschop HP. Interaction of the four stereoisomers of soman (pinacolyl methylphosphonofluoridate) with acetylcholinesterase and neuropathy target esterase of hen brain. Biochem Pharmacol., 1985, 34 (11) : 1945.
    53. de Jong LP, Wolring GZ. Stereospecific reactivation by some Hagedorn-oximes of acetylcholinesterases from various species including man, inhibited by soman. Biochem Pharmacol., 1984, 33 (7) : 1119.
    54. Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A, Melchiorre C. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem., 2004, 47 (24): 5945.
    55. Darvesh S, McDonald RS, Penwell A, Conrad S, Darvesh KV, Mataija D, Gomez G, Caines A, Walsh R, Martin E. Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives. Bioorg Med. Chem., 2005, 13 (1): 211.
    56. Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. , 2004, 38: 151.
    57. Krummer S, Thiermann H, Worek F, Eyer P. Equipotent cholinesterase reactivation in vitro by the nerve agent antidotes H1 6 dichloride and HI 6 dimethanesulfonate. Arch Toxicol. , 2002 , 76 (10) : 589.
    58. Worek F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta, 1999, 288: 73.
    59. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, et al. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem. , 2003, 312: 224.
    60. Worek F, Thiermann H, Szinicz L, Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharma. , 2004, 68: 2237.
    61 罗春元.塔崩作用于AChE的特点及药物重活化机理研究,中国人民解放军军事医学科学院博士研究生毕业论文,1993.
    62 Zhang YG, Bai CL, Wang C, Zhao DL. Force spectroscopy between acetylcholine and single acetylcholinesterase molecules and the effects of inhibitors and reactivators Studied by atomic force microscopy. J Pharmacol. Exp. Ther. , 2001, 297 (2) : 798.
    63. Boskovic B, Maksimovic M, Mimic D. Aging and reactivation of acetylcholinesterase inhibited soman and its thiocholine-like analogue. Biochem. Pharmacol. , 1968, 17: 1738.
    64. Alkondon M, Albuquerque EX. The nonoxime bispyridinium compound SAD-128 alters the kinetic properties of the nicotinic acetylcholine receptor ion channel: a possible mechanism for antidotal effects. J Pharmacol. Exp. Ther. , 1989, 250 (3) : 842.
    65. Grubic Z, Tomazic A. Mechanism of action of HI-6 on soman inhibition of acetylcholinesterase in preparations of rat and human skeletal muscle; comparison to SAD-128 and PAM-2. Arch. Toxicol. , 1989, 63 (1) : 68.
    66. Glickman AH, Wing KD, Casida JE. Profenofos insecticide bioactivation in relation to antidote action and the stereospecificity of acetylcholinesterase inhibition, reactivation, and aging. Toxicol Appl Pharmacol. , 1984, 73 (1) : 16.
    67. Hallek M, Szincz L. Effects of some mono-and Bisquaternary ammonium compounds on the reactivatibility of soman inhibited human acetylcholinesterase in Vitro. Biochem. Pharmacol. , 1988, 37: 819.
    68 Paddle BM, Dowling MH. Blockade of cardiac nicotinic responses by anticholinesterases. Gen Pharmacol. , 1996, 27 (5): 861.
    69. Harel M, Schalk J, Sabatier LE, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL. Quaternary ligand binding to aromatic resides in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA, 1993, 90: 9031.
    70. Barak D, Kronman C, Ordentlich A, Ariel N, Bromberg A, Marcus D, Lazar A, Velan B, Shafferman A. Acetylcholinesterase peripheral Anionic site degeneracy conferred by anino acid arrays sharing a common core. J Biol. Chem. , 1994, 264: 6296.
    71. Silman I, Harel M, Axelsen P, Eaves M, Sussman JL. Tree-dimensional structures of acetylcholinesterase and of its complexes with anticholinesterase agents. Biochem. Soc. Trans. , 1994, 22: 745.
    72. Ordentlich A, Barak D, Kronman C, Aiel N, Segall Y, Vellan B, Shafferman A. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 ti catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol. Chem., 270: 2082.
    73. Stalc A, Sentjurc M. A contribution to the mechanism of action of SAD-128. Biochem Pharmacol. , 1990, 40 (11) : 2511.
    74. Clement JG, Erhardt N. In vitro oxime-induced reactivation of various molecular forms of soman-inhibited acetylcholinesterase in striated muscle from rat, monkey and human. Arch Toxicol. , 1994, 68 (10) : 648.
    75. Benschop HR Keijer JH. On the mechanism of aging of phosphonylated cholinesterases. Biochim. Biophys. Acta. , 1966, 128: 586.
    76 Qian NF, Kovach IM. Key active site residues in the inhibition of acetylcholinesterases by soman. FEBS Lett. , 1993, 336: 263.
    77. Saxena A, Viragh C, Frazier DS, Kovach IM, Maxwell DM, Lockridge O, Doctor BP. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism. Biochem. , 1998, 27, 37 (43) : 15086.
    78. Viragh C, Akhmetshin R, Kovach IM, Broomfield C. Unique push-pull mechanism of dealkylation in soman-inhibited cholinesterases. Biochem. 1997, 36 (27) : 8243.
    79. Keijer JH, Wolring GZ, De Bolster M. The pH dependence of the ageing of a phosphonylated acetylcholinesterase: evidence for the catalysis by a carboxyl group. Biochem Soc Symp. , 1970, 31: 105.
    80. Michel HO, Hackley BE Jr, Berkowitz L, List G. Hackley EB, Gillilan W, Pankau M. Aging and dealkylation of soman (oinacolymethylphosphono fluoridate)-inactivated eel cholinesterase. Arch. Biochem. Biophys. , 1967, 121: 29.
    81. Ordentlich A, Barak D, Sod-Moriah G, Kaplan D, Mizrahi D, Segall Y, Kronman C, Karton Y, Lazar A, Marcus D, Velan B, Shafferman A. Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Biochem. , 2004, 43 (35) : 11255.
    82. Johnson JL, Cusack B, Hughes TF, McCullough EH, Fauq A, Romanovskis P, Spatola AF, Rosenberry TL. Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites. J Biol. Chem. , 2003, 278 (40) : 38948.
    83. Taylor JL, Mayer RT, Himel CM. Conformers of acetylcholinesterase: a mechanism ofallosteric control. Mol. Pharmacol. , 1994, 45 (1) : 74.
    84. Bucht G, Haggstrom B, Radic Z, Osterman A, Hjalmarsson K. Residues important for folding and dimerisation of recombinant Torpedo californiea acetylcholinesterase. Biochim. Biophys. Acta. , 1994, 1209 (2) : 265.
    85. Shafferman A, Kronman C, Flasher Y, Leitner M, Grosfeld H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D. Mutagenesis of human acetylcholinesterase: identification of residues involved in catalytic activity and in polypeptide folding. J Biol. Chem. ,