α-Al_2O_3形成过程显微结构演变及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-Al2O3是重要的无机非金属材料,煅烧是制备α-Al2O3的必备过程,该过程消耗大量能量。降低煅烧温度,降低能耗,提高产品中α-Al2O3含量,制备不同显微结构的α-Al2O3,为下游产品提供优质原料是该领域科研工作者孜孜以求的目标。由于显微结构对α-Al2O3的性能有重大影响,因此,揭示α-Al2O3形成过程显微结构的演变规律对于制备性能优良的α-Al2O3产品具有重要的理论及实际意义。
     本文采用X-射线衍射、扫描电子显微镜等分析测试手段,对氢氧化铝煅烧过程中的相变规律及氧化铝显微结构演变进行了系统研究;采用X-射线衍射定量分析方法,研究了添加剂对氧化铝相变的影响;结合扫描电子显微镜及激光粒度分析,研究了α-Al2O3晶体生长动力学;提出了α-Al2O3显微结构控制方法,由此制备了片状及类球状晶体结构的α-Al2O3,制备了低温烧结α-Al2O3及其陶瓷材料。主要研究结果如下:
     1.氢氧化铝脱水过程分步完成,脱水过程与氢氧化铝样品的粒度相关,粒度越小,脱水速率越快。过渡相氧化铝之间的物相转变属于位移型相变,形成α-Al2O3过程属于重建型相变。过渡相氧化铝之间转变时,显微结构基本不发生变化;当转变为α-Al2O3时,氧化铝发生明显的收缩。煅烧过程中,真密度随温度的升高而升高;松装密度随温度的升高而降低,氧化铝的比表面积在400℃左右达到最大值,然后随温度的升高而下降,氧化铝的孔径在900℃左右达到最大值,然后随温度的升高而下降。
     2.过渡相氧化铝到α-Al2O3的物相转变需在1300℃才能完成;Na2O和MgO对过渡相氧化铝到α-Al2O3的物相转变过程有抑制作用,含有Fˉ和Clˉ的添加剂、粉碎和加入晶种均可以促进相变过程;过渡相氧化铝与α-Al2O3含量之间存在一个相界面;样品中α-Al2O3含量随煅烧温度的提高而提高,存在一个最高相变速率点Tm。Tm大致在1150℃左右,此时样品中α-Al2O3的含量大致为20-45%。
     3.粉碎结合激光粒度检测是一种简单易行测定α-Al2O3一次晶体大小的方法。以固相物质输送为主要传质方式时,α-Al2O3一次晶体为蠕虫状空间网状结构;以气相为主要传质形式生长的α-Al2O3具有特定的显微结构。添加剂对α-Al2O3晶体生长的作用顺序为:NH4F> AlF3> H3BO3> MgF2> None> MgO
     添加剂可以影响a-Al2O3的理论成核温度,影响的顺序为:NH4F> AIF3> None>H3BO3>MgO
     通过粉碎、加入NH4Cl和Mg(HCO3)2添加剂等工艺,抑制a-Al2O3晶粒生长,制备了约20m的纳米晶a-Al203。
     4.煅烧后a-Al2O3继承了氢氧化铝的基本颗粒形貌。提高煅烧温度不改变a-Al2O3的结晶习性,Na2O和MgO可以抑制a-Al2O3晶体生长;H3BO3及含有F-、Cl-、NO3-的添加剂可以促进a-Al2O3的一次晶体生长,H3BO3促进形成蠕虫状a-Al2O3结晶,含F添加剂促进形成片状a-Al2O3结晶。添加剂对a-Al2O3显微结构的影响顺序为:AlF3>H3BO3>NH4Cl>MgO
     5.基于a-Al2O3显微结构的演变规律,通过改变添加剂的品种及其配比,可以制备出不同显微结构的a-Al2O3晶体。采用晶体模板导向剂,并选择合理的添加剂,制备了类球状、柱状、大晶体片状等特殊显微结构的a-Al2O3。通过选择合适的添加剂及烧结温度,制备了一次晶体小于0.5微米的a-Al2O3粉体。最佳的添加剂条件是0.4%MgO+0.3%NH4Cl,最佳的煅烧温度是1350℃;开发了低温氧化铝陶瓷烧结技术,最佳烧结温度为1580℃,体积密度达到3.92g/cm3。
a-Al2O3 is an important inorganic non-metallic material. The energy consumption is huge in the preparation process of a-Al2O by sintering. Reduction of the calcination temperature and energy cost is the main target inα-Al2O3 industry. As the properties ofα-Al2O3 are mainly depending on its microstructure characteristics, it is of great theoretical and practical significance to study on the microstructure evolution during the phase transformation ofα-Al2O3.
     The phase transformation of aluminum hydroxide and the microstructure evolution of aluminum oxide have been studied using XRD and SEM measurements. The influence of additives on the phase transformation has been studied using XRD quantitative analysis. The crystal growth kinetics of a-Al2O3 has been studied using laser particle size analysis and SEM technique. The method of microstructure control of a-Al2O3 has been proposed based on above studies. As a result of that, plate and near-spherical a-Al2O3 have been successfully obtained. Sinterable a-Al2O3 has been made by adjusting the microstructure ofα-Al2O3. The research results are mainly as follows:
     1. The dehydration process from aluminum hydroxide to aluminum oxide proceeds in steps. The smaller the particle size of the sample, the faster the dehydration process. The phase transformation between different transition alumina belongs to displacement, while the formation of a-Al2O3 from transition alumina belongs to reconstruction. There is no obvious change of microscope between transition alumina. But apparent shrinkage appears whenα-Al2O3 was formed. In the calcination process, the real density of alumina rises and the bulk density of alumina decreases with the increase of temperature. The specific surface area of alumina reaches its maximum at about 400℃, the aperture of alumina reaches the maximum at about 900℃.
     2. The phase transformation from transition alumina toα-Al2O3 completes above 1300℃. Na2O and MgO can depress the phase transformation, while the addition of additives containing F-, and Cl-grinding and the addition of crystal seeds can promote the phase transformation process. Due to heat conduction, there is a phase interface between transition alumina andα-Al2O3.
     The percent of a-Al2O3 rises with the increase of the calcination temperature. There is a maximum rate of phase transformation at Tm when the percent of a-Al2O3 is about 20-45%.
     3. Grinding combined with laser particle analysis is a suitable way to determine the crystal size ofα-Al2O3. a-Al2O3with worm-like structure was formed by solid-phase mass transfer. a-Al2O3 with a specific microstructure was formed by gas-phase mass transfer. Additives could influence the crystal growth of a-Al2O3 in the following order:
     NH4F> AIF3> H3BO3> MgF2> None> MgO
     And additives could change the nucleation temperature ofα-Al2O3 in the order as follows:
     NH4F> AIF3> None>H3BO3>MgO
     Nanocrystallineα-Al2O3 of about 20nm has been successfully made by grinding and the addition of such additives as NH4Cl and Mg(HCO3)2 because NH4Cl can restrict the process of phase transformation and Mg(HCO3)2 can depress the crystal growth ofα-Al2O3
     4.The morphology of a-Al2O3 particles is similar to that of aluminum hydroxide. The crystallization habits of a-Al2O3 do not change with the increase of calcination temperature. Na2O and MgO can inhibit the crystal growth of a-Al2O3. H3BO3, and additives containning F-, Cl- and NO3" can accelerate the crystal growth ofα-Al2O3. H3BO3 can promote the formation of worm-like a-Al2O3 crystal, while additives containing F-can promote the formation of flake a-Al2O3 crystal. The influence of additives to the microstructure ofα-Al2O3 is in the order as follows:
     AlF3>H3BO3>NH4Cl>MgO
     5. a-Al2O3 with different microstructure can be made by the addition of different additives.α-Al2O3 with specific microstructure such as spherical, columnar, large flake crystal have been successfully obtained by the addition of seed crystal or additives. By selecting the appropriate additives and sintering temperature, the original crystal less than 0.5 microns has been acquired with the addition of additive 0.4%MgO+0.3%NH4Cl at 1350℃. The sintering technology for the preparation of lower temperature alumina ceramic with the bulk density of 3.92g/cm3 has been developed at the optimum sintering temperature of 1620℃.
引文
[1]杨重愚.轻金属冶金学.北京:冶金工业出版社,1993
    [2]武汉大学,吉林大学等校编.无机化学.北京:高等教育出版社,1994
    [3]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993年10月第1版
    [4]侯炳毅.氧化铝生产方法简介.世界有色金属,2004.1:12-14
    [5]张占明编.化学品氧化铝.香港:世华天地出版社.2004年5月第1版
    [6]高建阳.碳分A1(OH)3在煅烧过程中物理化学性质的变化.山西化工,2006,26(2):67-69
    [7]陈尔宏.化学品氧化铝的生产及市场预测.世界有色金属,2003.6:25-29
    [8]任冬梅,李德峰,姜玉敬.关于化学品氧化铝的发展的探讨.世界有色金属,2001.11:4-6
    [9]宋晓岚 邱冠周 吴雪兰等.特种氧化铝生产研究开发现状及其展望.材料导报,2004.18(4):12-16
    [10]张登高,宋锦瑞.特种氧化铝的应用领域及市场现状.无机盐工业,2004.36(4):12-16
    [11]查纳约[美].密斯罗著.王学诗.樊波平译.工业氧化铝化学制品.山西铝厂内部资料,1989,7
    [12]吴青芬,田丰,王新盛等.氢氧化铝在阻燃高抗撕氯丁护套中的应用.电缆电线,2001.4:33-34
    [13]Motohiko yashizumi,Hisae hirako.process for production of fine α-alumina powder.US5449389(1995)
    [14]Sathiyakumar M,Gnanam F D. Influence of MnO and TiO2 additives on density, micrastructure and mechanical properties of Al2O3.Ceram Int.2002,28: 195-200.
    [15]Duan F, Shun S B, Ding Z Y et al. Piezoelectric properties of polar glass-ceramics [P] Proceedings of nternational Conference on Electronic Components and Materials Sensors and Actuators, Xi'an,1995:177-179
    [16]汪厚植,赵惠忠,顾华志等.纳米技术在耐火材料中的应用研究.武汉科技大学学报(自然科学版).2005.28.(2):130-134
    [17]仇振琢,魏旭华,陈莉.大孔容拟薄水铝石及其制取.化学工业与工程技术,1998,19(3):5-7
    [18]李学锋,陈绪煌,周密.氢氧化铝阻燃剂在高分子材料中的应用.中国塑料,1999,6:82-85
    [19]王二星,刘焦萍,武福运.氢氧化铝在造纸及有机材料领域的应用.非金属矿1999,22(5):27-29
    [20]饶东生编.硅酸盐物理化学.北京:冶金工业出版社,1991年第2版:237-245
    [21]钱逸泰编.结晶化学导论.合肥:中国科技大学出版社,2002年第2版:347-348
    [22]冯其明,陈远道,卢毅屏等:—水硬铝石(a-AlOOH)及其(010)表面的密度泛函研究.中国有色金属学报,2004(4):14(4):670-675
    [23]Walter H.Gitzen. Alumina as a ceramic material.The American Ceramic Society.1970:11-27
    [24]吴义权,张玉峰,黄校先等.低温制备纳米α-Al2O3粉体.无机材料学报,2001,16(2):349-352
    [25]吴玉程,杨晔,李勇等.氧化铝胶体的添加对氧化铝γ→α相变的影响.物理化学学报,2005,15(1):79-83
    [26]A.Derdacka-Grzymek,Z.Konik.The influence of MgF2 on α-Al2O3 formation as will as form and size of grains in calcination process.Light Metals,1990,8: 115-119
    [27]Yu Z, Zhao Q, Zhang Q. Effect of hydrochloric acid on the preparation and characteristics of ultrafine alumina powder J Amter Sci Lett,1995,13:531-532.
    [28]Watana K, Sunagawa J. Efects of trivalent rare-earth ions upon the morphology of corundum crystals. J Crystal Growth,1983,65 (12):568-575
    [29]刘勇,陈晓银.氧化铝热稳定性的研究进展.化学通报,2001,2:65-69
    [30]刘勇,王敬先,杨竹仙等.钡对氧化铝的高温热稳定作用.物理化学学报,2000,16(12):533-536
    [31]牛国兴,何坚铭,陈晓银等.不同添加物和制备方式对Al2O3热稳定性的影响.催化学报,1999,20(5):451-455
    [32]Masuda K, Sano T, Mizukami F et al. Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3-supported catalysts. Appl Crystal,1995,133:59-65
    [33]Jeffrey S, Church, Noel W C. Stabilisation of aluminas by rare earth and alkaline earth ions. Appl Crystal,1993,101:105-116
    [34]Burtin P, Brunelle J P, Pijolat M et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Appl Crystal, 1987,34:225-238
    [35]王零森编.特种陶瓷.长沙:中南工业大学出版社,1994.年第1版
    [36]Ramanan Venkatesh.Effect of organic additives on the properties of sol-gel spun alumina fibres. Journal of European Ceramic Cociety.2000,11:2543-2549
    [37]高陇桥.电子陶瓷用a-Al2O3粉体及其技术条件.江苏省硅酸盐学会特种陶瓷专业委员会第10届学术年会论文集,1993,11:10-24
    [38]李志宏.陶瓷刚玉磨料制造及应用进展.金刚石与磨料磨具工程,2000,3:37-38
    [39]徐平坤,董应榜编.刚玉耐火材料.北京:冶金工业出版社,1999:56-61
    [40]张敬强,荣守范,宋晓刚.稀土氧化物对氧化铝复相陶瓷显微结构和力学性能的影响.佳木斯大学学报(自然科学版),2006,24(1):16-18
    [41]T. Ishizaka, Y. Kurokawa, T. Makino, Y. Segawa. Optical properties of rare earth ion (Nd3+, Er3+, and Tb3+.)-doped alumina films prepared by the sol-gel method. Journal of Luminescence,2001,92(7):57-63
    [42]吴义权,张玉峰,校先等.原位生长棒晶氧化铝陶瓷的制备.硅酸盐学报,2000,28(6):585-588
    [43]周芳辉.95氧化铝瓷绝缘子瓷轴在侧部振打电除尘器上的应用.陶瓷工程,2000,2:39-40
    [44]Melvin A. Leitheiser, Harold G Sowman. Non-fused aluminum oxide-based abrasive material. US 4314827(1982)
    [45]Mary Lon Morris. ceramic alumina abrasive grains seeded with iron sxide. US 4964883(1990)
    [46]Jason Sung.sol-gel alumina abrasive grain.US 5215552.(1993)
    [47]Arup K.Khaund.sol-gel alumina abrasive.US 5593468 (1997)
    [48]李海峰.95氧化铝陶瓷在密封领域的应用.陶瓷工程,2000,4:37-38
    [49]楚雪田吴秋玲译.Al2O3含量和气孔率及温度对耐火材料热导率的影响.国外耐火材料,2004.29(1):53-57
    [50]霍玮,孙向阳,云官权.高强度刚玉质自流浇注料在呼炼CO焚烧炉中的应用.内蒙古石油化工,1993,25(4):107-110
    [51]焦武军,张亮辰.高强耐磨自流浇注料的研制与应用.工业锅炉,2002.4:39-41
    [52]廖荣,刘英.氧化铝粉体对氧化铝陶瓷制品性能的影响.现代技术陶瓷,2001,4:35-38
    [53]陈明华,王黔平.溶胶-凝胶法制备干凝胶的干燥技术探讨.陶瓷,2008.3:31-33
    [54]方平安.吴召平.溶胶-凝胶制备二氧化硅薄膜的开裂问题研究.玻璃与搪瓷,2000,28(3):13-19
    [55]张勤俭,张建华.无机盐先驱体溶胶-凝胶法制备Al2O3薄膜的研究.机械工 程材料,2002,26(3):17-19
    [56]江崇经.a-Al2O3的制备及其对高铝陶瓷性能的影响.电瓷避雷器,1999,4:9-12
    [57]杨晔,吴玉程,李勇等.碳酸铝铵低温热分解制备a-Al2O3超细粉末.过程工程学报,2002,4:325-329
    [58]李继光,孙旭东,赵志江等.仔晶对碳酸铝铵热分解相变及a-Al2O3纳米粉烧结活性的影响.金属学报,1999,35(10):1099-1102
    [59]Fnag Jinxin, Mark Thompson A, HarmerMartinP et al. Effect of yttrium and lna htanum on the final stage sintering behavior of ultra-high purity alumina[J]. J. Am. Ceram. Sco.,1997,8:2005-2009
    [60]LoudjnaiM K. Yttrium diffusion in a-aluimna singlecrystlal [J]. Jounrla of the Europena CeramicSociety,1998,18:591-599
    [61]Riebling E F. Structure of magnesium aluminosilicate liquids at 1700℃.Can J Chem,1964,42(12):2811-2821
    [62]沈仰云,沈毅.超高温还原气氛下几种掺杂物对氧化铝晶体形貌的影响.硅酸盐通报,1997,2:32-34
    [63]沈毅,张庆军,桑晓明.超高温烧结条件下氧化铝板状晶体的形貌.河北理工学院学报,2000.2,22(1):36-38
    [64]宋振亚,吴玉程,杨晔等.α-Al2O3微粉的制备及其TiO2掺杂改性.硅酸盐学报,2004.8,32(8):920-922
    [65]Morinaga K, Torikai T,Nakagawa K et al. Fabrication of fine alpha-alumina powders by thermal decomposition of ammonium aluminum carbonates hydroxide(ACCH).Acta Mater,2000,48:4735-4741
    [66]姚长江.团聚颗粒在煅烧α-Al2O3相变及晶粒长大过程中的作用和影响.2002北京纳微粉体制备与技术应用研讨会,2002,82-85
    [67]Kiyoshi Okada,Akiyoshi hattori,Yoshikau Kameshima & Atso Yasumori. Effect of monvalent cation additives on the γ-Al2O3 to α-Al2O3 phase transition. J.Am.Ceram.Soc,83(5):1233-1236
    [68]薛群虎,张军战,王宏联.生产工艺对致密电熔灰刚玉与白刚玉理化性能的影响.金刚石与磨料磨具工程,2002,5:17-18
    [69]卢海参,雷红,张泽芳等.超细氧化铝表面改性及其抛光特性.润滑与密封,2007,32(2):102-107
    [70]史国普,王志,侯宪钦等.低温烧结氧化铝陶瓷.济南大学学报(自然科学版),2007,21(1):17-19
    [71]肖汉宁,彭文琴,邓春明.徽晶陶瓷的制备技术、性能及用途.中国陶瓷,2000,36(5):31-33.
    [72]Boudenne A, Ibos L, Fois M et al. Thermophysical properties of polypropylene/aluminum composites.Journal of Pol-ymer Science:Part B:Polymer Physics.2004,42(5):722-732
    [73]Tekeli, M.Erdogan, B.Aktas. Influence of a-Al2O3 addition on sintering and grain growth behaviour of 8mol% Y2O3-stabilised cubic zirconia (c-ZrO2).Ceramics International.2004,30:2203-2209
    [74]Dalgleish B J. A comparison of the mechanical behavior of aluminas in air and simulated body environments.J Biomed Mater Res,1981,10:527-531.
    [75]曹洪治,陈华辉,高占峰.热压烧结氧化锆陶瓷的微磨料磨损机制研究.润滑与密封,2009,34(2):59-61
    [76]曾美云.影响陶瓷低温烧结的因素.中国陶瓷,1990,4:5-13
    [77]Tohru Sekino, Toshio Nakajima, Satoru Ueda et al. reduction and sintering of a Nickel-dispersed alumina composites and its properties.J. Am. Cream. Soc, 1997,80(5):1139-1148.
    [78]Sumin Zhu, Shuqiang Ding, Hong'an Xi et al. Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding.Materials Letters, 2005,59(5):595-597
    [79]史国普,王志,侯宪钦等.低温烧结氧化铝陶瓷的动力学研究.硅酸盐通报,2007,26(6):1113-1115
    [80]汪厚植,赵惠忠,顾华志等.纳米技术在耐火材料中的应用研究.武汉科技大学学报(自然科学版),2005,28(6):130-133
    [81]李柳生,廖桂华,徐国辉等.氧化铝原料对红柱石基耐火材料莫来石化行为的影响.硅酸盐通报,2007.26(5):867-871
    [82]Ildefonse J P, Gabis V, Cesbron F. Mullitization of and alusite in refractory bricks.Key Engineering Materials,1997,132(7):1798-1801.
    [83]J. Davies, J. G. P. Binner. The Role of Ammonium Polyacrylate in Dispersing Concentrated Alumina Suspensions. Journal of the European Ceramic Society.2000,20:1539-1553
    [84]Lange F. F. powder processing science and technology for increased reliability. J. Am. Ceram. Soc.,1989,72(1):3-15
    [85]F. Moore. Rheology of ceramics systems,Macharen and Sons. London 1965,4:36-37.
    [86]陈燕,姚长江,陈仲雄.氧化铝粒度对环氧浇注体系粘度的影响.绝缘材料,2004,2:20-23
    [87]傅献彩,沈文霞,姚天样.物理化学.北京:高等教育出版社.1990,4
    [88]唐绍裘,余润洲.氧化铝的制法、相变及其应用.陶瓷研究,1993.8(4):183-187
    [89]T. Tsuchida, R. Furuchi, T. Ishii. The effect of Cr3+ and Fe3+ ions on the transformation on different aluminum hydroxides to a-Al2O3, Thermochimica Acta,1983,64(4):337-353.
    [90]王树强,袁启明,谈家琪等.α-Al2O3晶须形貌及其生长过程研究.硅酸盐学报,1992,20(6):568-573
    [91]金德江,傅黄浦.氢氧化铝脱水制备氟离子吸附剂的研究.武汉工业大学学报.1995,17(1):34-37
    [92]任庆利,刘斌,陈寿田.热液环境下氢氧化镁结晶形态机理研究.稀有金属材料与工程,2004,1:47-50
    [93]Li Y D, D ing Y, Qian Y T. A solvothermal elemental reaction to produce nanocrystalline ZnSe.Inorg. J Mater Chem,1998,37:2844-2845.
    [94]Cerreta M K, Berglund K A. The structure of aqueous solution of some dihydrogen orthophosphates by laser Raman spectroscopy.J Crystal Growth, 1987,84:577-588
    [95]Yin H, Wada Y, Kitamura T et al. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2 J Mater Chem,2001,11:1694-1703
    [96]李必慧,唐一文,张新等.水热法制备氧化锌阵列及其形貌控制.无机材料学报,2007,22(03):403-406
    [97]陶芝勇,刘佩芳.Pt在多晶Au微盘电极上电沉积成核与结晶.电化学,2004,10(3):279-285
    [98]张立文,卢瑜,邓小虎等.不同形核机制下对动态再结晶过程模拟研究.大连理工大学学报,2008,3:351-355
    [99]Dynys F W, Halloran J W. Alpha alumina formation in alumderived gamma alumina.J.Am.Ceram.Soc,1982,65(9):442-447
    [100]Shelleman R A, Messing G L,Kumagai M. Alpha-alumina transformation in seeded boehmite gels.J.Non-Crystal.Solids,1986,82:277-283
    [101]Nelson S Bell, Seung-Beom Cho, James H Adair. Size control of alpha-alumina particles synthesized in 1,4-butanediol solution by alpha-alumina and alpha-hematite seeding.J. Am. Ceram. Soc,1998,81 (6):1411-1416
    [102]刚玉磨料中α-Al2O3相X-射线定量测定方法GB/T 14321-2008,国家质检 总局(SBTS)
    [103]陈玮.陶瓷刚玉磨料的研制[硕士论文].长沙:中南大学,2003
    [104]姚连增.晶体生长基础.合肥:中国科技大学出版社,1995.12
    [105]Handwerker C A, Morris P A, Coble R L. Effects of chemical inhomogenities on grain growth and microstructure in Al2O3. J Am Ceram Soc,1989, 72(1):130-136.
    [106]贺晓唯,毕诗文,周金海.铝酸钠溶液中苛性碱、碳酸碱和氧化铝含量的连续测定.吉林大学学报(理学版),2006,44(5):821-823
    [107]Thiruchitrambalam M, Palkar V R, Gopinathan V. Hydrolysis of aluminium metal and sol-gel processing of nano alumina.Materials Letters.2004,58: 3063-3066
    [108]邓勇跃,王玺堂,张保国.α-Al2O3微粉和水泥对刚玉质自流浇注料性能的影响.耐火材料,2003,1:43-44
    [109]高陇桥.日本α-Al2O3粉体进展.真空电子技术,1994,4:1-7
    [110]汤受彬,杨萍华,彭定坤等.Ag+β-氧化铝的合成与热力学稳定性研究.中国科学技术大学学报,2000,30(4):477-481
    [111]刘锡俊、王杰曾、叶亚红等.烧结α-β氧化铝砖.CN 200810168821(2008)
    [112]浙江大学等编.硅酸盐物理化学.北京:中国建筑工业出版社,1980年第2版
    [113]Ramanan Venkatesh.Effect of organic additives on the properties of sol-gel spun alumina fibres.Journal of European Ceramic Cociety.2000, 11:2543-2549
    [114]尹衍升,张景德.氧化铝陶瓷及其复合材料,北京:化学工业出版社,2004年第12版:5
    [115]李继光.α-Al2O3纳米粉的烧结初期机理研究.硅酸盐学报,1998,4:471-475
    [116]T. Tsuchida, R. Furuchi, T. Ishii, K. Itoh. The effect of Cr3+.and Fe3+ ions on the transformation on different aluminum hydroxides to a-Al2O3. Thermochimica Acta,1983,64(4):337-353.
    [117]吴玉程,宋振亚,杨晔等.α-氧化铝相变及其相变控制的研究.稀有金属,2004,28(6):1043-1048
    [118]Monica P, Jose M, Moreno C et al. Crystallization of gel-derived and quenched glasses in the ternary oxide Al2O3-ZrO2-SiO2 system.J Non-Cryst Solids,2002,297:290-300.
    [119]Hockin H.K.Xu, Said Jahanmir, Yushu Wang. Effect of grain size on Scratch Interactions and Material removal in alumina. J.Am.Ceram Soc.1995, 78(4):881-891
    [120]Scottnordahl C, Gary M. Thermal analysis of phase transformation kinetics in α-Al2O3 seeded boehmite and y-Al2O3.Thermochimica Acta.1998, 318(8):187-199
    [121]沈毅,张庆军,桑晓明.氟化铝对氧化铝烧结性能的影响.河北理工学院学报,2000,22(1):36-40
    [122]Yen F S, Wen H L, Hsu Y T. Crystallite size growth and the derived dilatometric effect during 0 to a-phase transfoumation of nono-sized alumina powders. J.Crystal.Growth,2001,233(8):761-769
    [123]Dynys F W, Halloran J W. Alpha-alumina formation in alumderived gamma alumina. J.Am.Ceram.Soc.,1982,65(9):442-447
    [124]李继光,孙旭东,王稚蓉,宋丹等.a-Al2O3纳米粉的烧结动力学.金属学报,1998,34(2):195-198
    [125]刘朝信,贾惟义,张绪信.在PbO-B2O3助溶剂中GdIG的相稳定区及单晶生长.硅酸盐学报,1985,1:124-126
    [126]李焕勇,胡荣祖,介万奇.ZnSe晶体气相生长输运剂Zn(NH4)3Cl5的热分解行为及动力学.应用化学,2003,4:312-317
    [127]韦志仁,李振军,高平等.化学气相输运法(CVT)制备微米级的喇叭管状ZnO晶体.无机化学学报,2008,4:653-656
    [128]陈勇,邵曼君,陈慧萍.水溶液中硫酸钾晶体生长动力学.化工学报,2003,30(12):1766-1769
    [129]李冬云,杨辉,谢田甜等.水合氧化铝的热处理及纳米氧化铝的颗粒特性.无机化学学报2006,1:96-100
    [130]蔡丽霞,金蔚青,潘志雷等.高温熔体晶体生长的三维实时观察实验装置.无机材料学报,1999,14(3):509-512
    [131]史子康.引上法生长晶体时熔体温度波动对晶体生长速率的影响.人工晶体学报,1983,4:230-234
    [132]Xu Xiaohong, Zhang Ying,Wu Jianfeng,Bai Zhanliang.Synthesis and Microstructure of doped Alumina composite membrane by sol-gel process Journal of Wuhan University of technology:Materials Science Edition.2003, 18(3):15-19
    [133]李海波.溶胶-凝胶法合成Al2O3纳米陶瓷粉.松辽学刊(自然科学版),2000,2:4-6
    [134]Roger B Bagwell, Gary L Messing.Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 J.Am.Ceram.Soc.,1999,82(4):825-830
    [135]李咏梅,刘欣,贾虎生.纳米α-Al2O3粉添加对氧化铝陶瓷性能的影响.太原理工大学学报,2007,38(2):98-100
    [136]汪厚植,赵惠忠,顾华志等.纳米技术在耐火材料中的应用研究.武汉科技大学学报(自然科学版),2005,28(2):130-133
    [137]高振昕.Tabular氧化铝的再沿晶破裂.耐火材料.1995,29(3):165-169
    [138]曲哲,雷荣滋.AlTiB晶粒细化剂微观组织的电镜观察.轻合金加工技术,2008,2:49-55
    [139]张鑫,刘静,李光强.XRD与TEM技术在分析纳米金属晶粒尺寸中的应用.南方金属,2006,27(3):15-17
    [140]黄肖容.溶胶-凝胶法制备 γ-氧化铝膜的微观结构.硅酸盐学报,2000,2:173-175
    [141]王树栋,韩辉,颜廷厚.研磨法检测煅烧氧化铝的原晶粒度.理化检验(物理分册),2002,38(12):548-550
    [142]Chang Peiling, Yen Fusu, Cheng Kungchieh et al.Examinations on the critical and primary crystallite sizes during θ to α-phase transfoumation of ultrafine alumina powders.Nano Letter,2001, 1(5):253-259
    [143]Masato Kumaga, Gary L Messing.Controlled transformation an sintering of a boehmite sol-gel by a-alumina seeding.J.Am.Ceram.Soc.,1985,68(9):500-510
    [144]K.Okada, S.Kikuchi, T.Ban et al. Difference of mechanochemical factors for Al2O3 powders upon dry and wet grinding. Journal of Materials Science Letters, 1992, 11(12):862-864.
    [145]张长拴,赵峰,张继军等纳米尺寸氧化铝的红外光谱研究.化学学报,1999,3:275-280
    [146]Averback R.S, Hufler H.J, TaoR et al. Processingof nano-grained materials.Materials Science and engineering,1993,166:169-177.
    [147]仲维卓,华素坤著.晶体生长形态学.北京:科学出版社.1999,10
    [148]何铸文,杨忆.黄铁矿型结构的晶体化学.矿物学报,1996,4:423-430
    [149]Hartman P. The effect of surface relaxation on crystal habit:Cases of corunndum(α-Al2O3)and Hematite(α-Fe2O3). J Crystal Growth,1989,96(7): 667-672
    [150]K.watana, J.Sunagawa. Effects of trivalent rare-earth ions upon the morphology of corundum crystals[J] J.Crystal Growth.65:568-573
    [151]Mackrodt W C, Davey R J, Black N S. The morphology of α-Al2O3 and α-Al2O3:The importance of surface relaxation. J Crystal Growth,1987,80(2): 441-446.
    [152]王天宝,王列娥.低温烧结95瓷研究及其生产.江苏陶瓷,2005,02:6-10
    [153]李江,潘裕柏,宁金威等.陶瓷低温烧结的研究及展望,硅酸盐通报,2003.2:66-69
    [154]李江,潘裕柏,宁金威等 氧化铝陶瓷低温烧结的研究现状和发展前景.中国陶瓷,2001,5:42-45
    [155]史国普,王志,侯宪钦,孙翔,俎全高,徐秋红.低温烧结氧化铝陶瓷.济南大学学报(自然科学版),2007,1:17-19
    [156]施剑林.固相烧结—Ⅲ实验超细氧化高锆素坯 烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报,1998,26(2):657-667
    [157]施剑林.固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程.硅酸盐学报,1997,25(5):499-513
    [158]施剑林.固相烧结-Ⅱ粗化与致密化关系及物质传输途径.硅酸盐学报,1997,26(6):1-13
    [159]F.S. Yen, M.Y. Wang, J.L. Chang. Temperature reduction of γ-to a-phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehmite. Journal of Crystal Growth,2002,236:197-209
    [160]Bagwell R B, Messing G L, Howell P R.The formation of α-Al2O3 from θ-Al2O3:The relevance of a "critical size"and:Diffusional nucleation of "synchro-shear". J.Mater.Sci.,2001,36:1833-1840
    [161]Xu Xiaohong, Zhang Ying, Wu Jianfeng et al. Synthesis and microstructure of doped alumina composite Membrane by sol-gel process Journal of Wuhan University of Technel-ogy-Mater,2003,18 (3):15-19.
    [162]高振昕.Tabular氧化铝的显微结构.耐火材料,1994,28(5):293-298
    [163谭伟,肖汉宁,易雯雯等.工艺条件对低温烧结90氧化铝陶瓷显微结构及性能的影响.中国陶瓷,2004,40(2):13-17
    [164]Xue L A, Chen I W. Low-temperature sintering of alumina with liquid-forming additives Journal of the American Ceramic Society.1991,74(8):2011-2018
    [165]Akira N, Messing G L. Liquid-phase sintering of alumina coated with magnesium aluminosilicate glass.J Am Ceram Soc,1998,81 (5):1163-1172.
    [166]李楠.陶瓷材料液相烧结的有关液相结构问题.硅酸盐学报,1980,3:318-322
    [167]黄丽芳,郑治祥,吕珺等.MnO2-TiO2-MgO复相添加剂对氧化铝陶瓷烧结 温度的影响.材料开发与应用,2008,2:15-17
    [168]史国普,王志,侯宪钦等低温烧结氧化铝陶瓷的动力学研究.硅酸盐工业,2007,26(6):1112-1115
    [169]陈国华,刘心宇.低温烧结玻璃/陶瓷复合材料的微结构及性能.硅酸盐学报,2006,8:956-960
    [170]刘于昌,黄晓巍.CuO+TiO2复相添加剂对氧化铝陶瓷烧结性能和显微结构的影响及其烧结动力学分析.现代技术陶瓷,2006,1:9-12
    [171]Singh V K. Densification of alumina and silica in the presence of a liquid phase JAm Ceram Soc.,1981,64:133-138
    [172]Kwon O H, Messing G L. Kinetic analysis of solution-precipitation during liquid-phase sintering of alumina.J Am Ceram Soc,1990,73 (2):275-281