城市景观水体生境改善技术与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生境改善是恢复城市景观水体健康水生态系统的关键,提高水体透明度是水体生境改善的重点和难点,水体透明度也是体现城市水体景观特征的重要水质指标。城市景观水体透明度不高的原因大多是由水体中大量的浮游植物引起的,而营养盐浓度和水体流动状态对水体中浮游植物的种类和浓度有较大影响。本论文依托国家“863”课题“水体底部水平流复氧与生物膜联合生境改善技术”(2006AA06Z343),以提高水体透明度为目标,研究了降低水体中营养盐浓度和改善水体流动状态的技术方法、作用机理及工程应用效果。
     论文通过对实际景观水体的调查和监测,分析了北京典型景观水体的水质状况与生境特征;将凹凸棒石作为吸附剂用于降低水体中磷的浓度,在小试规模上进行了自配水和实际水的效果研究;采用推流曝气生物膜技术降低水体中的氨氮浓度和改善水体的流动状态,在中试规模上进行了0.5t实际水的多组实验槽效果比较,并对技术在工程上的应用进行了跟踪研究。
     通过研究得出以下主要结论:
     (1)什刹海与罗马湖水体中沉水植物较少,总氮浓度均处于劣V类水平,但什刹海前海东岸透明度达70cm,而罗马湖透明度却只有27cm。造成两水体透明度存在较大不同的原因是二者磷浓度存在较大差异,什刹海总磷仅为0.042mg/L,而罗马湖总磷达0.36mg/L。可见,磷的浓度是藻类生长的限制因子,与水体透明度负相关。
     (2)柳荫湖和罗马湖的水质均较差,磷的浓度水平均较高,但柳荫湖没有蓝藻水华现象发生,而罗马湖夏季蓝藻水华严重、透明度较低。造成两水体透明度差异的主要原因是水体的深度不同,柳荫湖平均水深仅为0.5m,小于光补偿深度,满足水生植物生长的光合作用条件,沉水植物与挺水植物生长茂盛;而罗马湖水深为1m,大于光补偿深度,沉水植物不能生长。可见,水生植物对景观水体中浮游藻类的生长有抑制作用,水下光照强度是水生植物光合作用的保障,只有在水体深度小于光补偿深度的条件下,才能形成建康的水生态系统,从而改善水体的透明度。
     (3)天然蛭石、凹凸棒石的除磷性能较差,酸洗改性对蛭石和凹凸棒石的除磷性能有一定的增强作用,但效果提高不大。蛭石和凹凸棒石通过煅烧改性后吸附磷的效果明显增强,但是蛭石吸附除磷后,溶液pH值有较大升高,而凹凸棒石煅烧改性后溶液pH值升高不大,因此,应优先选用煅烧改性后的凹凸棒石作为除磷吸附剂。凹凸棒石煅烧改性的最佳条件是500℃煅烧2h。
     (4)用煅烧改性后的凹凸棒石,对含磷浓度为0.226mg/L、pH值为8.04的清河水样进行除磷试验,投加7g/L煅烧改性的凹凸棒石时,磷的去除率为83.53%,除磷后溶液中磷浓度为0.037mg/L。
     (5)在水体中加入生物膜填料,在不采取推流或曝气的措施时,氨氮和COD浓度略有降低。采用推流+生物膜填料技术措施,氨氮浓度与COD浓度大幅度降低,水体透明度由24cm提高到90cm。低有机物浓度条件下,在推流+生物膜填料技术的基础上,增加曝气措施,进一步提高透明度的效果不明显。
     (6)推流+生物膜填料技术改变了水体的流态与流速,降低了水体中的氨氮浓度,提高了水体的透明度,其中,氨氮浓度的降低可能是抑制水体中藻类暴发的重要影响因素。
     (7)推流+生物膜填料技术的工程应用表明:在低浓度的氮、磷条件下,该技术对透明度的改善效果明显。水深1m、面积10000m~2的水体,治理投资为50万元,每月运行费用为1000元左右。该技术具有效果好、管理简便、运行费用低等特点。
     综上所述,采用煅烧方式对凹凸棒石进行改性可以有效降低景观水体中的磷,以达到控磷而提高水体透明度的目的;推流+生物膜填料技术可以降低景观水体中氨氮的浓度,改善水体的流态和流速,从而抑制藻类暴发而改善水体的透明度。
Habitat improvement is the key factor to restore the healthy aqua-ecosystem of urban landscape water body,and its transparency enhancing is the emphasis and difficulty,which is one of the important indicators of urban landscapes water body. That transparency of urban-landscapes water was not high enough was due to phytoplankton over-growth.The effects of nutrient concentrations and water flow state in water on the diversity and consistency of phytoplankton in urban landscape water was remarkable.The technologies,their mechanisms and engineering application to reduce nutrient concentrations and improving water flow state in urban landscape water body were investigated in order to enhance its water transparency under supporting by national“863”project(2006AA06Z343).
     The water quality and habitat characteristics of typical landscape water body in Beijing were analyzed by monitoring and field study.Attapulgite was used as adsorbent to reduce phosphor(P)concentration in water by simulating water and field water at small-scale experiment condition.That the plug flow reaeration-biofilm technology was used to reduce the ammonia-nitrogen concentration and improve the flow state in water was conducted to compare their effects under medium-scale condition using 0.5 t filed water,and the application of those technologies were studied as following.
     According to the research,main conclusions are found as:
     The aquatic vegetation is few and total nitrogen concentration of water is under V level in Shishahai Lake and Luoma Lake.Transparency in eastern area of Shishahai was 70 cm,but that in Luoma Lake was only 27 cm.The difference of P concentration may be the reason that the phosphor concentration was 0.042mg/L in Shishahai and 0.36mg/L in Luoma Lake.Therefore,P concentration is the limiting factor of algae growth,which is negative correlation with transparency of water.
     The depth of Liuyin Lake is only 0.5 m,less than light compensation depth,the photosynthesis of aquatic vegetation is met.Hence,submerged and emerging vegetation both are flourish.However,the depth of Luoma Lake is 1 m,more than light compensation depth,the aquatic vegetation cannot be developed.Therefore,the algae growth can be controlled by aquatic vegetation,and the light intensity under water is the guarantee for aquatic vegetation photosynthesis,and water transparency is the main important factor that affects the light intensity under water.
     The effect of P removed by natural vermiculite and attapulgite was weak,and their capacity after modification by acid pickling also was low.However,the sorption P capacity of the natural vermiculite and attapulgite after modification increased significantly,and the best condition for calcining modification was burning for 2 hours at 700℃and 500℃.
     If the P in overlying water was sorbed by vermiculite calcining modification,its pH of the solution increased rapidly.However,the pH increases little for attapulgite. Therefore,using of attapulgite calcining modification is batter than vermiculite as P adsorbent.For instance,the 7g/L of attapulgite calcining modificationthe was added in overlying water with 0.226 mg/L P and pH 8.04 from Qing River.Result showed that about 83.53%P was removed and its P concentration decreased to 0.037mg/L.
     The concentration of ammonia nitrogen and COD in overlying water decreased little putting biofilm filler under the condition of without plugging flow and aerating, which were decreased largely under the condition of pluging flow and adding biofilm together,and their transparency of overlying water increased from 24 cm to 90 cm.So under the condition of low organic compounds concentration,the effect of transparency enhancing was not obvious by aerating on the base of pluging flow and adding biofilm together.
     The situation and speed of the overlying water were changed by plugging flow and adding biofilm,and the ammonia nitrogen concentration was reduced,which is maybe the reason that water transparency can be improved.Reducing of ammonia nitrogen concentration in water maybe result in algae bloom limited growth.However, this point needs to be proved in future.
     The application of plugging flow and adding biofilm technologies indicated that the transparency can be improved obviously under the condition of low nitrogen and phosphorus concentrations in overlying water.For the water body that its depth is 1 m and area is 10000 m~2,500,000 RMB is needed,and the run fee was about 1000 RMB per month.Management was very convenient.
     As the whole,the attapulgite calcining modification can be utilized to remove P from landscape water,its transparency can be enhanced and P concentration can be reduced.The ammonia nitrogen concentration and situation,flow speed of overlying water all can be improved the by using plugging flow and adding biofilm,the algae growth was limited and its transparency also was increased.
引文
[1]蔡昌风,徐建平.景观水微污染控制[J].安徽工程科技学院学报,2003,13(1):1-3.
    [2]李海燕,鲁敏,施银桃,等.城市景观水体的净化及增氧[J].武汉科技学院学报,2004,17(1):56-60.
    [3]丁玲,沈耀良,黄勇.公园水体的修复技术及发展现状[J].苏州科技学院学报,2005,(2):48-52.
    [4]中华人民共和国环境保护部.2007年中国环境质量报告[M].中国环境科学出版社,2008.
    [5]娄春华.北京城区河湖水体水华成因及限制因子研究[D].清华大学硕士论文,2005:24-25.
    [6]邵林广,游映玖.武汉东湖水体富营养化现状及其控磷对策[J].武汉冶金科技大学学报,1999,22(2):139-141.
    [7]戴全裕,蒋兴昌,汪耀斌,等.太湖入湖河道污染物控制生态工程模拟研究[J].应用生态学报,1995,6(2):201-205.
    [8]黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10(3):83-90.
    [9]汪松年.上海水生态修复调查与研究[C].上海:上海科学技术出版社,2005:29-34.
    [10]李传红,朱文转,刘振乾,等.惠州西湖水生态系统初步调查[J].广州环境科学,2006,9(21):38-42.
    [11]段艳萍.北京什刹海水华控制和水质维护的试验研究[D].西安建筑科技大学市政工程(专业)硕士论文,2006:5.
    [12]楼劲英.北京市城市水系水华控制措施的探讨[J].北京水利,2003(5):10-11.
    [13]Bohn B A,Kershner J L.Establishing aquatic restoration priorities using a watershed approach[J].Management,2002,4(6):355-363.355-363.
    [14]Lusk S,Halacka K,Luskova V.Rehabilitation the floodplain in the lower river dye for fish [J].River Research and Application,2003,19:281-288.
    [15]Seifert A.Ministerium fuer Umwelt Baden-wuettenberg[J].Stuttgart:Hoch wassers chutz und Oekologie,1988.
    [16]Carleton JN,Grizzard TJ,Godrej AN,Post HE.Factors affecting the performance of stormwater treatment wetlands[J].Water Res,2001,35(6):1552-1562.
    [17]Heather L Shepherd,Mark E Grismer,Grismer,George Tchobanoglous.Treatment of high-strength winery wastewater using a subsurface flow constructed[J].Water Environment Research,2002,73(4):394-403.
    [18]TR Headley,DO Huett,L Davison.The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands[J].Water Science and Technology,2001,44:77-84.
    [19]Gumbricht T.Nutrient removal processes in freshwater submersed macrophyte systems[J].Ecological Engineering,1993,2:1-30.
    [20]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [21]朱广一,冯煜荣,詹根祥,等.人工曝气复氧整治污染河流[J].城市环境与城市生态,2004,17(3):30-32.
    [22]刘超翔,董春宏,李峰民,等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    [23]Van Donk,Gulati Grimm and Van Donk.Biomanipulation of Lake Zwemlust 2381.(?)2002Blackwell Science Ltd,Freshwater Biology,1996b,47,2380-2387
    [24]张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57.
    [25]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(3):193-196.
    [26]纪荣平,吕锡武,李先宁,等.三种人工介质对太湖水质的改善效果[J].中国给水排水,2005,21(6):64-71.
    [27]杨顶田,陈伟民,张运林,等.太湖梅梁湾水体中悬浮质及光谱的分布特征[J].生态科学,2002,21(4):1-5.
    [28]宋庆辉,杨志峰.对我国城市河流综合管理的思考[J].水科学进展,2002,13(3):377-382.
    [29]Nilsson C,Ekblad A,Gardfjell M,et al.Long-term effects of river regulation on river margin vegetation[J].Journal of Applied Ecology,1991,28:963-987.
    [30]Claude E.Boyd Pond water aeration systems[J].Aqua-cultural Engineering,1998,20(18):9-40.
    [31]刘延恺,陆苏,孟振全.河道曝气法:适合我国国情的环境污水处理工工艺[J].环境污染与防治,1994,16(1):22-25.
    [32]刘晓海,高云涛,陈建国,等.人工曝气技术在河道污染治理中的应用[J].云南环境科学,2006,25(1):44-46.
    [33]同济大学给水排水教研室译.水污染控制实验[M].上海:上海科学技术出版社,1985,217-229.
    [34]凌晖,王诚信,史可红,等.纯氧曝气在污水处理和河道复氧中的应用[J].中国给水排水,1999,15(8):49-51.
    [35]M.METTRAUX,H.WEISSERT,and P.Homewood.An Oxygen-minimum Geological Society,London,Special Publications,1989,46(1):197-212.
    [36]Whalen P J,Toth L A.Missimmee River Restoration:A case study[J].Water Science &Technology,2002,45(11):55-62.
    [37]Carpenter S R,Lodge D.Effects of submersed macrophytes on ecosystem processes[J].Aquatic Botany,1986,23:341-370.
    [38]Jeppesen E,Jensen J P,Kristensen P,et al.Fish manipulation as a lake restoration tool in shallow eutrophic temperate lakes 2:threshold levels,long-term stability and conclusions.Hydrobiologia,1990,200/201:219-27.
    [39]陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].上海给水排水,2001,20(5):233-234.
    [40]谌建宇,许振成,骆其金.曝气复氧对滇池重污染支流底泥污染物迁移转化的影响[J].生态环境,2008,17(6):2154-2158.
    [41]周杰,章永泰,杨贤智.人工曝气复氧治理黑臭河流[J].中国给水排水,2001,17(4):47-49.
    [42]黄民生,徐亚同,戚仁海.苏州河污染支流-绥宁河生物修复试验研究[J].上海环境科学,2003,22(60):384-389.
    [43]林建伟,朱志良,赵建夫.曝气复氧对富营养化水体底泥氮磷释放的影响[J].生态环境,2005,14(6):812-815.
    [44]王璟,夏文林.某市内河采用曝气辅助治理方案探讨[J].公用工程设计,2008,(1):57-60.
    [45]Lindemann J,Wiresmann U.Single-disc investigations on nitrogen removel of higher loads in sequencing batch and continuously operated RDR Systems[J].Wat.Sci.Technol,2001,41-77.
    [46]师存杰.生物膜技术在水处理中的应用[J].青海大学学报(自然科学版),2001,19(5):33-38.
    [47]Rivas I M,Arvin F.Side stream biofilm for improved biofouling control in coolingwater systems.Wat.Sci Tech-nol,2001,41:445.
    [48]苑宝玲,陈一萍,郑雪琴,等.高铁光催化氧化协同去除藻毒素的研究[J].环境科学,2004,25(5):106-109.
    [49]陈志山.用于水污染治理的生态混凝土技术[J].建筑材料学报,2001,4(1):60-64.
    [50]曹式芳,庞金钊,杨宗政,等.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报,2002,(4):123.
    [51]西安建筑科技大学,天津市自来水集团有限公司.扬水曝气强化生物接触氧化水质改善装置[P].CN1654356,2005.08.17.
    [52]张宝娣,祝建,邢凤琴.就地净化技术在河流净化中的应用研究[J].上海铁道大学学报,1999,20(12):56-58.
    [53]Godlewska M,Swierzowski A.Hydro acoustical parameters of fish in reser-voirs with contrasting levels of eu2trophication[J].Aquatic Living Resources,2003,16(3):167-173.
    [54]彭云龙.一种河流湖泊的水净化方法及其专用造流曝气设备[P].CN1618744,2005.05.25.
    [55]章永泰.污水治理河道底泥修复材料的修复工艺[P].CN1310136,2001.08.29.
    [56]吴伟,陈家长,胡庚东,等.利用人工基质构建固定化微生物膜对池塘养殖水体的原位修复.农业环境科学学,2008,27(4):1501-1507.
    [57]戴金水.生物飘带水质净化装置[P].CN200520055900.2,公开号:CN2797356,专利分类号:C02F7/00;C02F3/10.
    [58]丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备,2002.3(10):24-26.
    [59]Oguz Ensar,Aydin A Cuneyt.Prediction of adsorption rate of phosphate removal from waste-water with gas concrete[J].International Journal of Environment &Pollution,2003,19(6):603.
    [60]Ayoub George M,Koopman B,Pandya Neha.Iron and aluminum hydroxy(oxide)coated filter media for low2concentration phosphorus removal[J].Wat.Env.Res,2001,734(7):733.
    [61]Mahmut,Ozacar.Adsorption of phosphate from aqueous solutiononto alunite[J].Chemo-sphere,2003,51(8):321.
    [62]Hang-Sik Shin.Phosphorus removal by hydrotalcite-like copmounds[J].Wat.Sci.Tech,1996,34(1):161.
    [63]Kuzawa K,Jung K G,Kiso Y,et al.Phosphate removal and recovery with a synthetic hydro-talcite as an adsorbent[J].Chemosphere,2006,62(1):45-50.
    [64]Mann R A.Phosphorus removal in constructed wetland using gravel and industrial waste sub-strata[J].Water Science and Technology,1993,27(1):107-113.
    [65]Yuan G D,Wu L H.Allophane nanoclay for the removal of phosphorus in water and waste-water[J].Science and Technology of Advanced Materials,2007,8:60-62.
    [66]Johansson L,Gustafsson J P.Phosphate removal using blast furnace slags and opoka-mechanisms[J].Water Research,2000,34(1):259-265.
    [67]潘涌璋,郭大卫.天然沸石床处理受污染景观水体的试验[J].城市环境与城市生态,2006,19(1):36-38
    [68]权新军,金为群,李艳,等.改性天然沸石处理富营养化公园湖水样的实验研究[J],非金属矿,2002,21(1):48-49
    [69]黄瑾辉.海泡石复合吸附剂在含磷废水处理中的应用[J].污染防治技术,1998,11(1):36-39.
    [70]关晓彤.膨润土对水中磷的吸附研究[J].沈阳工业大学学报,2004,26(5):598-600.
    [71]孙家寿,刘羽,鲍世聪,等.交联粘土矿物的吸附特性研究交联膨润土对磷的吸附机理[J].武汉化工学院学报,1998,20(1):43-46.
    [72]王宜鑫,林亚萍,刘静,等.膨润土对富营养化水体中磷的吸附特征[J].安徽农业科学,2006,34(24):6549-6550.
    [73]刘丽娜,刘志明.粉煤灰吸附去除城市景观水体中磷的初步研究[J].环境科学与技术,2006,29(2):40-42.
    [74]陈雪初,孔海南,吴德意.造粒粉煤灰的磷吸附特征及其对景观水的直接净化效果[J].水处理技术,2006,32(12):61-63.
    [75]刘志明,严立,郑向勇,等.粉煤灰吸附模拟富营养化景观水体中磷的研究[C].第二届全国环境化学学术报告会论文集,2004,32-33.
    [76]江涛,刘源骏.累托石(第1版)[M].武汉:湖北科学技术出版社,1989.
    [77]杜冬云,柯丁宁,赵小蓉.改性累托石对磷的吸附[J].非金属矿,2003,26(5):51-54.
    [78]景英仁,杨奇,景英勤.赤泥的基本性质及工程特性[J].山西建筑,2001,27(3):80.
    [79]张志峰,吴浩汀.赤泥处理含磷废水的试验研究[J].安全与环境工程,2005,12(4):49-51.
    [80]Galarneau E,Gehr R.Phosphorus removal from wastewaters:experimental and theoretical support for alternative mechanisms[J].Water Research,1997,31(2):328-338.
    [81]L(?)pez E,Soto B,Arias M,et al.Adsorbent p roperties of red mud and its use for wastewater treatment[J].Water Research,1998,32(4):1314-1322.
    [82]Pradhan J,Das J,Das S,et al.Adsorption of Phosphate from Aqueous Solution Using Activated Red Mud[J].Journal of Colloid and Interface Science,1998,204:169-172.
    [83]李燕中,刘昌俊,栾兆坤,等.改性赤泥吸附除磷及其机理的研究[J].环境科学学报,2006,26(11):1775-1779.
    [84]Yamada H,Kayama M,Saito K,et al.Suppression of phosphate liberation from sediment by using iron slag[J].Water Research,1987,25(3):325-333.
    [85]邓雁希,许虹,黄玲,等.钢渣在含磷废水处理中的应用[J].有色矿冶,2002,18(3):43-45.
    [86]王莉红,兰尧中.钢渣处理含磷废水的初步试验研究[J].湿法冶金.2007,26(1):52-54.
    [87]中国市政工程华北设计院给排水设计研究所水二组.活性氧化铝除氟研究[J].中国给水排水,1989,5(3):4.
    [88]宁平,邓春玲,普红平.活性氧化铝吸附水中的磷酸盐[J].有色金属,2002,54(1):37-38
    [89]Donnert D.Elimination of phosphorus from municipal and industrial waste water[J].Water science technology,1999,40(4):195-202.
    [90]Hano T,Takabashi H,Hirata M,et al.Removal of Phosphorus from Wastewater by Activated Alumina Adsorbent[J].Water science technology,1997,35(7):39-46.
    [91]丁文明,黄霞,张力平.水和氧化镧吸附除磷的实验研究[J].环境科学,2003,24(5):110-113
    [92]丁文明,黄霞.铁-铈复合除磷剂的合成及高效吸附机理[J].中国给水排水,2004,20(9):5-8.
    [93]Bastin O.Phosphorus removal by a synthetic iron oxide gyspum compound.Ecological engineering[J],1999,12:339-351.
    [94]王萍.海绵铁除磷技术研究[J].环境科学学报,2000,20(6):798-800.
    [95]Ugurlu A,Salman B.Phosphorus removal by fly ash[J].Environment Interna-tional,1998,24(8):911-918.
    [96]孙家寿,刘新星.天然沸石复合吸附剂处理含磷废水的研究[J].离子交换与吸附,1992,8(1):20.
    [97]李学民.凹凸棒石粘土在废水处理中的应用[J].甘肃联合大学学报(自然科学版),2007,21(3):47-49.
    [98]北京市地方志编委会主编.《北京志.市政卷.园林绿化志》[M].北京出版社,2000:172.
    [99]北京市建设节约型园林绿化论文集.
    [100]黄金屏,吴路阳主编.城市污水再生利用系列标准实施指南[M].北京:经济科学出版社,2003.
    [101]李春丽,周律,贾海峰,等.再生水景观功能保障系统的试验研究[J].给水排水,2005,31(8):6-9
    [102]北京市环保局主编.《2007年北京市环境质量报告书》.
    [103]荆红卫.北京市“六海”水体富营养化自理效果分析[J].北京水务,2008,1:7-8.
    [104]屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):61-66.
    [105]肖芳,刘静玲,杨志峰.城市湖泊生态环境需水量计算—以北京市六海为例[J].水科学进展,2004,15(6):781-786.
    [106]Dodds W.K,V.H Smith,and B.Zander.Developing nutrient targets to control benthic chlorophyll levels in streams:A case study of the Clark Fork River[J].Water Res,1997,31:1738-1750.
    [107]任久长.滇池光照强度的垂直分布与沉水植物的光补偿深度[J].北京大学学报(自然科学版),1997,33(2):211-214.
    [108]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [109]秦麟源.废水生物处理[M].上海:同济大学出版社,1988.
    [110]日本机械工业联合会、日本产业机械工业会.水域的富营养化及其防止对策[M].北京:中国环境科学出版社,1987.
    [111]何志辉.淡水生物学[M].北京:农业出版社,1985.
    [112]Darley,W M.Algal biology:A Physiological Approach[M].Oxford:Blackwell Scientific Publications,1992.
    [113]吴新儒,雷衍之,许昌兴.淡水养殖水化学[M].北京:农业出版社,1981,80-95.
    [114]Ward A K,R G Wetzel.Interactions of light and nitrogen source among planktonic blue-green algae[J].Archiv fur Hydrobiologie,1980,90:1-25.
    [115]高廷耀,顾国维,周琪.水污染控制工程(下册)[M].北京:高等教育出版社,2006.
    [116]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [117]孙家寿,等.膨润土对铬、磷的吸附性能研究[J].非金属矿,1992,(3):33-35.
    [118]邱菲.凹凸棒石粘土吸附剂除磷酸盐的研究[J].矿产综合利用,1995,(5):26-30.
    [119]许虹.矿物及炉渣在水体除磷中的作用及其机理研究[D].中国地质大学博士论文,2006.
    [120]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(2):24-27.
    [121]詹庚中,郑茂松,高振如,等.凹凸棒石粘上开发利用现状、思考与前瞻[J].江苏地质,2003,27(1):41-47.
    [122]陈学祥.凹凸棒粘土的提纯及应用[J].中国建材,2003,(10):81-82.
    [123]张国宇,王鹏.凹凸棒石粘土及在水处理中的应用[J].工业水处理,2003,23(4):125.
    [124]王九思,李静萍,郝艳玲.改性凹凸棒石及在废水处理中的应用[J].天水师范学院学报2005,25(5):51-53.
    [125]金相灿,刘鸿亮.主编《中国湖泊富营养化》[M].中国环境科学出版社,1990:440-539.
    [126]郑延力,樊素兰.非金属矿产开发应用指南[M].西安:陕西科学技术出版社,1992:74-76.
    [127]邓雁希.天然矿物及冶金炉渣处理含磷废水的研究[D].中国地质大学,2003.
    [128]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,2:24-27.
    [129]潘兆橹.结晶学及矿物学下册(第三版)[M].北京:地质出版社,1994.
    [130]陈天虎,王健,庆承松.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报,2006,34(11):1406-1410.
    [131]赵萍,姚莹,林峰,等.凹凸棒石改性方法及其应用现状[J].化工生产与技术,2006,13(5):47-49.
    [132]年跃刚,宋英伟,李英杰,等.富营养化浅水湖泊稳态转换理论与生态恢复探讨[J].环境科学研究,2006,19(1):67-70.
    [133]Scheffer M.Ecology of shallow lakes[M].Netherlands:Kluwer Academic Publishers,2004,-289-306.
    [134]Scheffer M,Carpenter S R,Foley J A.Catastrophic shifts in ecosystems[J].Nature,2001,413-(11):591-596.
    [135]Scheffer M,Nes E H van.Mechanisms for marine regime shifts:can we use lakes as micro-cosms for oceans[J].Progress in Oceanography,2004,60:303-319.
    [136]Scheffer M,Carpenter S R.Catastrophic regime shifts in ecosystems:linking theory to observation[J].Trends in Ecology and Evolution,2003,18(12):648-656.
    [137]Britto D T.Futile transmembrane NH_4~+cycling:a cellular hypothesis to explain ammonium toxicity in plants[J].Pro.Natl.Acad.Sci,2001,98:4255-4258.
    [138]种云霄,胡洪营,钱易.无机氮化合物及pH值对紫背浮萍生长的影响[J].中国环境科学,2003,23(4):417-421.
    [139]Serna M D,Legaz B F,Primomillo E.The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake,mineral composition and yield of citrus[J].Plant and Soil,1992,147:13-23.
    [140]高吉喜,叶春,杜娟,等.水生植物对面源污水净化效率研究[J].中国环境科学,1997,17(3):247-252.
    [141]由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体研究[J].华东师范大学学报(自然科学版),2000,1:99-102.
    [142]金送笛,李永函,倪彩虹等.菹草对水中氮,磷的吸收及若干影响因素[J].生态学报,1994,14(2):168-173.
    [143]庄源益,赵凡,戴树桂,等.高等水生植物对藻类生长的克制效应[J].环境科学进展,1995,6(3):44-49.
    [144]李锋民,胡洪营.植物化感作用控制天然水体中有害藻类的机理与应用[J].给水排水,2004,30(2):1-4.
    [145]谭仁祥.植物成分功能[M].北京:科学出版社,2003:35-63.
    [146]Rice E L.AlleloPathy(The seeond edition)[M].London:Academic Press,1984:2.
    [147]王旭明,匡晶.水芹菜对污水净化的研究[J].农业环境保护,1999,18(1):34-35.
    [148]刘建康.高级水生生物学[M].北京:科学出版社,2002.
    [149]合田健著,全浩译.水环境指标[M].北京:中国环境科学出版社,1989,262-269.