高光表面SMC的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
片状模塑料(Sheet Molding Compound,简称SMC)是一种加入不饱和聚酯树脂、有机添加剂、引发剂、碳酸钙、增稠剂和短切玻璃纤维等组分混合而成的热固性复合材料。与手糊等其它玻璃钢成型工艺相比,SMC成型技术较为复杂,过程中原材料或生产工艺参数的变化都会对最终制品产生影响。故SMC工艺对原材料和生产工艺参数的稳定性要求很高。中国加入WTO已有5年,汽车工业的竞争已经愈来愈激烈。为了降低油耗,减少环境污染,汽车轻量化是汽车工业发展的一个重要途径,采用玻璃钢制品是有效方法。同时随着SMC技术的不断进步,市场的不断扩大,越来越多的应用领域都对SMC提出了相当高的外观要求。因此如何降低乃至消除UPR的固化收缩,提高SMC模压制品的表面光泽度是我国复合材料工业所需研究解决的重要课题。
     本文首先对自制的新型低收缩添加剂(LPA)的收缩机理进行了研究,随后重点研究了LPA、引发剂、氧化镁(增稠剂)、碳酸钙填料以及模压工艺参数对SMC制品表面光泽度的影响。研究发现,随着LPA加入量的增多,SMC制品的固化收缩率变小,表面变得光亮、平整;当LPA的加入量超过30份时,SMC制品表面的光泽度增幅减小;适中的过氧化二异丙苯(DCP)用量可以改善SMC制品的表面光泽度;随着MgO的加入量增多,制品的表面光泽度并非一直增加,而是有一个最佳值;平均粒径小于20μm(800目)的碳酸钙,适当的加入量可以提高制品的表面光泽度。模压工艺参数中,随着成型温度的提高,SMC制品的表面光泽度从130℃到140℃快速增大,当温度从150℃到160℃时,制品表面的光泽度增加趋于平缓,170℃时制品表面光泽度有下降趋势;而成型压力和保温保压时间对制品的表面光泽度影响不大。
     利用SPSS13.0软件和二次多项式回归分析了SMC中增稠剂、固化剂对SMC制品表面光泽度的影响,得出了高光表面SMC制品表面光泽度的预测公式。结果表明低收缩SMC组分之间具有协同效应:随着MgO用量的增加,LPA的效率提高,制品光泽度增大;DCP含量越小,LPA的热膨胀效果越好,制品光泽度也就越高。通过回归分析,得到低收缩SMC制品表面光泽度的预测方程为:y=222.457+2.688X_2~2-12.949X_3~2(其中X_2:MgO的质量份数,X_3:DCP的质量含量(‰))。
     结合制品的弯曲性能,发现随着LPA用量的增加,SMC制品的弯曲强度变化不大,而弯曲模量在LPA加入量超过30份时逐渐下降;SMC制品的弯曲强度和弯曲模量随CaCO_3含量的增加而增加,当CaCO_3用量超过200份时,制品
Sheet molding compound (SMC) is a thermosetting material made of unsaturated polyester resin, organic additives, the initiator, calcium carbonate, thickener and chopped glass fibres strands that are mixed and form sheets. Compared with made by hand and other FRP molding processes, SMC is a bit more complex. Any change in the material or the producing parameter would influence the final product. Thus SMC asks for stabilities of the material and the producing parameter. China has joined WTO for 5 years, the competition in automobile have become fiercer. In order to decrease the oil consumption, and to decrease the environment pollution, low weight is an important way for automobile development, and to use FRP products is the effective method. Meanwhile, along with the SMC technology increasing progress and the market increasing expansion, the quite high outward appearance of SMC are requested in the more and more application fields. So how to decrease and even eliminate the curing shrinkage of unsaturated polyester and to improve the surface finish of SMC are important subjects to our composite material industry.
    We have researched contraction mechanism of self-made new low profile additive. Afterwards, we have major studied LPA, the initiator, MgO (thickener), CaCO_3 (filler) and the mould pressing technological parameter with emphasis influence to the surface finish of SMC product. The results show that SMC product has small shrinkage ratio and surface change luminously and smooth with the weight fraction of LPA increasing. When the weight fraction of LPA over 30, the surface finish of SMC product increased range reduces. The moderate weight fraction of dicumyl peroxide (DCP) used may improve the surface finish of SMC product. With the weight fraction of MgO increasing, the surface finish of product continuously increases by no means, but MgO has a best weight fraction. The surface finish of SMC product may improved by adding suitable weight fraction of CaCO_3 whose average grain diameter is smaller than 20μm. In the mould pressing technological parameter, mould temperature is more important influence than mould pressure and time to the surface finish of SMC product. The surface finish of SMC product fast increases with temperature from 130℃ to 140℃. When the temperature increases from 150℃ tol60 ℃, the surface finish of SMC has little increasing. It has a drop tendency, when the temperature is higher than 170℃.
    The effect of thickener and the initiator on the surface finish of low profile SMC product were studied by using the SPSS13.0 software and polynomial regression theories. The predicting formula on the surface finish of low profile SMC product was derived. The results show that the synergies have occurred among ingredients of low profile SMC. LPA efficiency is increasing with weight fraction of MgO increasing, the surface finish of low profile SMC product is improving; DCP content is smaller, the LPA has better thermal expansion efficiency and the surface finish of product is higher. We obtain predicting formula about the surface finish of
引文
[1] 张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003
    [2] 刘兴民.SMC复合引发固化体系及应用研究[D].武汉理工大学硕士学位论文,2001.5
    [3] Tsutao Katayama, Masahiro Shinohara, Masahiro Hakotani, Keizo Nishii. Effect of curing condition on the temperature of test piece in curing process of SMC roll forming[J]. Journal of Materials Processing Technology, 143-144 (2003) 673-676
    [4] Zouhaier Jendli, Joseph Fitoussi, Fodil Meraghni, Didier Baptiste. Anisotropic strain rate effects on the fibre-matrix interface decohesion in sheet moulding compound composites[J]. Composites Science and Technology, 65 (2005) 387-393
    [5] Jue Lu, Shrikant Khot, Richard P Wool. New sheet molding compound resins from soybean oil.l. Synthesis and characterization[J]. Polymer, 46 (2005): 71-80
    [6] Tsutao Katayama, Masahiro Hakotani, Masahiro Shinohara ,Keizo Nishii, Hidekazu Tabuchi. Effect of material internal pressure in curing process of SMC roll forming[J]. Journal of Materials Processing Technology, 155-156 (2004) 1577-1582
    [7] P. T. Odenberger, H. M. Andersson, T.S. Lundstrom. Experimental flow-front visualisation in compression moulding of SMC[J]. Composites, Part A 35 (2004) 1125-1134
    [8] 黄家康.聚酯模塑料生产与成型技术[M].北京:化学工业出版社,2002
    [9] 金柏青.我国SMC工业的进步[A].玻璃钢学会第十三届全国玻璃钢/复合材料学术年会论文集,1999(F-7):297-302
    [10] Z. Jendli, F. Meraghni, J. Fitoussi, D. Baptiste. Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites[J]. Composites, Part A 35 (2004) 779-785
    [11] 崔益华.S-602树脂收缩特性的研究[J].玻璃钢/复合材料,1999(5):30-31
    [12] Tsutao Katayama, Masahiro Shinohara, Masahiro Hakotani, Keizo Nishii. Effect of curing condition on the temperature of test piece in curing process of SMC roll forming[J]. Journal of Materials Processing Technology, 143-144 (2003): 673~676
    [13] 谢婷,李军.片状模塑料增稠反应控制探讨[J].热固性树脂,2003(3):22~24
    [14] 张林文,张德镛,杜志花.超级分散氧化镁对SMC/BMC树脂糊粘度的影响[J].玻璃钢/复合材料,2001(2):29-31
    [15] 林茂青,张玉军,刘胜平.SMC中不饱和聚酯树脂增稠及贮存性能的研究[J].纤维复合材料,2002(3):14-16
    [16] Ling Li, Xia Cao, L. James Lee. Effect of dual-initiator on low temperature curing of unsaturated polyester resins[J]. Polymer, 45 (2004): 6601-6612
    [17] 成煜.SMC低收缩添加剂的研究[D].武汉理工大学硕士论文,2001.5
    [18] 段华军,王钧,杨小利.新型低收缩添加剂研究[J].玻璃钢/复合材料,2004(4):11-13
    [19] 谢怀勤,吕敏,佟立芳.LPA作用机理初探[J].哈尔滨建筑大学学报,2001,34(6):92-95
    [20] 夏雨,田正刚,薛忠民.树脂固化过程中相分离的研究[J].玻璃钢/复合材料,2004(3):45-46
    [21] 冯青平,薛忠民,熊传溪.低收缩相态结构的研究综述[J].玻璃钢/复合材料,2000(4):43-46
    [22] 杜寿全.可着深色的SMC/BMC用新型低收缩剂[J].纤维复合材料,2001(1):58
    [23] 王侃,王继辉,薛忠民,陈淳.国外低轮廓UPR固化收缩控制研究发展动态[J].玻璃钢/复合材料,2003(4):34-37
    [24] 鄢南邦,于丽,吴良义.低收缩型不饱和聚酯的研制[J].热固性树脂,2001,16(2):14-18
    [25] 张满,骆少逵.模塑成型工艺中低收缩、低轮廓添加剂的作用机理和选择[J].玻璃钢/复合材料,2000(5):51-53
    [26] 张玉军,金镇镐,巩桂芬,张明艳.PF用低收缩添加剂的研究[J].纤维复合材料,2003(3):9-11
    [27] 吴新跃.控制SMC吲化收缩率的试验研究[D].哈尔滨工业大学硕士学位论文,2001.7
    [28] 张少国,张成武,张晓文.低收缩剂[J].玻璃钢/复合材料,2000(3):54-55
    [29] 尚钢,连军,王继辉.SMC/BMC低收缩添加剂发展动态及趋势[J].玻璃钢/复合材料,1998(6):40-41
    [30] 袁致澎,张钧笙.BMC模压制品的颜色均匀性与低收缩添加剂的相关性研究[J].玻璃钢/复合材料,2001(3):14-17
    [31] 王冬春.玻璃纤维复合材料的发展及其着色[J].化工新型材料,2005,33(7):66-67
    [32] 郑学森,岳晓东,马世勇.SMC内着色技术[J].玻璃钢/复合材料,2003(1):48-50
    [33] 潘波.SMC填料级配的研究[J].玻璃钢/复合材料,1997(5):41
    [34] 张玉军,巩桂芬,陶鑫,金镇镐,周浩然.不饱和聚酯片状模塑料的研究[J].工程塑料应用,2004,32(5):7-9
    [35] P. Dumont, L. Orge'as, S. Le Corre, D. Favier. Anisotropic viscous behavior of sheet molding compounds (SMC) during compression molding[J]. International Journal of Plasticity, 19 (2003): 625-646
    [36] V. Massardier-Nageotte, A. Maazouz, G. Peix, S. Bres. Methodologies for the characterisation of glass fibre orientation and distribution in large components moulded from sheet molding compounds (SMC)[J]. Polymer Testing, 22 (2003): 867-873
    [37] E. V. Morozov, K. E. Morozov, V. Selvarajalu. Progressive damage modelling of SMC composite materials[J]. Composite Structures, 62 (2003): 361-366
    [38] 卞忠义,王宇洋.SMC生产工艺质量管理[J].玻璃钢/复合材料,2002(4):43-44
    [39] 谢怀勤,王海龙,佟立芳.SMC模压工艺参数对固化收缩率影响的实验研究[J].哈尔滨建筑大学学报,2001,34(3):88-90
    [40] Zouhaier Jendli, Joseph Fitoussi, Fodil Meraghni, Didier Baptiste. Anisotropic strain rate effects on the fibre-matrix interface decohesion in sheet moulding compound composites[J]. Composites Science and Technology, 65 (2005): 387-393
    [41] 张卫国.用正交试验法对SMC模压工艺的研究[J].汽车科技,1994(2):22-24
    [42] 胡浚.塑料压制成型[M].北京:化学工业出版社,2005
    [43] 江梅.陈丽萍.玻璃纤维增强复合材料在汽车上的应用[J].新材料产业,2002,(10):19-21
    [44] Applications News. Reinforced PlasticsOctober. 2003
    [45] 顾明华,骆少华.低轮廓添加剂与A级表面SMC[A].玻璃钢学会第十二届全国玻璃钢/复合材料学术年会论文集,1999(B-2):41-45
    [46] 蕙永祺,熊学斌.SMC、BMC用于制造汽车的沿革与灿烂前景[J].纤维复合料,2002(3):8-11
    [47] 金柏青.我国SMC工业的进步[A].玻璃钢学会第十三届全国玻璃钢/复合材料学术年会论文集,1999(F-7):297-302
    [48] Atkins K E, Rocky J F. Low-profile additives for reinforced polyester[J]. Plastics Compounding, 1982, 5(1): 31-38
    [49] N Ujikawa. New development in low profile additives[A]. SPI Session 22-℃, 1994
    [50] N Ujikawa, M Takamura. A new low profile additives for pigmentable SMC/BMC molding[A]. International Composites, Expo Proceeding of 1999. Session 1-C
    [51] 杨睿,潘安徽,赵世琦.不饱和聚酯树脂的原位同时增韧和降收缩研究[J].高分子材料科学与工程,2003,19(4):140-143
    [52] 周仁郁.SPSS13.0统计软件[M].成都:西南交通大学出版社,2005
    [53] 刘文卿.试验设计[M].清华大学出版社、Springer.北京:2005,116
    [54] 章文波,陈红艳.实用数据统计分析及SPSS12.0应用[M].北京:人民邮电出版社,2006
    [55] 沈开猷.不饱和聚酯树脂及其应用[M].第三版.北京:化学工业出版社,2005
    [56] 欧阳国恩,欧国荣.复合材料实验技术[M].武汉:武汉工业大学出版社,1996