声动力学疗法对艾氏腹水瘤细胞骨架的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声动力学疗法(Sonodynamic Therapy,SDT)是利用超声能够穿透深层组织并聚焦于特定的部位,激活富集在肿瘤组织中的声敏剂[血卟啉及其衍生物(Hemtoporphyrin Derivatives,HpD)]产生协同效应,从而起到抗癌效果的一种肿瘤治疗方法。该方法是在光动力学疗法(Photodynamic therapy,PDT)的基础上建立和发展起来的。
     目前,防治肿瘤的常规方法有:手术治疗、放射治疗和化学治疗等。手术治疗是采用手术切除肿瘤,在治疗早期没有转移和与重要脏器及大血管无严重粘连的肿瘤效果较好,但中晚期效果不佳;放射治疗是利用同位素衰变利加速器产生的射线治疗恶性肿瘤,肿瘤一旦扩散或局部侵润广泛,治疗效果较差,且放疗本身也会带来一些副作用;化学疗法是利用化学抗肿瘤药物治疗恶性肿瘤,但化疗药物毒副作用较大,主要有恶心、呕吐、脱发、白细胞减少等。1978年,美国学者Doughtery等人首次提出光动力疗法(Photodynamic therapy,PDT)治疗肿瘤。但由于光的穿透能力差,该方法主要应用于人体表面浅层肿瘤的治疗,对深部和中晚期肿瘤的治疗具有一定的困难。而超声具有较强的穿透力,并且对健康组织伤害较小,同时血卟啉等声敏剂可以特异地聚集于肿瘤细胞,从而使得SDT疗法可以有针对性的杀伤肿瘤细胞,加之超声治疗装置简单,造价低廉,因而该法具有良好的应用前景。自1989年日本学者Umemura.S等人在国际超声会议上首次提出SDT疗法以来,各国学者对这一疗法及其机制进行了广泛而深入的研究,并提出了空化效应、单线态氧理论、羟自由基理论、烷氧自由基理论,但其确切的作用机制尚无定论。
     细胞骨架是细胞内重要的细胞器,与细胞的形态维持、细胞增殖、细胞迁移和信号传导等多项生命活动有关。细胞骨架已成为肿瘤治疗的重要靶点。大量的文献报道了PDT可以使细胞骨架受损,从而影响相应的细胞功能。例如:酞菁类光敏剂(ZnPc)-PDT对HeLa细胞微管、微丝、角蛋白有光损伤效应,引起周期阻抑、细胞变形等;ALA-PDT则可以使人腺癌细胞WiDr和神经胶质瘤细胞D54MG的微管利微丝受到破坏,使细胞形态利细胞黏附性发生变化;同时,ALA-PDT也可以影响慢性髓系白血病K562细胞骨架的组装。然而,有关SDT对细胞骨架影响的研究未见报道。因此,本论文就SDT疗法对细胞骨架的影响进行了初步研究,同时比较血卟啉(hematoporphyrin,Hp)介导的SDT疗法与原卟啉Ⅸ(protoporphyrinⅨ,PPⅨ)介导的SDT疗法对细胞骨架的影响。
     本论文依托国家自然科学基金资助项目“超声激活血卟啉抗肿瘤的细胞分子生物学机制”利“超声激活血卟啉诱导肿瘤细胞凋亡的分子生物学机制”的支持,采用超声频率为1.34 MHz,强度为1 W/cm~2的处理条件,研究超声激活血卟啉或者原卟啉Ⅸ对EAC细胞细胞骨架的影响,所得实验结果如下:
     1.超声激活Hp或PPⅨ对艾氏腹水肿瘤细胞(EAC)表面结构的影响:扫描电镜观察发现,对照组细胞呈圆球形,表面有丰富密集的微绒毛;单独Hp、PPⅨ对细胞表面形态没有明显的影响:单独超声处理后,细胞表面微绒毛随着时间的延长而逐渐减少,2小时后细胞表面趋于光滑,4小时后少数细胞表面出现了小孔:超声结合Hp或PPⅨ组细胞表面微绒毛锐减,随着时间的延长细胞表面结构利形态均有明显的改变,而且超声结合PPⅨ组细胞表面结构的变化比超声结合Hp组的变化更为明显,4小时后超声结合PPⅨ组细胞的表面有泡状的突起。
     2.不同强度的超声结合不同浓度Hp或PPⅨ经不同声照时间处理对F-actin的影响:发现随着超声强度和声敏剂浓度以及超声作用时间的增加F-actin受损的程度增大、分布变化明显;流式细胞仪检测SDT疗法处理后不同时间段取材被标记的F-actin的荧光强度变化,发现超声处理组细胞F-actin的荧光强度较对照组有所降低,超声结合Hp组或PPⅨ组细胞F-actin的荧光强度明显降低,并且存在时间依赖性。对照组、Hp利PPⅨ组F-actin的荧光强度均没有明显变化。
     3.超声激活Hp或PPⅨ对β-tubulin和vimentin的影响:采用间接免疫荧光技术检测SDT疗法处理后EAC细胞β-tubulin和vimentin的变化。结果表明,对照组、单独Hp、PPⅨ织细胞β-tubulin和vimentin均匀分布于胞质中,4小时后变化不明显;单独超声处理组细胞β-tubulin和vimentin的分布略有变化,标记的β-tubulin和vimentin的荧光强度随着处理后时间的延长而减弱;超声结合Hp或者PPⅨ作用组细胞β-tubulin和vimentin的变化比单纯超声处理组的变化更为明显,处理后0、2小时取材,β-tubulin利vimentin的分布均变得弥散、无序,荧光强度减弱,4小时后超声结合PPⅨ作用组细胞表面有明显的膜发泡现象,两种胞质骨架纤维均存在于膜发泡中。
     4.超声激活Hp或PPⅨ对EAC细胞核纤层LaminB的影响:用免疫细胞化学方法检测SDT疗法处理后EAC细胞LaminB的平均光密度值变化。研究结果表明:对照组、单独Hp或者PPⅨ组细胞LaminB的平均光密度值没有明显变化:单纯超声作用于EAC细胞后随着时间的延长,细胞中LaminB的平均光密度值逐渐降低;超声结合Hp或PPⅨ协同效应组LaminB的平均光密度值显著降低。
     5.观察SDT疗法处理后EAC细胞的凋亡现象:Hoechst 33258核荧光染色显示,对照组细胞核呈均匀的蓝色,随着时间的延长没有明显的变化;单独Hp、PPⅨ组与对照组类似;SDT疗法处理后EAC细胞核随着时间的延长而显著变化,2小时取材时超声结合Hp和超声结合PPⅨ组细胞出现核固缩,染色体凝聚等现象;4小时后超声结合Hp和超声结合PPⅨ组细胞出现明显的核变形,染色体凝聚、趋边等现象,超声结合PPⅨ组细胞还出现明显的凋亡现象。
     本论文在前期研究的基础上,初步研究了SDT疗法对EAC细胞细胞骨架的影响,为SDT疗法的研究积累相关资料。
Sonodynamic therapy(SDT) is a approach for cancer treatment basing on ultrasound(Us) could be precisely focused on the target volume,which made it possible to effectively activate the cytotoxicity of sonosensitizers(Hemtoporphyrin and Hemtoporphyrin Derivatives) that preferentially accumulate in tumor sites.
     Currently,there are lots of conventional treatments for tumor as surgery,radiation therapy and chemotherapy.However,these methods all have their pros and cons.Surgery,surgical excision of tumor,is better in early treatment but advanced ineffective;Radiation therapy is failed on widely spread or partial tumor invasion,and it also brings some near or long-term side effects; Chemotherapy is the main cancer treatment using chemical means of antineoplastic agents,which have strong side effects,mainly including nausea,vomiting,alopecia,leukopenia losing,and so on. In 1978,American scholar Doughtery put forward Photodynamic Therapy(PDT),which was already applied to the clinical treatment of tumors.Because of the undesirable penetration of the light, photodynamic therapy was used mostly to treat tumors located in human skins,but not those in the deep part of human bodies.Ultrasound which can penetrate deep into the tissue and have little harm to natural tissue,at the same time,hematoporphyrin,can specifically accumulate in tumor cells.So, SDT is a promise therapy for cancer treatment.Since SDT was proposed in 1989,it has been widely studied by many researchers,and they also proposed many cell killing mechanism including sono-cavitation,free radicals,lipid peroxidation,and so on.But until now,we still do not have a unanimous conclusion about SDT.
     Cytoskeleton,the important cell component,plays a crucial role in numerous cell functions, such as proliferation,morphology,signal transduction,cancer metastasis,etc.Literatures repoted the photodynamic damages of PDT on cell cytoskeleton which affect the functions of cells.For example, Zinc(Ⅱ)-phthalocyanine can induced photodamage to microtubule,actin,α-actinin and keratin of HeLa Cells,and suppresses cell cycle and change cell shape;ALA-PDT-induced changes in adenocarcinoma WiDr and glioblastoma D54Mg cells cytoskeleton,cell shape,and adhesion; ALA-PDT can also affect the cytoskeleton organization in K562 cells.Cytoskeleton constitutes a very important objective for all cancer therapies.However,so far,the effect of SDT on cytoskeleton has not been reported.So it is very important to identify whether the sonodynamic effect have some impacts on cytoskeleton.and also interesting to compare the effects between protoporphyrin IX (PPIX) and hematoporphyrin(Hp) on cytoskeleton of Ehrlich ascites carcinoma(EAC) cells under the same ultrasound exposure conditions.
     Basing on the international development and earlier experiment results,this paper has done some work about the National Natural Science Foundation of China(Grant No.39870240 and No. 30270383).The sonodynamical effect was investigated on EAC cells exposed to the combination of 20μmol/L PPIX and Hp and focused ultrasound at the frequency of 1.34 MHZ,and the present results can be explained as follows:
     1.When observed under SEM,untreated cells showed a typical surface morphology,with numerous randomly distributed microvilli.The number of microvilli on cells in ultrasound alone group decreased with time.After 2 h of incubation,the surface of many cells became relatively smooth with no obvious microvilli,several small craters were also seen at 4 h.In the synergistic treatment groups,the extent of cell damage increased in a time dependent manner.In both Uh and Up groups,the number of microvilli remarkably decreased at 2 h after treatment and had apparent deformation 4 h later.Cells in Up group with some irregular blebs were seen in the surface where the cytoplasm seemed to have extruded through the membrane boundary.Hp and Pp groups had only a slight effect on the surface of the cells until 4 h post-treatment and had no obvious difference with CT group.
     2.The ultrasonically induced F-actin damage increased rapidly with ultrasound intensity and the sensistizer concentration increased.The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry.The fluorescence intensity of F-actin decreased in ultrasound treated group cells.The fluorescence intensity of F-actin in Hp-SDT and Pp-SDT decreased as time prolonged.
     3.The fluorescence study revealed restructuring of microtubule and intermediate filament networks represented byβ- tubulin and vimentin elements.MT and VF polymerization state in Hp and Pp groups cells had no obvious changes as time passed.In Us alone group,cells MT and VF fluorescence intensity partially decreased as time prolonged.Changes of MT and VF were more obvious in Uh and Up groups.Immediately after the treatment,cells MT and VF became diffuse, and the fluorescence intensity of MT and VF decreased.Severe alterations in morphology and distribution of MT and VF could be detected in most Up group ceils 4h later,which exhibited alterations of the plasma membrane,and numerous blebs reacted positively toβ-tubulin and vimentin antibodies could be seen on the surface of cells.
     4.The IOD value of nuclear lamina proteins- LaminB was examined by the method of the immunocytochemistry which indicated that the IOD value remained no visible difference among control groups,Hp and Pp groups.In ultrasound alone group,the IOD value of LaminB proteins decreased at 4 h after the sonication.The IOD value of LaminB proteins signifficantly decreased in both Uh and Up groups as time prolonged,which was more obvious in Up groups.
     5.Hoechst 33258 staining was used to detect the apoptosis of EAC cells after SDT treatment. The control cells were uniformly blue,and had no visible nuclei changes with time.Hp and Pp groups had no obvious difference with CT group.The apoptotic cells were blue and contain bright blue dots in their nuclei,representing the nuclear fragmentation in both Uh and Up groups as time prolonged.
     In this paper,we study the sonodynamic effect of SDT on the cytoskeleton of EAC cells to find out the biology effect of SDT.
引文
[1]K.Ogawa,K.Tacbibana,T.Uchida,et al.High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound.J.The Clinical Electron Microscopy Society of Japan.2001,34(4):249-253.
    [2]王鸿章.声学及医学超声应用:生物医学声学[M].上海:上海交通大学出版社,1991:6.
    [3]冯若,李化茂.超声空化与超声医学[J].应用声学,2000,19(1):35-38.
    [4]W.D.Brienjr.Ultrasound:Its Applications in Medicine and Biology[M].New York,1978:343-391.
    [5]M.D.Bethesda.Biological effects of ultrasound:mechanism and clinical implica- tions[C].National Council on Radiation Protection and Measurement.1983:74.
    [6]M.D.Bethesda.Exposure Criteria for Medical Diagnostic Ultrasound:Criteria Based on Thermal Mechanisms[C].National Council on Radiation Protection and Measurements.1992:113.
    [7]M.D.Bethesda.Exposure Criteria for Medical Diagnostic Ultrasound Ⅱ:Criteria Based on all Known Mechanism[C].National Council on Radiation Protection and Measurements.2002:140.
    [8]T.C.Robinson,P.P.Lele.An analysis of lesion development in the brain and in plastics by high intensity focused ultrasound at low megahertz frequencies.J.Acoust SocAm.1972,51(4):1333-13351.
    [9]R.M.Lerner,E.L.Carstensen,F.Dunn.Frequency dependence of thresholds for ultrasonic production of thermal lesions in tissue.J.Acoust Soc Am,1973,54(2):504-506.
    [10]J.Lubbers,R.T.Hekkenberg,R.A.Bezemer.Time to threshold(TT),a safety parameter for heating by diagnostic ultrasound.J.Ultrasound Med Biol.2003,29(5):755 -764.
    [11]林伸茂.声化学发展概况[J].应用声学,1993,12(1):1.
    [12]冯若.超声空化与超声治疗[J].自然杂志,2003,25(6):311-314.
    [13]W.L.Nyborg,T.G.Leighton,P.D.Mille,et al.Ultrasound.Nonthermal issues:cavitation its nature,detection and measurement.J.Ultrasound in Med Biol.1998,24(1):11-21.
    [14]K.S.Suslick.Sonochemistry and sonoluminescence in encyclopedia of Physical Science and Technology[M].Academic Press,2001:363-376.
    [15]L.Rosenthal,J.Z.Sostaric,P.Piesz.Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound.J.Ultrason.Sonochem.2004,11(6):349-363.
    [16]K.Umemura,N.Yumita.Sonodynamically induced antitumor effect of pheophorbide a.J.Cancer letters.1996,102(1-2):151-157
    [17]K.Umemura,N.Yumita,R.Nishigaki,et al.Sonodynamically induced antitumor effect of pheophorbide.J.Cancer Lett.1996,102(122):1512157.
    [18]N.Yumita,S.Umemura,R.Nishigaki.Ultrasonically induced cell damage enhanced by photofrin Ⅱ:mechanism ofsonodynamic activation.J.In Vivo,2000,14(3):425-429.
    [19]N.Yumita,I.Sakata,S.Nakajima,et al.Ultrasonically induced cell damage and active oxygen generation by 4-formy loximeetylidene-3-hydroxyl-2-vinyl-deuteri-o-porphynyl(Ⅸ)-6-7-diaspartic acid:on the mechanism of sonodynamic activation.J.Biochim Biophys Acta.2003,1620(123):179-184.
    [20]于廷和,蔡汉钟,伍烽等,低频超声增强阿霉素对卵巢癌细胞毒作用研究[J],中华物理医学与康复杂志,2001,23(1):26-28.
    [21]K.Tachibana,T.Uchida,K.Tamura,et al.Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells.J.Cancer Letters.2000,149(1-2):189-194.
    [22]N.Yumita,S.Umemura,M.Kaneuchi,et al,Sonodynamically-induced cell damage with fluorinated anthracycline derivative,FAD 104.J.Cancer Letters.1998,125(1-2):209-214.
    [23]D.B.Tata,J.Biglow,W.Junru,et al.Ultrasound-enhanced hydroxyl radical production from two clinically employed anti-cancer drugs,adriamycin and mitomycin C.J.Ultrasonics Sonochemistry.1996,3(1):39-45.
    [24]M.V.Pilepich,K.G.Jones,B.N.Emami,et al.Interaction of bleomycin and hyperthermia--results of a clinical pilot study,Int J Radiat Oncol Biol Plays.1989,16(1):211-213.
    [25]P.Sur,P.Ghosh,S.P.Bag,et al.On the inhibitory activities of a new boron compound and ultrasound against the mouse ascites turnout.J.Chemotherapy.1999,45(1):360-369.
    [26]M.M.Mohamed,M.A.Mohamed,N.M.Fikry.Enhancement of antitumor effects of 5-fluorouracil combined with ultrasound on Ehrlich ascites tumor in vivo.J.Ultrasound Med Biol.2003,29(11):1635-1643.
    [27]N.Yumita,S.Umemura.Sonodynalnic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour.J.Pharm.Pharmacol.2004,56(1):85-90.
    [28]N.Yumita,K.Kawabata,K.Sasaki,et al.Sonodynamic effect of erythrosin B on sarcoma 180cells in vitro.J.Ultrason Sonochem.2002.9(5):259-269.
    [29]S.Umemura,N.Yumita,K.Umemura,et al.Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells.J.Cancer Chemother Pharmacol.1999,43(5):389-393.
    [30]N.Sakusabe,K.Okada,K.Sato,et al.Enhanced sonodynamic antitumor effect of ultrosound in the presence of nonsteroidal anflammatory drugs.J.JPN J Cancer Res.,1999,90:1146-1151.
    [31]M.Wesley,Sharman,M.Cynthia,et al.Phtodynamic therapeutics:basic principles and clinical application.J.DDT.1999,4(11):507-517.
    [32]许德余.肿瘤光动力学疗法[M],第一版,北京:中国医约科技出版社,1996.
    [33]石焕文,尚志远.超声声动力学激活血卟啉抗肿瘤效应研究的新进展[J].物理,2001,30(10):602-605.
    [34]N.Yumita,R.Nishigaki,K.Umemura,et al.Hematoporphyrin as a sensitizer of cell damage effect of ultrasound.Japanese Journal of Cancer Research.1989,80(3):219-222.
    [35]N.Yumita,R.Nishigaki,K.Umemura,et al.Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180.Japanese Journal of Cancer Research.1990,81(3):304-308.
    [36]林善良,王荣先,李关佳.光动力治疗药物研究进展[J].国外医学.放射医学核医学分册.1999,23(3):124-127.
    [37]E.D.Steinberg,D.Dolphin.Second generation photodynamic agents:a review.J.Clin Laser Med Surg.1993,11(5):233-241.
    [38]马金石.卟啉类第二代光敏剂的发展.感光科学与光化学.2002,20(2):131-148.
    [39]H.Abe,M.Kuroki,K.Tachibana,et al.Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen.J.Anticancer Res.2002,22(3):1575-1580.
    [40]A.A.Rosenkranz,D.A.Jans,A.S.Sobolev,et al.Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency,Immunol Cell Biol.2000,78(4):452-464.
    [41]J.Moan,K.Berg.photochemotherapy of cancer:experimental research.Photochem Photobiol.1992,55(6):931-948.
    [42]朱菁,徐键.小剂量血卟啉OMA系统荧光诊断肿瘤[J].中国激光,2000,27(6):572-575.
    [43]张阳德,王绍闯.卟啉与肿瘤.中国医学工程,2004,12(3):102-105.
    [44]王琳.血卟啉衍生物肿瘤内注射的分布及毒性实验[J].中国激光医学杂志,1996,5(3):163-165.
    [45]靖士侠.12HPD在小鼠体内的吸收、分布和排泄[J].中国激光医学杂志,1994,3(5):263-268.
    [46]冯若,李化茂.声化学及其应用.合肥:安徽科技出版社,1992.
    [47]J.D.Mose.Photodynamic Tumor Therapy 2nd and 3rd generation photosensitizer[M].New Delhi Harwood academic publisher.1998:103-107.
    [48]M.Ochsner.Photodynamic therapy:the clinical perspective.Review on applications for control of diverse tumors and non-tumorous disease.J.Arzneimittelforschung.1997,47(11):1185-1194.
    [49]S.Banerjee,T.Das,G.Samuel,et al.A novel[186/188Re]-labelled porphyrin for targeted radiotherapy.J.Nucl Med Commun.2001,22(10):1101-1107.
    [50]S.Umemura,N.Yumita,R.Nishigaki,et al.Sonochemical activation of hematoporphyrin:a potential modility for cancer treatment[C].Proc of IEEE Ultrasonic Symp.1989,955-960.
    [51]王静,王忠刚,许川山.声动力疗法医学应用及其生物学效应[J].中国医学影像技术,2006,22(12):1918-1922.
    [52]延玺,吴福丽,鲁礼林,等卟啉介导抗癌约物研究[J].化学学报,2003,61(5):721-723.
    [53]K.Umemura,R.Nishigaki,N.Yumita,et al.Increase in the generation of superoxide radicals and in the inhibitory effect on Yoshida Sarcoma of anthracycline antitumor agents by ultrasound.J.Nippon Gan Chiryo Gakkai Shin.1989,24(1):63-68.
    [54]S.Umemura,N.Yumita,R.Nishigaki,et al.Mechanism of cell damage by ultrasound in combination with hematoporphyrin.Jpn J Cancer Res.1990,81(9):962-966.
    [55]张伊力,马玉英.超声声动力学疗法抗癌的初步研究[J].生物医学工程学杂志,1992,994):389-393.
    [56]刘全宏,王仲会,任耀辉,等.超声激活血卟啉杀伤S180肉瘤细胞研究初报[J].科学通报,1994,39(10):936-936.
    [57]Q.H.Liu,S.H.Sun,Y.P.Xiao,et al.Study of cell killing on S180 by different intensity ultrasound activate hematoporphyrin derivatives.J.Science in China(Series C).2002,32(5):454-462.
    [58]伊兰茹,张春丽.超声血卟啉治疗肝癌的护理[J].武警医学院学报,2002,11(2):661-662.
    [59]Q.H.Liu,S.H.Sun,Y.P.Xiao,et al.Study of cell killing on S180 by different intensity ultrasound activate hematoporphyrin derivatives.J.Science in China(Series).2003,46(3):253-262.
    [60]刘全宏,刘淑媛,齐浩,等.声化学诱导艾氏腹水瘤细胞凋亡机制初探[J].动物学报,2005,51(6):1073-1079.
    [61]车艳辞,傅庆诏,张国秀,等.声动力效应抑制卵巢癌细胞的体外实验[J].中华超声影响学杂志,2005,14(6):467-571.
    [62]张过江,张志义等,生物化学与生物物理学报.1993,25(5):493-499.
    [63]S.Umemura,K.Kawabata,K.Sasaki,et al.Recent advances in sonodynamic approach to cancer therapy.Ultrasonics Sonochemistry.1996,3(3):187-191.
    [64]K.Tabata,S.Ogura,I.Okura.Photodynamic efficiency of ProtoporphyrinⅨ:comparison of endogenous protoporphyrinⅨ induced by 5-Aminolevulinic Acid and exdogenous porphyrinⅨ.Photocbem Photobiol.1997,66(6):842-846.
    [65]M.Kinoshita,K.Hynynen.Mechanism of Porphyrin-Induced Sonodynamic Effect:Possible Role of Hyperthermia.J.Radiat Res.2006,165(3):299-306.
    [66]N.Miyoshi,V.Misik,et al.Sonodynamic toxicity of gallium - porphyrin analogue ATX-70 in human leukemia cells.J.Radiat Res.1997,148(1):43-47.
    [67]Q.H.Liu,X.B.Wang,P.Wang,et al.Sonodynamic effects of protoporphyrin Ⅸ disodium salt on isolated sarcoma 180 cells.J.Ultrasonics.2006,45(1-4):56-60.
    [68]N.Yumita,R.Nishigaki,K.Umemura,et al.Sonochemical activation of hematoporphyrin:an ESR study.J.Radiation Research.1994,138(2):171-176.
    [69]N.Miyoshi,T.Igarashi,P.Riesz.Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions of Hematoporphyrin and rose bengal:The mechanism of sonodynamic therapy.J.Ultrasonics Sonochemistry.2000,7(3):121-124.
    [70]V.Misik,P.Riesz.Peroxyl radical formation in aqueous solutions of N,N-dimethlylformamide,N-methylformamide,and dimethylsulfoxide by ultrasound:implications for sonosensitized cell killing[J].Free Radical Biology and Medicine.1996,20(1):129-138.
    [71]P.Riesz,T.Kondo,A.J.Carmichael.Free radical formation induced by ultrasound and its biological implications.J.Free Radic Biol Meal,1992,13(3):247-270.
    [72]K.S.Suslick,S.J.Doktycz,E.B.Flint,et al.On the origin of sonoluminescence and sonochemistry.J.Ultrasonics.1990,28(5):280-290.
    [73]T.Kondo,T.Kodaira,E.Kano.Free radical formation induced by ultrasound and its effects on strand breakss in DNA of cultred FM3A cells.J.Free Radic Res Commun.1993,19(1):193-200.
    [74]A.E.Worthington,J.Thompson,A.M.Rauth,et al.Mechanism of ultrasound enhanced porphyrin cytotoxicity.Part Ⅰ:a search for free radical effects.J.Ultrasound Med Biol.1997,23(7):1095- 1105.
    [75]刘全宏,张坤,张凤月,等.超声激活血卟啉对SW-480癌细胞的杀伤作用[J.西北大学学报(自然科学版),2003,33(1):94-99.
    [76]刘全宏,孙世惠,肖娅萍,等.超声激活血卟啉对S180细胞杀伤作用及形态学研究[J].中国科学(C辑),32f5):454-464.
    [77]李萌,刘全宏,齐浩,等.超声激活血卟啉杀伤癌细胞扫描电镜观察[J].西北大学学报(自然科学版),2003,33(2):223-228.
    [78]刘全宏,王攀,李萌,等.声化学激活血卟啉诱导艾氏腹水肿瘤细胞凋亡[J].动物学报,2003,45(9):620-628.
    [79]J.P.Medema,C.Scaffidi,F.C.Kischkel,et al.FLICE is activated byass ociation with the CD95death-inducing signaling complex(DISC).J.EMBO.1997,16(10):2794-2804.
    [80]D.R.Green,J.C.Reed.Mitochondria and apoptosis.J.Science.1998,281(5381):1309-1312.
    [81]L.B.Feril,Y.Tsuda,T.Kondo,et al.Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2-azobis(2-amidinopropane) dihydrochloride.J.Cancer Sci.2004,95(2):181-185.
    [82]L.Lagneaux,E.C.de Meulenaer,A.Delforge,et al.Ultrasonic low-energy treatment:a novel approach to induce apoptosis in human lerkemic cells.J.Exp Hematol.2002,30(11):1293-1310.
    [83]岳武,宋入勇,孔令秀,等.体外超声激活血卟啉单甲醚抗C6胶质瘤细胞的研究[J].中国激光医学杂忠,2006,15(6):278-282.
    [84]W.Tang,Q.Liu,X.Wang,et al.Involvement of Caspase-8 in apoptosis induced by ultrasound-activated hematoporphyrin in sarcoma 180 cells in vitro.J.Ultrasound Med.2008,27(4):645-656.
    [85]M.Gunnar,M.Johan.Synergistic and tumor selective effects of chemotherapy and ultrasound treatmen.J.Cancer Letter.2006,232(2):206-213.
    [86]Z.H.Jin,N.Miyoshi,K.ishiguro,et al.Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice.J.Dermatol.2000,27(5):294-306.
    [87]T.Suzuki,S.Kamada,Y.Yoshida,et al.A study of sonodynamic therapy antitumor effect on novel sonodynamic compounds under ultrasound.J.Heterocycles.1994,38:1209-1211.
    [88]A.Juarranz,J.Espada,J.C.Stockert,et al.Photodamage induced by Zinc(Ⅱ)-phthalocyanine to microtubules,actin,alpha-actinin and keratin of HeLa cells.Photochem Photobiol.2001,73(3):283-289.
    [89]A.Uzdensky,E.Kolpakova,A.Juzeniene,et al.The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells.Biochim Biophys Acta.2005,1722(1):43-50.
    [90]M.Pluskalová,G.Peslová,D.Grebenová,et al.Photodynamic treatment(ALA-PDT)suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells.J.Photochem Photobiol B.2006,83(3):205-212.
    [91]李妍妍.超声与细胞增殖的体外抑制作用[J].国外医学.生理.病理科学与临床分册,2002, 22(1),61-63.
    [92]T.Yu,X.Huang,K.Hu,et al.Mechanisms of reversal of adriamycin resistance in human ovarian carcinoma cell line by ultrasound.Int J Gynecol Cancer.2004,14(1):76-81.
    [93]K.Tachibana,T.Uchida,K.Tamura,et al.Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells.J.Cancer Lett.2000,149(1-2):189-194.
    [94]A.H.Saad,G.M.Hahn.Ultrasound-enhanced effects of adriamycin against routine tumors.J.Ultrasound Med Biol.1992,18(8):715-723.
    [95]K.Ogawa,K.Tachibana,T.Uchida,et al.High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound.J.Medical Electron Microscopy.2001,34(4):249-253.
    [96]J.C.Mills,N.L.Stone,J.Erhardt,R.N.Pittman.Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation.J.Cell Biol.1998,140(3):627-636.
    [97]K.Berg,J.Moan,J.C.Bommer,J.W.Winkelman.Cellular inhibition of microtubule assembly by photoactivated sulphonated meso-tetraphenylporphynes.Int.J.Radiat.Biol.1990,58(3):475-487.
    [98]A.Villanueva,M.Canete,S.Nonell,J.l.Borrell,J.Teixidó,A.Juarranz.Photodamaging effect of tetraphenylporphycene in a human carcinoma cell line.Anticancer Drug Des.1996,11(2):89-99.
    [99]M.G.Levee,M.I.Dabrowska,J.L.Lelli,D.B.Hinshaw.Actin polymerization and depolymerization during apoptosis in HL-60 cells.Am J Physiol.1996,271(6 Pt 1):C1981-1992.
    [100]S.M.Laster,J.M.Jr.Mackenzie.Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis.Microsc Res Tech 1996,34(3):272-280.
    [101]C.C.Cunningham.Actin polymerization and intracellular solvent flow in cell surface blebbing.J.Cell Biol.1995,129(6):1589-1599.
    [102]M.Pluskalová,G.Peslová,D.Grebenová,P.Halada,Z.Hrkal.Photodynamic treatment (ALA-PDT) suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells.J Photochem Photobiol B.2006,83(3):205-12.
    [103]E,J.Clarke,V.Allan.Intermediate filaments:vimentin moves in.J.Curt.Biol.2002,12(17):596-598.
    [104]M.Yoon,R.D.Moir,V.Prahlad,et al.Motile properties of vimentin intermediate filament networks in living cells.J.Cell Biol.1998,143(1):147-157.
    [105]K.Muller,S.Dulku,S.J.Hardwick,et al.Changes in vimentin inhuman macrophages during apoptosis induced by oxidized lowdensity lipoprotein.J.Atherosclerosis.2001,156(1):133-144.
    [106]I.Belichenko,N.Morishima,D.Separovic.Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells.J.Arch Biochem.Biophys.2001,390(1):57-63.
    [107]M.Van Engeland,H.J.Kuijpers,F.C.Ramaekers,et al.Plasma membrane alterations and cytoskeletal changes in apoptosis.J.Exp Cell Res.1997,235(2):421-430.
    [108]J.L.Martys,C.L.Ho,R.K.Liem,et al.Intermediate filaments in motion:observations of intermediate filaments in cells using green fluorescent protein-vimentin.J.Mol.Biol.Cell.1999,10(5):1289-1295.
    [109]王玉芝.免疫系统的辐射损伤效应及修复.放射生物学,北京:军事医学科学出版社,1998,476-477.
    [110]陈晓梅,郭玉华,殷志伟,等.60Co γ射线对人外周血.单核细胞骨架系统影响的整装电镜观察[J].中华放射医学与防护杂志.1992,12:1582-1611.
    [111]冉海涛,任红,王志刚.超声空化效应对体外培养细胞细胞膜作用的实验研究[J].中华超声影像学杂志,2003,12(8):499-501.
    [112]G.H.Catherine,W.Klaus,O.Mary.Cleavage of the Nuclear Matrix Protein NuMA during Apoptosis Exp.Cell Res.1997,233(1):21-24.
    [113]N.Neamati A.Fernandez,S.Wright,et al.Degradation of lamina B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei.J.Immunol.1995,154(8):3788-3795
    [114]S.D.Georgatos,G.Blobel.Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes:a basis for a vectorial assembly of intermediate filaments.J.Cell.Biol.1987,105(1):105-115.
    [115]Y.Yamazaki,M.Tsuruga,D.Zhou,Y.Fujita,X.Shang,Y.Dang,K.Kawasaki,S.Oka.Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis.Exp Cell Res.2000,259(1):64-78.
    [116]I.R.Boldogh,L.A.Pon.Interactions of mitochondria with the actin cytoskeleton.Biochim Biophys Acta.2006,1763(5-6):450-462,