纺织结构生物复合材料人工气管的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气管因外伤或肿瘤等疾病有时需要做切除并进行气道重建,当切除气管的长度超过直接吻合限度50mm时,就必须植入气管替代物——人工气管才能重建气管的连续性以维持气道的通畅。虽然在目前国际上对于气管替代物的研究中,具有良好生物性能的组织工程化人工气管的研究仍处于起步阶段,但是高分子材料科学和生命科学的完美结合为这种人工气管的研制提供了必要的替代材料,也为临床医学的发展开辟了新的途径,注入了新的活力。
     高分子生物材料中聚合物具有一定的机械强度和加工性能,可为细胞生长和组织再生提供适宜的支架,而生物活性材料由于具有良好的生物相容性和可降解性,对组织结构的再生和修复起着重要的诱导和促进作用。本课题的研究工作旨在研制开发出以纺织物为支架、生物活性材料为涂层的新型生物复合材料人工气管,希望能够将这两类不同特性材料进行有机组合从而产生综合两者优异性能的复合体,同时通过对其各项性能的测试和分析来获得较佳的制造工艺。
     本文首先选定了人工气管支架织物的编织原料为具有生物学惰性及良好力学性能的医用丙纶和具有优良生物性能的聚乙丙交酯;由于甲壳素兼具高等动物组织中的胶原和植物纤维中纤维素两者的优异生物特性,所以在本课题中采用的人工气管涂层材料为壳聚糖乙酸溶液。其次根据人工气管的理想性能特征设计了三种用作支架的管道织物:机织组织管道织物、针织添纱组织管道织物和仅采用聚乙丙交酯编织的可完全降解的针织纬平针管道织物。
     考虑到涂层工艺对人工气管性能的影响,在试样制备前本课题预先考察了不同浓度涂层剂溶液的涂层效果,并以此为依据选择了效果较佳的涂层工艺用于人工气管试样的制备,保证了试样的可比性。
     在试验测试部分,本课题对试样的拉伸性能和径向强度进行了测定,根据试验的结果深入研究了每种管道织物在测试过程中的不同变形作用,也得到了不同的编织工艺参数对人工气管力学性能的不同影
    
    响:原料的细度的变粗可增大人工气管各力学强度指标;机织组织管
    道织物中两种原料的排列方式对人工气管的拉伸性能并无明显影响而
    对其径向强度影响显著,其中以“1隔1”和“3隔3”的排列方式较
    佳。此外,本课题也对可完全降解与不可完全降解两种人工气管进行
    了降解性能的考察并加以对比分析,它们在降解过程中表现出的径向
    强度的变化趋势可以作为研制人工气管的另一项重要依据。
     本课题的研究为气管替代物的研制提供了重要的理论依据和参考
    价值,促进和推动了纺织品在医学领域的发展。
Tracheal resection and reconstruction should be performed sometimes due to trauma or tumors, and tracheal prosthesis is preferred especially when the reconstruction of tracheal defects is more than 50mm. Although the research of biocompatible tissue-engineered trachea is still in its initial stages, the perfect integration and development of polymeric sciences and life sciences provide necessary substitutes for tracheal prosthesis.
    Polymeric biomaterials comprise mainly synthetic and natural materials. The former such as polymers are characteristic of certain mechanical strengths and processing properties, which can provide appropriate scaffolds for cell growth and tissue regeneration. Compared with the former, the latter which possess excellent biocompatibility and biodegradability play a crucial role in inducing and facilitating cell growth and tissue regeneration. The objective of this project is to properly integrate the two kinds of different materials above to develop a new type of biologic composites artificial trachea, whose basic framework is textile fabric with sequential coating of bioactive materials, and to obtain the proper fabrication technology based on the results of experiments.
    Firstly, after a great deal of investigation and research, the author chose polypropylene(PP) and poly(glycolide-lactide)(PGLA) as the tubular fabric material and the acetic acid solution of Chitosan as the coating material. Polypropylene display superior biomechanical properties while the PGLA fiber is characteristic of controllable biodegradability, and Chitin integrate the excellent biological properties of both Collagen and cellulose. Secondly, based on the ideal characters of artificial trachea, three types of tubular fabric were designed as the stent: woven tubular fabric; plating knitted tubular fabric and completely degradable knitted tubular fabric which
    
    
    
    is made of PGLA only.
    In view of the influence of coating procedure, preferable concentration of the coating solution was selected by evaluating the different coating effect, and it was adopted in the production process of the artificial tracheal samples.
    Then mechanical experiments were carried out to measure the longitudinal tensile strength and radial supportive strength. Based on the testing results, the different deformation functions of the tubular fabric were obtained and we conclude that the strength indexes vary directly as the material diameter and the arrangement of the PP and PGLA has a prominent influence to the radial supportive strength of the woven artificial trachea. In addition, the degradation property of the tracheal prosthesis was investigated and this provides another important foundation for the fabrication technology of the artificial trachea.
    Achievements of this research have high value for reference and provide theory foundation for the investigation of tracheal prosthesis. It will accelerate the development of textile technology in medicine field.
引文
[1] 高建平,马朋高等,组织工程与生物可降解高分子骨架,高分子通报,2000,4:89~91;
    [2] 王身国,杨健等,组织工程用生物材料及细胞支架研究进展,中华整形外科杂志,2000,16,6:328~330;
    [3] 秦雄,聚氨酯.胶原壳聚糖复合人工食管重建犬颈段食管的实验研究,第二军医大学博士学位论文,8~120;
    [4] WE Neville, JP Bolanowski, GG Kotia, et al, Clinical experience with the silicone tracheal prosthesis, J Thorac Cardiovasc surg 1990, 99: 601~613;
    [5] 王海峰,陈晓峰,人工气管移植新进展,临床肺科杂志 2001,6,2:25~28;
    [6] 李前生,王明训等,人工气管置换术2例,中华胸心血管外科杂志,1994,10,1:47~48;
    [7] 鲁世千,高尚志等,用人工气管重建气管的实验研究及临床应用,中华实验外科杂志,1995,12,2:123~124;
    [8] 侯东祥,蒋开泰等,人工气管移植的实验研究及临床应用,中华胸心血管外科杂志,1995,11,3:149~150;
    [9] FG Person, RD Henderson, AE Gross, Ginberg, RJ Stone RM, The reconstruction of circumferential tracheal defects with a porous prosthesis: an experimental and clinical study using heavy Marlexmesh, J Thorac Cardiovasc surg1968, 55: 605~615;
    [10] D Leake, M Habal, A Plzzoferrato, et al, Prosthesis replacement of large defects of the cervical trachea in dogs, Biomaterials, 1985, 6: 17~22;
    [11] JR Jacobs, Investigations into tracheal prosthetic reconstruction, Laryngosope, 1988, 98: 1239~1245;
    [12] 饶天健,黄偶麟等,聚酯聚丙烯复合人工气管的实验研究,中华
    
    医学杂志,1998,78,10:757~758;
    [13] 饶天健,黄偶麟等,聚酯聚丙烯复合人工气管重建气管的实验研究,中华胸心血管外科杂志,1999,15,1:48~50;
    [14] 韩健,曾秀杰等,炭纤维人工气管的研究,炭素技术,1996,6:6~9;
    [15] 戚良晨,刘德若等,炭纤维人工气管的设计及实验研究,生物医学工程学杂志,1998,15,4:328~334;
    [16] 王福忠,韩振国等,炭纤维复合材料人工气管的临床应用,中华胸心血管外科杂志,1997,13,5:283~284;
    [17] 戚良晨,王福忠等,自制直管型人工气管实验犬长期生存的观察,白求恩医科大学学报,25,1:38~40;
    [18] 王福忠,矫永江等,分叉型人工气管的实验研究,白求恩医科大学学报,21,6:594~595;
    [19] 王文祖,生物复合材料人工气管的研制,产业用纺织品,2002,20,8:18~19;
    [20] P Tormala, Biomaterials, 1987, 8, 1: 42;
    [21] J Eitenmuller, J.Bioact.Compas, Polym, 1989, 4, 3: 215;
    [22] 王身国,杨健等,组织工程用生物材料及细胞支架研究进展,中华整形外科杂志,2000,16,6:328~330;
    [23] 张国栋,杨纪元等,聚乳酸的研究进展,化学进展,2000,12,1:89~101;
    [24] 何永言,夏淑贞等,医用聚乳酸的合成及其管型材料性能的测定,高分子材料科学与工程,1993,2:24~28;
    [25] M Vert, G Schwarch, J Loudance, Pure Appl. Chem, 1995, A32, 4: 786~796;
    [26] H R Kricheldorf, I Kreiser-Samders, Macromol. Symp, 1996, 103: 85~102;
    [27] 黄山,齐霁等,生物高分子聚乳酸的研制与开发,吉林化工学院学报,2001,18,1:9~14;
    [28] 刘建伟,赵强等,医用聚乳酸体内降解机理及应用研究进展,航天医学与医学工程,2001,14,4,308~312;
    
    
    [29]陈莉,赵保中,杜锡光,聚羟基乙酸及其共聚物的研究进展,化工新型材料,2002,30,3:11~15;
    [30]赵耀明等,生物降解材料——聚乙交酯医用纤维的研究,华南理工大学学报,1994,22,6:71~79;
    [31]吴颖,郭士明等,生物降解聚酯——聚乙丙交酯的合成研究及应用,化工新型材料,2000,28,1:22~24;
    [32]宋谋道,余艺华等,乳酸、羟基乙酸均聚物及共聚物的合成与结构表征,离子交换与吸附,1995,11,3:245~252;
    [33]赵耀明,黄俊豪等,生物降解医用材料——聚乙丙交酯的研究,合成纤维工业,1997,20,4:1~4;
    [34]N Okumura, T Nakamura, T Natsume, et al, Experimental study on a new tracheal prosthesis made from collagen-conjugated mesh, J Thorac Cardiovasc Surg, 1994, 108: 337~345;
    [35]刘白玲,胶原在生物医学领域的应用,皮革科学与工程,1999,9,3:35~42,32;
    [36]陈玉芳,许树文,甲壳素及其衍生物纺织品,上海纺织科技,2000,28,3:9~11;
    [37]宋丽贞,生物高分子材料的进展,产业用纺织品,2000,18,6:1~3;
    [38]鲁从华,罗传秋,曹维孝,壳聚糖的改性及其应用,高分子通报,2001,6:46~52;
    [39]B.Schmenk等著,刘越译,聚丙烯纤维的发展:性能、应用与回收,2003,222,9:8~13;
    [40]苗迎春,况敬业等,医用聚丙烯专用料的研制,中国塑料,1999,13,8:28~34;
    [41]蔡陛霞主编,《织物结构与设计》,1994年第二版,中国纺织出版社出版,北京,8~40;
    [42]诸哲言,李泰亨,《针织》,1984,纺织工业出版社,北京,29~40;
    
    
    [43]薛威麟,《针织学》,1965,中国财经出版社,北京,426~427;
    [44]张佩华,冯勋伟,针织纬编添纱工艺理论与实践研究综述,纺织学报,2000,10,63~65;
    [45]池庭,医用可扩张编织管道的研制,东华大学硕士学位论文,99届,27~46;
    [46]杨记,编织结构可生物降解神经再生导管的研制,东华大学硕士学位论文,00届,19~52;
    [47]罗瑞林,《织物涂层》,1994,中国纺织出版社,北京,1~5;
    [48]汪多仁,丙烯酸系乳液涂层整理,产业用纺织品,2001,19,8:38;
    [49]周立民,胡仁智,丙纶织物涂层整理的研究,产业用纺织品,2001,19,2:30~31;
    [50]张丽芝,苏玉兰,产业用多功能涂层织物的开发和应用,产业用纺织品,1999,17,4:6~10;
    [51]秦冬雨,可吸收医用编织缝合线编织工艺和性能研究,硕士学位论文,99届,55~57;
    [52]李毅,张佩华,王文祖,新型针织结构人工气管支架的开发及其力学性能初探,产业用纺织品,2002,12:23~26;
    [53]姚穆等编,《纺织材料学》,1997年第二版,中国纺织出版社出版,北京,522~532;
    [54]于伟东、储才元编,《纺织物理》,2002年,东华大学出版社出版,上海,364~366;
    [55]庄楚强、吴亚森编,《应用数理统计基础》,1999年,华南理工大学出版社出版,广东,383~506;
    [56]C Dumoulin, B Cochelin, Journal of Biomechanics, 2000, 33: 1461-1470;
    [57]史宏灿,生物材料人工气管的制备与试验研究,第二军医大学博士学位论文,2003.7:68~74;
    [58]鄂征主编,组织培养和分子细胞学技术,北京出版社出版,1~77;