同种异体组织工程化软骨的构建及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉、气管病损所致的软骨缺损的修复目前仍无理想的方法。常规的治
    疗措施主要靠自体、异体软骨及人工替代品来实现软骨支架的修复与重建,
    虽然有一定的治疗效果,但存在供体再损伤,材料来源有限,与受体形状
    不相配,免疫排斥及异物反应和难以与机体融合等问题。因此,探索一种
    新的修复重建方法仍是耳鼻咽喉-头颈外科医师面临的重要任务之一。近年
    来兴起的组织工程技术为解决这些问题提供了新途径。组织工程是融合生
    命科学、材料学、工程学和化学的一门边缘学科。其基本思想是用所需组
    织或器官的细胞作种子细胞,经体外培养扩增后将高浓度有活力的细胞接
    种到一种生物相容性好、可生物降解、具有预制形态和空间结构的合成聚
    合物或天然基质材料中。再将此细胞-材料复合物植入体内缺损部位,在生
    物支架材料逐步降解吸收过程中,种植的细胞增生繁殖、不断分化,形成
    新的具有特殊功能和形态的相应组织和器官,达到修复缺损和重建功能的
    目的。
     组织工程化软骨形成的重要条件之一是必须获得大量的软骨种子细
    胞。自体软骨取材量小不足以产生足够的细胞,体外培养扩增,反复传代
    易致细胞“去分化”(dedifferentiation)而失去软骨细胞性质。取材量大不仅
    造成供区严重损伤,而且有时是不可能的。同种异体软骨来源广,易获取,
    细胞经过消化分离及体外培养有可能消弱其免疫原性。因此,有望成为构
    建组织工程化软骨的充裕细胞来源。本研究以同种异体软骨细胞作为种子
    细胞,探讨在有免疫力的动物体内构建预定形态组织工程化软骨的可能性,
    研究同种异体软骨细胞一支架材料复合物及新形成的同种异体工程化软骨
    
    
    I
     第四军医大学98级博士论文
     一
     在喉软骨缺损修复和功能重建中应用的可行性及其效果。为软骨组织工程
     技术在耳鼻咽喉科的可能应用提供资料,奠定基础。
     材料与 方法
     一、同种异体预定形态组织工程化软骨的构建
     取1周龄乳兔肋软骨,剪切后用*型胶原酶消化分离获得软骨细胞,
     置含200胎牛血清的HaM-12培养基在37℃、50COZ和饱和湿度条件下
     培养,收集传第 2I代的软骨细胞,调整浓度达 SX 10\ml,接种子塑为方
     形片状和“C”形管状经多聚赖氨酸处理的 PGA三维支架材料上,将软骨
     细胞IGA复合物体外培养 7q 0天,然后种植于成年兔皮下。分别于 4周、
     8周和 12周取材,行大体和组织学观察(HE染色、Masson三色染色和阿
     丽辛蓝过碘酸雪夫(AB/PAS)染色),对工程化预定形态软骨的构建情况进
     行评价。在了解组织工程化软骨形成的同时,观察PGA的降解情况。
     二、同种异体组织工程化软骨修复喉软骨缺损
     将种植于成年兔皮下的方型片状同种异体软骨细胞PGA支架材料复
     合物,4周取材用于修复实验* 只雄性新西兰大白兔O七月龄,体重2.5咤
     士0.skg卜随机分为实验组O 只)和对照组O只X3%戊巴比妥按30m叭m
     静脉麻醉。无茵条件下暴露甲状软骨,在一侧甲状软骨板上造成 0石cm X
     0.scm的缺损区,内外软骨膜一并去除,保留喉内粘膜。然后植入同等大
     下 小组织工程化软骨(实验组和单纯PGA材料(对照组卜分别于术后4周、8
     周和12周取材,观察修复区大体和组织学情况,评估修复效果。
     三、软骨细胞-PGA复合物修复喉软骨缺损
     雄性新西兰大白兔 18只O七月龄,体重2.skg土0.skg),随机分成实验
     组(只X对照A组(只抨对照B组征只卜与实验二同法在一侧甲状软
     2
    
     第四军医大学98缀博土论文
     一
     骨板上造成0石cm X 0.scm的缺损区,植入同等大小体外培养71 天的软
     骨细胞IGA复合物(实验组贞单纯PGA支架材料(对照A组),对照B组
     缺损区注入 200 ul软骨细胞悬液脓度为 6 XI ovml、术后观察动物一般情
     I
     况,并分别于4周、吕周和12周取材,对缺损区修复愈合情况进行大体和
     组织学评估,并观察PGA的降解性。
    v
     结 果
     一、体外培养细胞观察
     原代软骨细胞贴壁时间较长,约48~72h,传代后细胞贴壁所需时间
     逐渐缩短。软骨细胞接种后,细胞呈球形,以串珠状或层状吸附于PGA
     纤维表面。软骨细胞IGA复合物体外培养1周,可见细胞分泌的基质呈
Nowadays, no perfect methods are performed to repair cartilage defects caused by diseases or traumas in larynx and trachea. Although autologous, allogeneic cartilage and artificial products are usually used as reparative materials to reconstruct laryngeal and tracheal function, these methods still remain unsolved problems which are the damage to donor, lack of enough cartilage, no suitable shape for recipient, immune rejection from recipient, foreign body reaction and difficult blending with recipient. Therefore, it is still an important task for the otorhinolaryngeal workers to explore a new way of cartilage reconstruction. In recent years, tissue engineering technique provides a effective approach for solving these problems. Tissue engineering is a multidisciplinary scientific field merging with biology, material science, engineering and chemistry. Its main idea is to harvest minimal quantity of tissue cells, and then expand them in vitro. Next, the cells are seeded onto a
    
    
    
    3. Laryngeal cartilage defects repair with chondrocyte-PGA complexes.
    18 adult male New Zealand White Rabbits (age:4~6 months, weight : 2.5kg?.5kg) were at random divided into experimental groups(n=6). 0.6cmX 0.5cm cartilage defect sites were created just as experiment 2.Then,defects were repaired using chondrocyte-PGA complexes in experimental groups;in control A groups,defects were repaired using single PGA biomaterials.200 ul chondrocyte suspension with cellular density of 6X 107/ml was injected into defect sites in control B groups.Finally.the reparative effect was studied on gross and histology in 4,8 and 12 weeks after surgery.
    Results
    1. Chondrocytes culture in vitro
    It took about 48-72 hours to adhere to the dishs for primary chondrocytes.During subculture.the time gradually became shorter.After seeding chondrocytes onto PGA scaffolds,cells maintained their spherical shape and adhered to the PGA fibers in the form of a string of beads or multiplayer.A number of matrices like web amoung fibers were observed around one week after culture in vitro.
    2. Gross and histology ofallogeneic tissue engineered cartilage
    4 weeks after transplantation,the specimens were excised. On gross examination, sheets and "C" shaped specimens appeared milk white cartilage tissue of approximately the same shape as the original configuration. Histological
    
    
    
    analysis.the immature chondrocytes had been regenerated in allograft animals. Some mild inflammatory cells surrounding the new cartilage and a few PGA fibers were observed(HE stain ). Light-green staining of collagen and purple-blue staining of sulfated glycosamioglycan(GAG) within the cartilage matrix were detected. 8 weeks after transplantation, mature cartilage similar to native cartilage structure was found.The formation of lacunae in which the single or multiple chondrocytes were enclosed was observed .More collagen and sulfated GAG were found.Less evidence of inflammatory cells response and residual PGA fibers were watched. 12 weeks after transplantation,more mature cartilage was obtained.There was no evidence of neovascular formation. No chondrocytes and their matrice were also seen in control groups.
    3. Observation ofreparative effect -with tissue enginnered cartilage
    4 weeks after operation,gross specimens showed that laryngeal thyroid cartilage defects were well repaired using allogeneic tissue engineered cartilage as reparative material. Histological examination found a few chondrocytes and matrices between the reparative sites with tissue engineered cartilage and normal cartilage.But chondrocytes was smaller in repartive sites than that in native cartilage sites.8 and 12 weeks after operation,more chondrocytes and matrice were observed in reparative and interfacial areas.Few inflammatory cells were found.Only connective tissue existed in reparative sites of control groups.
    4. Observation ofreparative effect with chondrocyte-PGA complexes
    4 weeks after operation, gross inspection showed that cartilage defect areas were initially repaired .Histolog
引文
1. Pollok JK, Vacanti P. Tissue engineering Semin Pediatr Surg, 1996, 5 191-196
    2. Sittinger M. Tissue engineering artifical tissue replacement containing vital components. Laryngorhinootologie 1995, 74: 695-699
    3 Langer R, Vacanti JP Tissue engineering. Science, 1993, 260: 920-926
    4 Vacantl JP, Larger R. Tissue engineering: the design and fabrication of living replasment devices for surgical reconstruction and transplantation. Lancet, 1999, 354(Suppl Ⅰ). 32-36
    5. Langer R, Vacantl JP. Artifical organs. Sci Ame, 1995, 273 100-103
    6. 顾汉卿.面向21世纪的人工组织与人工器官研究 中华实验外科杂志.2000,17:103-104
    7. 半月谈资料室.我国第5次全国人口普查主要数据.半月谈杂志,2001,第7期(总503期):28-29
    8. 杨志明.组织工程基础与临床.第一版.成都:四川科学技术出版社.2000:12
    9. 鄂征主编.组织培养和分子细胞学技术.第一版.北京:北京出版社.1999:1-118
    10. Green WT Jr. Articular cartilage repair: Behavior of rabbit chondroeytes during tissue culture and subsequent allografting. Clin Orthop, 1977, 124. 237-240
    11. Bell E, Ehrlich HP, Buttle DJ, et al. Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness. Science, 1981, 211: 1052-1055
    12. Yannas Ⅳ. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science, 1982, 215: 174-175
    13. Vacanti JP, Morse MA, Saltzman WM. Selecttve cell transplantation using bioabsorbable artifical polymers as matrices. J Pediatr Surg, 1988, 23: 3-6
    
    
    14. Vacanti CA, Langer R, Schloo B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg, 1991, 88: 753-756
    15. Cae YL, Vacanti JP, Paigo KT, et al. Transplantation of chondrecytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg, 1997, 100: 297-301
    16.毛天球.组织工程的研究概括.实用口腔医学杂志,2000,16:(1) 47-76,(2)156-158
    17.杨志明.组织工程基础与临床.第一版.成都:四川科学技术出版社,2000:105-218
    18.杨志明,赵雍凡.解慧琪,等.组织工程肋骨移植修复胸壁巨大缺损.中国修复重建外科杂志,2000,14:365-368
    19. Kimura T, Yasai N, Chsawa S, et al. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long term cultures. Clin Orthop, 1984, 186: 231-234
    20. Wakitani S, Kimura T, Hirooka A, et al. Repair of rabbit articular surfaces with allograft chondroeyte embedded in collagen gel. J Bone Joint Surg, 1989, 71: 74-80
    21. Haisch A, Schultz O, Perka C, et al. Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carries. HNO, 1996, 44: 624-629
    22. Homminga GN, Buma P, Koot HWJ, et al. Chondrocyte behavior in fibrin glue in vitro. Acta Orthop Stand, 1993, 64: 441-445
    23. Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using Synthetic biodegradable polymer matrices. Clin Plast Surg, 1994, 21: 445-462
    24. Puelacher WC, Kim SW, Vacanti JP, et al. Tissue engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto Synthetic polymer matrices. J Oral Maxillofac Surg, 1994, 23: 49-54
    
    
    25.夏万尧,曹谊林,高庆新,等.组织工程化软骨形成的最佳细胞浓度和最佳形成时间的实验研究.中国修复重建外科杂志,1999,13:244-248
    26. Bonaventure J, Kadom L. Reexpression of cartilage-specific gene by dedifferentiated human articular chondrocytes cultured in alginate beads. Experimental Cell Research, 1994, 212: 97-103
    27. Freed LE, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem, 1993, 51: 257-260
    28.郭昭庆,党耕町,王志国,等.种植骨髓基质细胞的骨组织工程学研究.中华外科杂志,1999,37:395-397
    29.单玉兴,刘一,徐莘香.免骨髓间质干细胞用于构建组织工程软骨组织的初步报告.中国修复重建外科杂志,2001,15:49-52
    30. Prockop DJ. Morrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276: 71-74
    31. Eiselt P, Kim BS. Development of technologies aiding large-tissue engineering. Biotechnol Prog, 1998, 14: 134-140
    32. Soler D, Gearhart J. Putting stem cells to work. Science. 1991, 283: 1468-1470
    33. Freed LE, Grande DA, Linbing Z, et al. Joint resurfacing using allograft chondrocytes and Synthetic biodegradable polymer scaffold. J Biomed Mater Res, 1994, 28: 891-894
    34. Wakitani S, Kimura T, Hirooka A, et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue engineering, 1998, 4: 429-438
    35.徐虎,胡蕴玉,刘松波,等.可注射性藻酸钙凝胶载体组织工程性软骨的实验研究.中华骨科杂志,2000,20:533-535
    
    
    36.夏万尧,曹谊林,高庆新,等.同种异体组织工程化软骨组织形成的初步研究。中华整形外科杂志,2000,16:264-266
    37. Ramdi H, Lopez Vall CA, Kim WS, et al. Influence of matricial molecules on growth and differentiation of entrapped chondrocytes. Exp Cell Res, 1993, 207: 449-452
    38. Brittberg M, Nisson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop, 1996, 326: 270-283
    39. Chu CR, Coutts RD, Yoshioka M, et al. Articular cartilage repair using allogenetic perichondrocyte-seeded bildegradable porous polylactic acid(PLA): a tissue-engineering study. J Biomed Mater Res, 1995, 29: 1147-1154
    40. Freed LE, Marquis JC, Nohria A, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res, 1993, 27: 11-23
    41. Buschmann MD. Chondrocytes in agarose culture Synthesize a mechanically functional extracellular matrix. J Orthop Res, 1992, 10: 745-747
    42. Freed LE, Vunjak-Novakovic G. Microgravity tissue engineering. In Vitro Cell Biol Animal, 1997, 33: 381-385
    43. Zieglar T, Nerem RM. Tissue engineering a blood vessel: regulation of vascular biology by mechanical stresses. J Cell Biochem, 1994, 56: 147-149
    44. Sittinger M, Schultz O, Keyszer G, et al. Artifical tissue in perfusion culture. Int J Artf Organs, 1997, 20: 57-62
    45. Vunjak-Novakovic G, Freed LE, Obradovic B, et al. Effects of mixing on the composition and morphology of tissue-engineered cartilage. Am Inst chem Eng, 1996, 42: 850-853
    
    
    46. Hellman KB, Knight E, Durfor C. Fundamentals and methods of tissue engineering. USA: IEEE Press Inc, 1999: 314-367
    47.郑磊,王前,裴国献.可降解聚合物材料在骨组织工程中的应用进展.中国修复重建外科杂志,2000,14:175-180
    48. Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer-scaffolds for tissue engineering. Biotechnology(NY), 1994, 12: 689-693
    49. Mikes AG, Sarakinos G, Leite SM, et al. Laminated three-dimensional biodegradable foams for use in tissue engineeing. Biomaterials, 1993, 14: 323-330
    50. Wintermantel E, Mayer J, Blum J, et al. Tissue engineering seaffolds using superstructures. Biomaterials, 1996, 17: 83-91
    51.陶凯,杨维东.可注射性软骨.国外医学-口腔医学分册,1999,26:207-209
    52. Mooney DJ, Baldwin DF, Breuer C, et al, Stabilized polyglycolic acid filer-based tubes for tissue engineering. Biomaterials, 1996, 17: 1417-1422
    53. Gussche AT, LoH, Zurlo J, et al. Engineering of a sugar derived porous network for hepoeyte culture. Biomaterials, 1996, 17: 387-393
    54. Gumbiner BM. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron, 1993, 11: 551-553
    55. Gumbiner BM. Cell adhsion: the molecular biasis of tissue architecture and morphogenesis Cell, 1996, 84: 345-347
    56. Boyan BD, Hummert, Dean DD, et al. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17: 137-140
    57. Mikos AG, Lyman MD, Freed LE. Welting of poly (L-lactic acid)and poly(LD-lacfic-co-glycolic acid) foam for tissue culture. Biomaterials, 1994, 15: 55-58
    58.秦廷武,杨志明,蔡绍皙,等.组织工程中细胞与材料的粘附作用,中国修复重建
    
    外科杂志, 1999,13:31-37
    59. Braber ET, Ruijter JE, Smits HTJ, et al. Effect of parallel surface micro-groove and surface energy on cell growth. J Biomed Mater Res, 1995,29:511-513
    60. Curtis A, Wikinsion C, Topographical central of cells. Biotnaterials, 1997,18:1573-1575
    61. Meyle J, Gultig K, Nisch W. Variation in contact guidance by human cells on a microstructured surface. J Biomed mater Res, 1995. 29:81-84
    62. Moursi AM, Globus PK, Demsky CH. Interaction between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Science, 1997,110:2187-2190
    63. Willian D, Fok F, Zutter M, et al. Identification of atetra-peptide recognition sequence for α ,β , integrin in collagen. J Biol Chem, 1991,266:7363-7366
    64. Garcia AJ, Ducheyne P, Boettiger D. Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass. J Biomed Mater Res, 1998,40:48-51
    65. DiMilla PA, Stone JA, Quinn JA, et al. Maximal migration of human smooth muscle cells on fibronectin and type Ⅳ collagen occurs at an intermediate attachment strength. J Cell Biol, 1993,122:729-733
    66. Lin H, Sun W, Mosher DF, et al. Synthesis、 Surface and cell-adhsion properties of polyurethanes containing covalently grafted RGD-peptides. J Biomed Mater Res, 1994,28:329-332
    67. Barrera DA, Zystra E, Lansbury PT, et al. Synthesis and RGD peptid modification of new biodegradable copolymer: poly (Lactic acid-co-lysine). J Am Chem Soc, 1993,115:11010-11015
    
    
    68. Lieberman JR, Le LQ, Wu L. Regional gene therapy with a BMP-2 producting murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res, 1998, 16 330-333
    69.刘彦春,王炜,曹谊林,等.卵磷脂、多聚赖氨酸和PLA包埋PGA与软骨细胞体外培养的实验研究.实用美容整形外科杂志,1997,8·225-231
    70 Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998, 16: 224-228
    71.李宇,王传家,呈利标.软骨细胞培养支架的研究进展.实用美容整形外科杂志,2000,11.99-102
    72. Rivard CH, chaput C, Rhalmi S, et al, Bio-absorbable synthetic polyesters and tissue regeneration: A study of three-dimensional proliferation of ovine chondrocytes and Osteoblasts. Ann Chir, 1996, 50: 651-655
    73. Laurencin CT, Amim SF, Ibin SE, et al A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res, 1996, 30, 133-136
    74. Attawia MA, Uhrioch KE, Botchwey E, et al. Cytotoxicity testing of poly (anhydride-co-imides) for orthopedic applications J Biomed mater Res, 1995, 29: 1233-1240
    75 Saad B, Ciardelli G, Matter S, et al. Degradable and porous polyesterurethane foam as biomaterial: effect and phagocytosis of degradation products in osteoblasts. J Biomed Mater Res, 1998, 38: 594-605
    76.颜晓慧,洪华容.可降解聚合物用作骨组织工程细胞外基质材料的研究进展.北京生物医学工程,2000,19:123-128
    77. Vacanti CA, Paige KT, Kim W, et al. Experimental tracheal replacement using tissue engineered cartilage. J Pediatr Surg, 1994, 27: 201-204
    
    
    78. Breitbart S, Graride DA, Keler R. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg, 1998, 101: 567-574
    79. Puelacher WC, Mooney D, Langer R, et al. Design of nasoseptal cartilage replacements synthesized from biodegradable polymer and chondrocytes. Biomaterials, 1994, 15: 774-778
    80. Vacanti CA, Upton J. Tissue-engineered morphogcnesis of cartilage and bone by means of cell translantation using synthetic biodegradable polymer matrices. Clin Plant Surg, 1994, 21: 445-462
    81. Isogai N, Landis W, Kim TH, et al. Formation of phalanges and small joint by tisaue-engineering. J Bone Joint Surg (Am), 1999, 81: 306-316
    82. Cao YL, Vacanti JP, Ma KT, et al. Generation of neo-tendon using Synthetic polymers seeded with tenocytes. Transplant Proc, 1994, 26. 3390-3394
    83. Shinoka T, Breuer CK, Tanel RE, et al. Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. Am Thorac Surg, 1995, 60: S513
    84.刘彦春,王炜,曹谊林,等.包埋后的几丁质与软骨细胞体外培养的实验研究,中华外科杂志,1998,36:495-497
    85. Peppas HA, Lanser R. New challenges in biomaterials. Science, 1994, 263: 1715-1720
    86. Uganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. J Appl Biomat, 1993, 4: 13-16
    87. Agrawal C, Achanasion KA. Technique to control pH in vicinty of biodegrading PLA-PGA implants. J Biomed Mater Res, 1997, 38: 105-114
    88.王旭,王甲汉,吴军,等,复合皮的制作与临床应用.中国修复重建外科杂志,1997,11·134-136
    
    
    89.蔡哲,宋业光,马海欢,等.人组织工程软骨的实验研究.中华整形外科杂志,2000,16:197-199
    90. Sims CD, Butler PE, Cao YL, et al. Tissue engineered neocartilage using plasma derived polymer substrate and chondrocytes. Plast Reconstr Surg, 1998, 101: 1580: 1585
    91. Paige KT, Cima LG, Yaremchuk MJ, et al. De nove cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg, 1996, 97: 168-170
    92. Gooday GW. Physiology of microbial degradation of chitin and chitosan. Biodegradation, 1990, 1: 177-180
    93.高怀生.壳聚糖及其在药物制剂和生物技术中的应用.国外医学-药学分册,1996,23:279-281
    94. Madihally SV. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999, 20: 1133-1136
    95.崔鹏程.组织工程方法构建预定形态软骨.第四军医大学97级博士论文集,2000,64-72
    96.奚延斐.论组织工程产品的安全性评价.中华整形外科杂志,2000,16:261-263
    97.周延中主编.多肽生长因子.北京:中国科学技术出版社.1992:42
    98.付小兵主编.生长因子与创伤修复.北京:人民军医出版社.1991:12
    99.郑磊,王前,魏宽海,等.碱性成纤维细胞生长因子对成骨细胞粘附特性影响的实验研究.中国修复重建外科杂志,2000,14:305-307
    100. Tsukazaki T, Usa T, Matsumoto T, et al. Effect of transforming growth factor-β on the insulin-like growth factor-Ⅰ autocrine/paracrine axis in culture rat articular chondrocytes. Exp CeLL Res, 1994, 215: 9-15
    101.焦岩涛,王大章,韩文利,等.bFGF、IGF-I及TGF-β_1对人髁突软骨细胞增殖的影响.中华口腔医学杂志,2000,35:346-349
    
    
    102 Ho\\es R, Bo\\ness JM, Grotendotst GR, et al. Platelet-den \ed growth factor enhance demmeralized bone matrix induced cartilage bone formation Calxif Tissue Int. 1998,4234-38
    103 Gueme PA. Sublet A, lotz M Growth factor factor responsiveness of human articulaar chondrocytes Distinct profiles in primary chondroc\1es subcultured chondrocytes and fibroblasts. J Cell Phyiol, 1994,158. 476-479
    104 Bujia J, Effect of growth factor on cell proliferation and matrix synthesis in culture human chondrocytes, Laryngorhunotologie, 1995,74. 444-447
    105. Fujisato T, Sajiki T. Liu Q, et al. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold, Biomaterials, 1996,18-155-158
    106. 王宏训,朱盛修,乔健。骨膜成骨细胞分离培养及其BMP-2 cDNA基因转染的初步研究。中华显微外科杂志,1996,19. 273-276
    107 Kim WS, Vacanti JP, Cime L, et al. Cartilage engineered in predetermined shapes employing cell transplantation on Synthetic biodegradable polymers Plast reconstr Surg, 1994,94. 233-236
    108 Puelacher WC. Mooney DJ, Langer R, et al. Design of nasoseptal cartilage replacement synthesized from biodegradable polymers and chondrocytes. Biomaterials, 1994,15 774-778
    109. Sams AE, Nixon AJ. Chondrocyte-Laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteo arthritis Cartilage, 1995, 3:47-59
    110 Ferber D. Tissue engineering lab-grown organs begin to take shape (from the lab to the clinic) Science. 1999,284(5413) 422-425
    111 Vacanti CA, Kim WS, Upton J. et al Tissue-engineered growth of bone and cartilage
    
    Transplant Proc, 1993, 25: 1019-1021
    112.Kim WS, Vacanti CA, Upton J, et al. Bone defect repair with tissue-engineering cartilage. Plast Reconstr Surg, 1994, 94: 580-584
    113.杨志明,赵雍凡,解慧琪,等.组织工程肋骨移植修复胸壁巨大缺损.中国修复重建外科杂志,2000,14:365-368
    114.Sabolinski ML, Alvarez O, Auletta M, et al. Cultured skin as a "smart material" for healing wounds: experience in venous ulcers. Biomaterials, 1996, 17: 311-313
    115.Cao YL, Vacanti JR Ma PX, et al. Tissue engineering of tendon. Mat Res Soc Symp Proc, 1995, 394: 83-85
    116.Cao YL, Vacanti JP, Ma PX, et al. Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc, 1994, 26: 3390-3394
    117.张前法,杨志明,彭文珍.兔自体肌腱细胞与碳纤维联合培养后体内植入的实验研究.中国修复重建外科杂志,1997,11:168-171
    118.解慧琪,杨志明,辛军平,等.组织工程化肌腱修复喙锁韧带术后的短串联点重复位点检测.中国修复重建外科杂志,2001,14:237-240
    119.Atala A, Vacanti JR Peters CA, et al. Formation of Urothelial structures in vivo form dissociated cells attached to biodegrdable polymer scaffolds in vitro J Urol, 1992, 148: 658-662
    120.Divit V, Gitnick G. Leucocyte adhsion under flow condition: principles important in tissue engineering. Scand J Gastroenterol Suppl, 1996, 220: 101-114
    121.Tziampazis E, Sambanis A. Tissue engineering for bioartifical pancreas: modeling the cell envirenment and device function. Biotechnol prod, 1995, 11: 115-126
    122.Thromson JA, Joseph IE, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocytes. Science, 1998, 282: 1145-1147
    
    
    123.Vogel G. Harnessing the power of stem cells. Science, 1999, 283: 1432-1434
    124.Pittenger F, Mackay A. Multiliness potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-146
    125.Rethi A. A operation of cicatrical stenosis of the larynx. J Laryngol Otol. 1956, 7: 283-287
    126.Finnegan DA, Wong ML, Kashima HK. Hyoid autograft repair of chronic subglottic stenosis. Ann Otol Rhinol Laryngol, 1975, 84: 643-649
    127.Work WP. The injured larynx: a new surgical procedure for repair. Trans Am Acad ophthalmol Otolaryngol, 1976: 82: 400-403
    128.陈文弦,迟汝澄.刘文中,等.喉气管重建术20年经验.中华耳鼻咽喉科杂志,1997,32:302-304
    129.Hartig GK, Esclamado RM, Telian SA. Comparision of the chondrogenic potential of free and vascularized perichondrium in the airway. Ann Otol Rhinol Laryngol, 1994, 103: 9-15
    130.Cohen RC, Filler RM, Konuma K, et al. The successful reconstruction of thoracic tracheal with free periosteal grafts. J Pediatr Surg, 1985, 20: 852-858
    131.Friedman M, Mayer AD. Laryngotracheal reconstruction in adult with the sternocleidomastoid myo periosteal flap. Ann Otol Rhinol Laryngol, 1992, 101: 897-908
    132.唐平章,祁永发.带蒂肌骨膜瓣修复气管壁缺损.中华耳鼻咽喉科杂志,1994,29:238-239
    133.Kane PM, Duncavage JA, Thomas JH, et al, Alloplastic implants of the larynx. Arch Otolaryngol, 1983, 109: 648-652
    134.Hirano M. Hydroxyapatite for Laryngotracheal framework reconstruction. Ann Otol Khinol Laryngol, 1989, 98: 713-716
    
    
    135.阮炎艳,陈文弦.羟基磷灰石人工气管环喉气管重建术.中华耳鼻咽喉科杂志,1994,29:112-114
    136.Tsugawa C, Nishijima E, Muraji T, et al. The use of omental pedicle flap for tracheo bronchial reconstruction in infants and children. J Paediatr Surg, 1991, 26: 762-765
    137.Rose KG, Sesterhennk, Wustrow F. Tracheal allotran splantation in man. Lancet, 1979, 314: 433-436
    138.Herberhold C, Transplantation of larynx and trachea in man. Eur Arch Otorhinolaryngol, 1992, 1 suppl: 247-255
    139.何建行,梁兆煜,杨运有,等.同种异体气管移植一例.中华外科杂志,2000,38:595-597
    140.Strome S, Sloman-Moll E, Samonte B, et al. Rat model for a vascularized laryngeal allograft. Ann Otol Rhinol Laryngol, 1992, 101: 950-955
    141.Berke GS, Ming YE, Block M, et al. Orthotopic laryngeal transplantation: is it time? Laryngoscope, 1993, 103: 857-859
    142.Cumley RL. Phrenic nerve graft for bilateral vocal cord paralysis. Laryngoscope. 1983, 93: 425-428
    143.Lianeai MU, Shilin Y. Electromyographic study on end-to-end anastomosis of the recurrent laryngeal nerve in dogs. Laryngoscope, 1990, 100: 1009-1011
    144.Tucker HM, Ogura JH. Vocal cord remobilization in the canine larynx: an histological evaluation. Laryngoscope, 1971, 81: 1602-1605
    145.何泽涌主编.组织学与胚胎学.第二版 北京:人民卫生出版社.1984:30-32
    146.杨志明主编.组织工程基础与临床.第一版 成都:四川科学技术出版社.2000:88,152
    
    
    147.田文华编译.创伤和骨外科的可吸收聚乙交酯装置.国外医学-生物医学工程学分册:1998.21:181-185
    148.杨志明主编.组织工程基础和临床.第一版 成都:四川科学技术出版社.2000:165
    149. Sittinger M, Reitze D, Dauner M, et al. Resorbable polymesters in cartilage engineering: Affinity and biocompatility of polymer fiber structures to chondrocytes. J Biomed Mater Res, 1996, 33: 57-63
    150.彭解人,宋新汉,郑亿庆,等.镍钛记忆合金支架治疗喉气管狭窄.中华耳鼻咽喉科杂志,1999,34:368-340
    151.刘彦春,王炜,曹谊林,等.软骨细胞-支架复合物修复兔耳软骨缺损.中华整形烧伤外科杂志,1999,15:180-182
    152. Ma PX, langer R. Morphology and mechaical function of long-time in vitro engineered cartilage. J Biomed Mater Res, 1999, 44: 217-221
    153. Eavery RD. Discussion: Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue engineered cartilage in the shape of a human ear. Plast Reconstr Surg, 1997, 100: 303
    154. Chestman PJ, Reading A, Smith AU. Homotransplantation of articular cartilage and isolated chondrocytes. J Bone Joint Surg(Br), 1968, 50: 184-187