微波热效应对米淀粉结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微波为热源加工淀粉质食品或复热主食符合新型物理场技术发展的趋势,淀粉的结构、组成和聚集形态非常复杂,目前,针对淀粉质物料及其食品在微波场下响应行为的研究多停留在糊化应用层面。然而,微波加热的效果取决于物料的电磁性质,这方面研究的缺乏阻碍了对微波场中淀粉结构变化过程的认知,无法客观评价微波加热的安全性,限制了微波技术在淀粉质食品领域的应用。本文选取性状稳定的大米淀粉为研究对象,基于微波加热过程的作用机理,首先考察大米淀粉的基本电磁特性,确定物料在微波场下的损耗机制,建立和评价可对照的加热模型,研究微波对大米淀粉介电性质及吸波性能的影响,在此基础上,系统考察微波对淀粉各级结构、形态、热物性和水分布的影响,明确微波对淀粉质物料作用的主要机制,并开展大米淀粉质食品微波复热过程的温度分布规律以及传热模型的研究。论文的主要研究内容包括:
     (1)大米淀粉的制备及其电磁响应特性的研究
     以基本成分、糊化特性、颗粒形态和粒度分布为指标,比较碱法、碱性蛋白酶法和中性蛋白酶法对大米淀粉提取效果的影响,确定最优制备工艺,并对其开展电性能和磁性能的测试和表征,确立损耗类型,考察其水相体系的吸波性能。研究发现:中性蛋白酶法对淀粉颗粒有较小的破坏作用;干燥状态下,原淀粉和完全糊化淀粉的复介电常数实部(ε′)为2.7±0.1,虚部(ε″)处于0~0.2范围内,介电损耗角正切值(tanδε)均小于0.1,属于较弱的微波吸收材料;复磁导率的实部(μ′)为1.00±0.10,虚部(μ″)和磁损耗角正切值(tanδμ)均为0.19±0.02,表现为极弱的磁感应;传输线理论适用于液态混合物料的吸波特性的测试,试验结果与介质体系中电磁波波长的共振模型相匹配;淀粉乳的ε′随淀粉浓度的升高而下降,并呈现一维线性关系;ε″随其浓度的升高变化较小;2.45GHz频率下,原淀粉浓度从1%增加至30%,反射损耗从-5.1dB降至-1.2dB,电磁波吸收率从69.1%降至24.1%;原淀粉显著干预水在混合体系中的微波吸收作用,糊化后的淀粉对混合体系的微波吸收特性影响较小,预糊化淀粉乳的吸波特性由水主导。
     (2)微波加热对大米淀粉介电及吸波性能的影响
     基于微波加热与传导加热过程的升温规律,以快速传导加热为基准,建立与之匹配的微波加热模型,并以传统慢速加热为对照。研究微波加热过程对淀粉介电性质的影响,探讨基于体系复介电常数的Debye极化机制的干预,探讨体系吸波行为的消长。研究发现:微波加热促进淀粉乳在低温条件下产生重排,使体系表现出较为稳定的介电响应;微波加热后的样品表现出较为突出的介电特性,在45~65℃加热区间,ε′、ε″和tanδε值均高于快速和慢速传导方法;微波加热对淀粉乳的Cole-Cole简化曲线产生显著影响,表现为2.45±0.05GHz区间曲线规律显著区别于其它两种方法;微波加热改变了淀粉乳原有的极化规律,促使样品在±0.01GHz范围内,以2.45GHz为中心呈现明显转折,产生了双重极化现象;微波加热使淀粉乳的吸波性能在糊化温度以前呈现小幅降低,80℃后与传导加热趋于一致;虽然微波在低温过程就改变了物料在2.45GHz频率附近的极化特性,使物料的极化过程增加,但处理后物料的宏观微波吸收性能并未增强,与之相反,伴随升温过程表现出一定的阻碍效应。
     (3)微波加热对大米淀粉结构特性的影响
     采用傅里叶变换红外光谱(FTIR)、激光共聚焦显微拉曼光谱(FT Raman)、碳谱魔角旋转核磁共振(13C CP/MAS NMR)、广角X射线衍射(XRD)、小角X射线散射(SAXS)等技术,逐级研究微波加热对大米淀粉的分子结构、相对结晶度以及半结晶生长环层状结构等的影响。FTIR显示,微波加热不会在淀粉中形成新的化学键及化学基团,无序和有序结构的振动强度变化规律略有影响;FT Raman显示,微波对快速升温过程中骨架上C-H基团振动在糊化温度附近的增加起到抑制作用,微波加热对淀粉分子中如糖苷键、吡喃环等其他的骨架模式和C-O、C-O-H等其他骨架基团的振动强度没有明显影响;13C CP/MAS NMR显示,微波的快速加热效应是淀粉颗粒内的无定形态、双螺旋结构及V型单螺旋结构含量差异性的决定因素,微波对淀粉颗粒内部有序结构的影响不显著;XRD显示,微波的快速加热效应导致淀粉在低于糊化温度的范围结晶度降低;SAXS显示,微波的快速加热效应促使支链淀粉分子的双螺旋结构更加有序紧密地排列在结晶层,无定形层受到压缩;非热效应引起层状结构的不规律交替,并且对其快速升温界面层的破坏作用产生阻碍,高于60℃时,微波的非热效应则加速淀粉半结晶生长环层状结构的破坏。
     (4)微波加热对大米淀粉形态、热物性及水状态的影响
     采用粒径分布、偏光显微镜、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)、热重分析仪(TG)、低场核磁共振仪(1H NMR)等手段,研究微波加热对大米淀粉偏光十字及颗粒形态的破坏,考察对淀粉活化能和热焓值的影响,采用IR和CPMG脉冲序列和反演得到的T1和T2探索对淀粉颗粒内部水分分布及动态的干预。研究发现:微波的快速加热效应是淀粉偏光十字消失及颗粒形态改变的主要原因,微波不会促使淀粉出现偏光十字消失与颗粒膨胀的异步性,不会影响支链淀粉的放射状组织结构产生的影像学效应;微波的快速加热效应促使活化能在50℃出现明显峰值,使热焓值
     随着温度的升高呈现先升高再降低的趋势,较慢速加热处理显著不同,表明微波对糊化前淀粉热稳定性的影响主要取决于微波的快速升温作用;微波加热对淀粉颗粒内部水分分布及动态过程产生影响,快速加热效应抑制了淀粉分子之间和淀粉与水之间氢键的破坏作用,而微波的非热效应则加速了氢键的破坏。
     (5)大米淀粉质食品微波复热温度分布规律以及传热模型的研究
     开展米饭成分以及与微波加热有关的物性参数和介电特性的研究,以圆柱型物料为考察形态,探讨样品自身特征对微波复热过程温度分布规律的影响,通过对加热均匀性进行分析,选取最优的米饭尺寸,并根据能量守衡定律、傅里叶方程等传热理论构建圆柱型米饭微波复热的传热模型,采用朗伯定律计算微波吸收功率,结合符合米饭特性的初值和边界条件,根据数值算法有限差分法(FDM)处理数学模型,运用计算机软件MATLAB进行编程,实现数值预测米饭微波加热过程中的温度分布规律。研究发现:温度对米饭的比热和介电损耗影响显著,对导热系数和介电常数影响较小;用温度的二次多项式可以很好的反映米饭介电损耗的变化规律(R2=0.9785),导热系数在温度4~80℃时可取平均值0.760W/(m·℃);在相同温度下,频率为0.915GHz时米饭的介电常数大于频率为2.45GHz时的介电常数,介电损耗因数则相反;圆柱形米饭温度分布规律揭示:样品在轴向上温度对称分布且随高度/直径比的增大出现边角和表面加热趋势;高度直径比(L/D)对样品内部温度分布规律影响显著;采用基于标准偏差的温度变化系数(COV)作为温度均匀性的评价方法,得到L/D和半径对于COV的变化关系,确定了微波加热均匀性最好的圆柱型米饭(半径4cm,高度4cm);预测模型的拟合度较高(R2在0.996和0.999之间)。
     微波对淀粉及淀粉乳产生的影响贯穿于整个处理过程;微波的非热效应仅限于对淀粉的分子极化机制、骨架间紧密度和层状结构水分分布等微观层面产生干预;微波的快速加热效应是决定淀粉宏观物理化学特性显著差异的主要因素;淀粉质食品的微波加热过程可根据物料的热物性和介电特征进行模型描述。
The application of microwave for heat processing or reheating of starchy food fits the current trend ofthe development of new technology of physical field. As a carbohydrate polymer, the structure,composition, and morphology of starch are very complex. Up to now the research on starchy materials andfoods in the microwave field mainly focus on the behavior related to gelatinization and its application, andthe lack of research on the influence of electromagnetic properties on the microwave heating effectfundamentally hinder the cognition of the structural change of starch in the microwave field, fail to makeobjective safety evaluation, and limit the development of microwave technology in the field of starchy food.In this study we selected stable rice starch as the object, examined the fundamental electromagneticproperties of the rice starch based on the mechanism of the microwave heating process, determined the lossmechanism of the material in the microwave field, established and evaluated the control heating model,investigated the effect of microwave on dielectric properties and absorbing properties of rice starch.Moreover, we investigated the effect of microwave on the structure, morphology, thermal properties andwater distribution of starch at all levels, elucidated the major mechanism of microwave on starchy material,and conducted research on the temperature distribution and heat transfer model of rice starchy foods duringthe microwave reheating process. The major results of the current study are as follows:
     (1)Preparation of rice starch and electromagnetic response characteristics
     With the basic components, pasting properties, particle morphology and particle size distribution asindicators, the effect of alkaline, alcalase and neutrase on the extraction of rice starch was investigated todetermine the optimal preparation process, and the electrical properties and the magnetic properties wereexamined to establish the loss type and inspect the absorbing properties of the water system. The resultsshowed that neutrase had minor influence on the starch granule. In the dry state, for the complexpermittivity of both the native and completely gelatinized starch, ε′was2.7±0.1, and ε″lied in the range of0~0.2, with tanδε below0.1, indicating that starch is a weak absorbing material in microwave. For thecomplex permeability, μ′was1.00±0.10,and μ″and tanδμ were both0.19±0.02,showing weak magneticinduction. Transmission line theory is suitable for the examination of absorbing characteristics of complexliquid materials, and the results matched the resonance model of the electromagnetic wavelength. The ε′ofthe starch emulsion decreased with the increase of the concentration with linear relationship, and ε″showedlittle change with the increase of the concentration. Under2.45GHz, when the concentration of the nativestarch increased from1%to30%, the reflection loss decreased from-5.1dB to-1.2dB,and theelectromagnetic absorbability decreased from69.1%to24.1%. Native starch significantly interfere withthe microwave absorbing characteristics of water in the mixed system, and the gelatinized starch showedlittle influence on the microwave absorbing characteristics, whereas water dominated the microwaveabsorbing characteristics of the pre-gelatinized starch system.
     (2)Effect of microwave heating on the dielectric and absorbing properties of rice starch
     Based on the heating law of the microwave and the conduction heating, the microwave heating modelwas established with the slow heating conduction as the control. The effect of the microwave heatingprocess on starch, the intervention based on the Debye polarization mechanism of the complex permittivityof the system, and the absorbing behavior of the system were investigated. The results showed thatmicrowave heating promoted the rearrangement of the starch emulsion under the low temperatureconditions, so that the system exhibited a relatively stable dielectric response. After microwave heating thesamples showed prominent dielectric characteristics, and ε ', ε "and tanδε values were higher than those atthe rapid and slow conduction methods in the heating range of45~65℃. Microwave heating processshowed significant influence on the simplified Cole-Cole plot curves of starch emulsion with a significantvariation of the curves from those of the other two methods at2.45±0.05GHz. The microwave heatedsample changed the original polarization law at2.45GHz±0.01GHz, and showed a dual polarizationphenomenon. Microwave processing of starch showed a slight decrease in the absorbing performancebefore gelatinization temperature, which was in line with the conduction heating process afterwards.Although microwave processing at low temperature changed the polarization characteristics of the materialin the vicinity of the frequency of2.45GHz, after processing the microwave absorption characteristics ofthe material were not enhanced.
     (3)Effect of microwave heating on structural characteristics of rice starch
     The FTIR, InVia Reflex Raman microscope sys-tem,13C CP/MAS NMR, wide-angle and smallangle X-ray diffraction techniques were applied to investigate the effect of microwave heating process onthe molecular structure such as molecule structure, the relative degree of crystallinity, the ordered structureand disordered structure contents of rice starch. The FTIR results showed that microwave heating does notproduce new chemical bonds and the chemical group in starch, and the vibration energy of the disorderedand ordered structure slight changed, indicating the rapid heating effect was the major factor for thechanges in the chemical bonds in starch under microwave. The Raman spectroscopy showed an inhibitoryeffect of microwave on the increase in the skeleton of the CH group vibration near the gelatinization temperature during the rapid heating process, and microwave heating of starch molecules showed nosignificant effect on the vibration intensity of the glycosidic linkage, pyranose ring, and-C-O, C-O-Hgroups on the skeleton. The results of13C CP/MAS NMR showed that the rapid heating effect ofmicrowave is the major factor for the differences in the amorphous starch granules, double-helix structureand V-type single helix structure contents, and the effect of microwave on the ordered internal structure ofstarch granules was not significantly. Small angle X-ray diffraction indicated that the rapid heating effect ofthe microwave resulted in tighter arrangement of the double helix structure of the amylopectin molecules inthe crystalline layer and compression of the amorphous layer. Electromagnetic effect is obviously resultedin irregular alternation of the layered structure, and destructive effects on the rapid heating. When thetemperature was above60°C,the molecular vibration mechanism of microwave accelerated the destructionof the lamellar repeats architecture of starch. The results of the wide angle X-ray diffraction showed thatthe rapid heating effect of microwave caused the decrease of the degree of crystallinity of starch below thegelatinization temperature.
     (4) Effect of microwave heating on the morphology, thermal properties and water status of ricestarch
     The particle size distribution, polarizing microscope, SEM, TG, DSC, the1H NMR were applied tostudy the destruction of birefringence and granule morphology of rice starch by microwave, and theinfluence on the activation energy and enthalpy. The IR and CPMG results indicated that the rapid heatingeffect is the main reason for the disappearance of birefringence and change in granule morphology, andmicrowave did not procure the asynchronous nature of the disappearance of birefringence and change ingranule morphology, and did not affect the imaging effect of the radial arrangement of amylopectin chains.The rapid heating effect of the microwave prompted the apparent peak of activation energy at50℃, andthe rapid heating effect of the microwave resulted in the enthalpy value first increased and then decreasedwith the increases of the temperature, different from the slow heating treatment, indicating that the effect ofmicrowave on thermal stability of the pre-gelatinized starch mainly depended on the rapid heating effect ofthe microwave. Microwave heating affected the internal water distribution and dynamics of starch granules,and the rapid heating effects limited the damaging effects of hydrogen bonds between starch molecules andstarch with water. However the molecular vibration mechanism of microwave accelerated the destructionof the hydrogen bonds, and the vibration mechanism showed stronger effect then the rapid heating effect.
     (5)Temperature distribution and heat transfer model of rice starchy food under microwave reheating
     The physical parameters and dielectric properties of rice components under microwave heating wasinspected with cylindrical material, and the influence of the sample features on the temperature distributionin the microwave reheating process was investigated through the heating uniformity analysis. The optimalsize of the rice was selected, and the heat transfer model was built according to the law of conservation ofenergy, the Fourier equation. Lambert law was used to calculate the microwave absorption power, togetherwith the initial and boundary conditions of the rice and the finite difference method (FDM) numericalalgorithm, MATLAB was applied for the numerical prediction of the temperature distribution in rice undermicrowave heating process. The results showed that temperature showed a significant impact on thespecific heat and dielectric loss on rice, with little effect on the thermal conductivity and the dielectricconstant. Polynomials can show a good reflection on the variation of the rice dielectric loss withtemperature(R2=0.9785),and the thermal conductivity averaged at0.760W/(m℃) in the range of4~80℃.At the same temperature, the rice permittivity is greater at a frequency of0.915GHz than at the frequencyof2.45GHz, whereas the dielectric loss factor is the opposite. The temperature distribution pattern ofcylindrical rice revealed that temperature distribution of the sample in the axial direction distributedsymmetrically, showing increased corner and surface heating trend with the increase in the height/diameter ratio, and L/D had a significant impact on the internal temperature distribution of the sample.With the temperature coefficient of variation (COV) as the evaluation indicator of the temperatureuniformity of, the L/D and the radius for the COV was obtained to determine the optimal cylindrical-typerice with uniformity of microwave heating (a radius of4cm, height4cm), with high fitness of thepredictive model(R2between0.996and0.999).
     Microwave showed impact on starch and starch emulsion throughout the entire process. Themicrowave electromagnetic effects were only limited in molecule polarization mechanism, skeletontightness, and water distribution of the layered structure at the micro level intervention. Rapid microwaveheating effect was the principal factors for macro differences in physical and chemical properties of starch.The microwave heating process of starchy foods can be described based on the thermal properties and thedielectric characteristics of the material.
引文
[1] Hippel A R V. Dielectric Materials and Applications [M]. NY: Artech House Print on Demand,1954.63.
    [2] Nüchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis–a critical technologyoverview [J]. Green Chemistry,2004,6(3):128-141.
    [3] Kingston H M, Jassie L, Society A C. Introduction to microwave sample preparation: theory andpractice [M]. American Chemical Society Washington, DC,1988.
    [4] Mingos D M P, Baghurst D R. Tilden Lecture. Applications of microwave dielectric heating effects tosynthetic problems in chemistry [J]. Chemical Society Reviews,1991,20(1):1-47.
    [5] Gabriel C, Gabriel S, Grant E H, et al. Dielectric parameters relevant to microwave dielectric heating [J].Chemical Society Reviews,1998,27(3):213-224.
    [6] Hayes B L. Microwave Synthesis: Chemistry at the Speed of Light [M]. NY: Cem Corp,2002.
    [7] Herve A, Tang J, Luedecke L, et al. Dielectric properties of cottage cheese and surface treatment usingmicrowaves [J]. Journal of Food Engineering,1998,37(4):389-410.
    [8] Ragni L, Al-Shami A, Mikhaylenko G, et al. Dielectric characterization of hen eggs during storage [J].Journal of Food Engineering,2007,82(4):450-459.
    [9] Regier M, Housova J, Hoke K. Dielectric properties of mashed potatoes [J]. International Journal ofFood Properties,2001,4(3):431-439.
    [10] Sakiyan O, Sumnu G, Sahin S, et al. Investigation of Dielectric Properties of Different CakeFormulations during Microwave and Infrared–Microwave Combination Baking [J]. Journal of foodscience,2007,72(4): E205-E213.
    [11] Guo W, Trabelsi S, Nelson S, et al. Storage effects on dielectric properties of eggs from10to1800MHz [J]. Journal of food science,2007,72(5): E335-E340.
    [12] Al-Holy M, Wang Y, Tang J, et al. Dielectric properties of salmon (Oncorhynchus keta) and sturgeon(Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurizationfrequencies [J]. Journal of Food Engineering,2005,70(4):564-570.
    [13] Zhang L, Lyng J G, Brunton N P. The effect of fat, water and salt on the thermal and dielectricproperties of meat batter and its temperature following microwave or radio frequency heating [J].Journal of Food Engineering,2007,80(1):142-151.
    [14] Ahmed J, Ramaswamy H S, Raghavan V G S. Dielectric properties of Indian Basmati rice flour slurry[J]. Journal of Food Engineering,2007,80(4):1125-1133.
    [15] Ahmed J, Ramaswamy H S, Raghavan V G S. Dielectric properties of butter in the MW frequencyrange as affected by salt and temperature [J]. Journal of Food Engineering,2007,82(3):351-358.
    [16] Guo W, Tiwari G, Tang J, et al. Frequency, moisture and temperature-dependent dielectric propertiesof chickpea flour [J]. biosystems engineering,2008,101(2):217-224.
    [17] Guo W, Wang S, Tiwari G, et al. Temperature and moisture dependent dielectric properties of legumeflour associated with dielectric heating [J]. LWT-Food Science and Technology,2010,43(2):193-201.
    [18] Nelson S O, Trabelsi S. Influence of Water Content on RF and Microwave Dielectric Behavior ofFoods [J].2009.
    [19] Dev S, Raghavan G, Gariepy Y. Dielectric properties of egg components and microwave heating forin-shell pasteurization of eggs [J]. Journal of Food Engineering,2008,86(2):207-214.
    [20] Wang J, Tang J, Wang Y, et al. Dielectric properties of egg whites and whole eggs as influenced bythermal treatments [J]. LWT-Food Science and Technology,2009,42(7):1204-1212.
    [21] Basaran‐Akgul N, Basaran P, Rasco B. Effect of Temperature (5to130°C) and Fiber Direction onthe Dielectric Properties of Beef Semitendinosus at Radio Frequency and Microwave Frequencies [J].Journal of food science,2008,73(6): E243-E249.
    [22] Wang Y, Tang J, Rasco B, et al. Dielectric properties of salmon fillets as a function of temperature andcomposition [J]. Journal of Food Engineering,2008,87(2):236-246.
    [23] Wang Y, Tang J, Rasco B, et al. Using whey protein gel as a model food to study dielectric heatingproperties of salmon (Oncorhynchus gorbuscha) fillets [J]. LWT-Food Science and Technology,2009,42(6):1174-1178.
    [24]张俐,马晓愚,雷得天等.基于食用植物油介电特性的试验研究[J].东北农业大学学报,2008,39(10):108-111.
    [25]郭文川,吕俊峰,谷洪超.微波频率和温度对食用植物油介电特性的影响[J].农业机械学报,2009,40(8):124-129.
    [26]张春娥,薛文通,张泽俊等.食用植物油介电特性的研究进展[J].食品工业科技,2011,32(1):349-352.
    [27] Feher L E. Energy Efficient Microwave Systems: Materials Processing Technologies for Avionic,Mobility and Environmental Applications [M]. Springer Verlag,2009.
    [28] Ratanadecho P, Aoki K, Akahori M. A numerical and experimental investigation of the modeling ofmicrowave heating for liquid layers using a rectangular wave guide (effects of natural convection anddielectric properties)[J]. Applied Mathematical Modelling,2002,26(3):449-472.
    [29] Liu Y, Tang J, Mao Z. Analysis of bread loss factor using modified Debye equations [J]. Journal ofFood Engineering,2009,93(4):453-459.
    [30] Miura N, Yagihara S, Mashimo S. Microwave Dielectric Properties of Solid and Liquid FoodsInvestigated by Time‐domain Reflectometry [J]. Journal of food science,2003,68(4):1396-1403.
    [31]郭文川,朱新华.国外农产品及食品介电特性测量技术及应用[J].农业工程学报,2009,25(2):308-312.
    [32]马荣朝,秦文,吴维雄等.食品电物性在无损检测中的应用研究进展[J].农业工程学报,2007,23(5):278-283.
    [33] Perreux L, Loupy A. A tentative rationalization of microwave effects in organic synthesis according tothe reaction medium, and mechanistic considerations [J]. Tetrahedron,2001,57(45):9199-9223.
    [34] Kuhnert N. Microwave‐assisted reactions in organic synthesis—Are there any nonthermalmicrowave effects?[J]. Angewandte Chemie International Edition,2002,41(11):1863-1866.
    [35] Hajek M. Microwave catalysis in organic synthesis [J]. Microwaves in Organic Synthesis,2002:345-378.
    [36] Kappe C O. Controlled microwave heating in modern organic synthesis [J]. Angewandte ChemieInternational Edition,2004,43(46):6250-6284.
    [37] Bougrin K, Bennani A K, Tétouani S F, et al. An easy route to synthesize1,5-arylodiazepin-2-ones [J].Tetrahedron letters,1994,35(45):8373-8376.
    [38] Gedye R, Wei J. Rate enhancement of organic reactions by microwaves at atmospheric pressure [J].Canadian Journal of Chemistry,1998,76(5):525-532.
    [39] de la Hoz A, Díaz-Ortiz á, Moreno A. Microwaves in organic synthesis. Thermal and non-thermalmicrowave effects [J]. Chemical Society Reviews,2005,34(2):164-178.
    [40] Gedye R N. Organic Synthesis using Microwaves in Homogeneous Media [J]. Microwaves in OrganicSynthesis,2002:115-146.
    [41] Baghurst D R, Mingos D M P. Superheating effects associated with microwave dielectric heating [J].Journal of the Chemical Society, Chemical Communications,1992,(9):674-677.
    [42] Saillard R, Poux M, Berlan J, et al. Microwave heating of organic solvents: thermal effects and fieldmodelling [J]. Tetrahedron,1995,51(14):4033-4042.
    [43] Chemat F, Esveld E. Microwave Super‐Heated Boiling of Organic Liquids: Origin, Effect andApplication [J]. Chemical engineering&technology,2001,24(7):735-744.
    [44] Abtal E, Lallemant M, Bertrand G, et al. Activation des liquides polaires sous champ microonde. I:Evaporation en régime interfacial stationnaire [J]. Journal de chimie physique,1985,82(4):381-389.
    [45] Roussy G, Thiebaut J M, Colin P. Latent heat of evaporation of a microwave irradiated polar liquid [J].Thermochimica acta,1986,98:57-62.
    [46] Baardseth P, Bjerke F, Martinsen B K, et al. Vitamin C, total phenolics and antioxidative activity in tip‐cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processedby methods used in catering [J]. Journal of the Science of Food and Agriculture,2010,90(7):1245-1255.
    [47] Brewer M, Begum S. Effect of microwave power level and time on ascorbic acid content, peroxidaseactivity and color of selected vegetables [J]. Journal of food processing and preservation,2003,27(6):411-426.
    [48] Uherova R, Hozova B, Smirnov V. The effect of microwave heating on retention of some B vitamins[J]. Food chemistry,1993,46(3):293-295.
    [49] Murcia M A, Martínez‐Tomé M, Cerro I, et al. Proximate composition and vitamin E levels in eggyolk: losses by cooking in a microwave oven [J]. Journal of the Science of Food and Agriculture,1999,79(12):1550-1556.
    [50] Negi A, Boora P, Khetarpaul N. Effect of microwave cooking on the starch and protein digestibility ofsome newly released moth bean (Phaseolus aconitifolius Jacq.) cultivars [J]. Journal of foodcomposition and analysis,2001,14(5):541-546.
    [51] Sadeghi A, Shawrang P. Effects of microwave irradiation on ruminal dry matter, protein and starchdegradation characteristics of barley grain [J]. Animal Feed Science and Technology,2008,141(1):184-194.
    [52] Yoshida H, Mieno A, Takagi S, et al. Microwave Roasting Effects on Acyl Lipids in Soybeans(Glycine max. L.) at Different Moisture Contents [J]. Journal of food science,1995,60(4):801-805.
    [53] Sharma P, Gujral H S. Effect of sand roasting and microwave cooking on antioxidant activity of barley[J]. Food Research International,2011,44(1):235-240.
    [54] Song K, Milner J A. Heating garlic inhibits its ability to suppress7,12-dimethylbenz (a)anthracene-induced DNA adduct formation in rat mammary tissue [J]. The Journal of nutrition,1999,129(3):657-661.
    [55] Thongsook T, Barrett D M. Heat inactivation and reactivation of broccoli peroxidase [J]. Journal ofagricultural and food chemistry,2005,53(8):3215-3222.
    [56] Steinreiber A, Stadler A, Mayer S F, et al. High-speed microwave-promoted Mitsunobu inversions.Application toward the deracemization of sulcatol [J]. Tetrahedron letters,2001,42(36):6283-6286.
    [57] Kaiser N F K, Bremberg U, Larhed M, et al. Fast, Convenient, and Efficient Molybdenum‐CatalyzedAsymmetric Allylic Alkylation under Noninert Conditions: An Example of Microwave‐PromotedFast Chemistry [J]. Angewandte Chemie International Edition,2000,39(20):3595-3598.
    [58] Zhang X, Hayward D O, Mingos D M P. Effects of microwave dielectric heating on heterogeneouscatalysis [J]. Catalysis letters,2003,88(1):33-38.
    [59] Shibata C, Kashima T, Ohuchi K. Nonthermal influence of microwave power on chemical reactions[J]. Japanese journal of applied physics,1996,35(part1):316-319.
    [60] Jacob J, Chia L, Boey F. Thermal and non-thermal interaction of microwave radiation with materials[J]. Journal of Materials Science,1995,30(21):5321-5327.
    [61] Binner J, Hassine N, Cross T. The possible role of the pre-exponential factor in explaining theincreased reaction rates observed during the microwave synthesis of titanium carbide [J]. Journal ofMaterials Science,1995,30(21):5389-5393.
    [62] Berlan J, Giboreau P, Lefeuvre S, et al. Synthese organique sous champ microondes: premier exempled'activation specifique en phase homogene [J]. Tetrahedron letters,1991,32(21):2363-2366.
    [63] Lewis D, Summers J, Ward T, et al. Accelerated imidization reactions using microwave radiation [J].Journal of Polymer Science Part A: Polymer Chemistry,1992,30(8):1647-1653.
    [64] Loupy A, Maurel F, Sabatié-Gogová A. Improvements in Diels–Alder cycloadditions with someacetylenic compounds under solvent-free microwave-assisted conditions: experimental results andtheoretical approaches [J]. Tetrahedron,2004,60(7):1683-1691.
    [65] Stuerga D, Delmotte M. Wave–Material Interactions, Microwave Technology and Equipment [J].Microwaves in Organic Synthesis,2002:1-33.
    [66] Strauss C R. Microwave‐Assisted Reactions in Organic Synthesis—Are There Any NonthermalMicrowave Effects Response to the Highlight by N. Kuhnert [J]. Angewandte Chemie,2002,114(19):3741-3743.
    [67] Panunzio M, Campana E, Martelli G, et al. Microwave in organic synthesis: Myth or reality?[J].ChemInform,2004,35(27): no-no.
    [68] Kalhori S, Minaev B, Stone-Elander S, et al. Quantum chemical model of an SN2reaction in amicrowave field [J]. The Journal of Physical Chemistry A,2002,106(37):8516-8524.
    [69] Miklavc A. Strong acceleration of chemical reactions occurring through the effects of rotationalexcitation on collision geometry [J]. ChemPhysChem,2001,2(8‐9):552-555.
    [70] Hoz A D L, Diaz-Ortiz A, Moreno A. Selectivity in organic synthesis under microwave irradiation [J].Current Organic Chemistry,2004,8(10):903-918.
    [71]程裕东.微波加热过程中圆柱型包装食品的温度分布研究[J].中国食品学报,2002,2(4):6-11.
    [72]曾欣,辛明道,张大明.食品材料微波解冻的传热实验研究[J].重庆大学学报,1992,15(2).
    [73] Swami S. Microwave heating characteristics of simulated high moisture foods [D]: In: M.Sc. thesis.University of Massachusetts,1982.
    [74] Tong C H. Microwave heating of baked dough products with simultaneous heat and moisture transfer
    [D]: PhD thesis. WI: University of Wisconsin--Madison,1988.
    [75] Wei C K, Davis H, Davis E, et al. Heat and mass transfer in water‐laden sandstone: Microwaveheating [J]. AIChE journal,1985,31(5):842-848.
    [76] Lin Y, Anantheswaran R, Puri V. Finite element analysis of microwave heating of solid foods [J].Journal of Food Engineering,1995,25(1):85-112.
    [77] Zhou L, Puri V, Anantheswaran R, et al. Finite element modeling of heat and mass transfer in foodmaterials during microwave heating—model development and validation [J]. Journal of FoodEngineering,1995,25(4):509-529.
    [78] Chen D, Haghighi K, Singh R, et al. Finite element analysis of temperature distribution duringmicrowaved particulate foods [J]. ASAE paper,1990,906602.
    [79] Lin Y E. Heating characteristics of simulated solid foods in a microwave oven [D]: PhD thesis. PA:Pennsylvania State University.,1991.
    [80] Pangrle B, Ayappa K, Davis H, et al. Microwave thawing of cylinders [J]. AIChE journal,1991,37(12):1789-1800.
    [81] Datta A. Heat and mass transfer in the microwave processing of food [J]. Chemical EngineeringProgress,1990,86(6):47-53.
    [82] Vilayannur R, Puri V, Anantheswaran R. Size and shape effect on nonuniformity of temperature andmoisture distributions in microwave heated food materials: Part I simulation [J]. Journal of foodprocess engineering,1998,21(3):209-233.
    [83] Feng H, Tang J, Cavalieri R. Dielectric properties of dehydrated apples as affected by moisture andtemperature [J]. Transactions-American Society of Agricultural Engineers,2002,45(1):129-136.
    [84] Lee D S, Shin D H, YamK L. Improvement of temperature uniformity in microwave‐reheated riceby optimizing heat/hold cycle [J]. Food Service Technology,2002,2(2):87-93.
    [85] Campanone L, Zaritzky N. Mathematical analysis of microwave heating process [J]. Journal of FoodEngineering,2005,69(3):359-368.
    [86] Romano V R, Marra F, Tammaro U. Modelling of microwave heating of foodstuff: study on theinfluence of sample dimensions with a FEM approach [J]. Journal of Food Engineering,2005,71(3):233-241.
    [87] Curet S, Rouaud O, Boillereaux L. Microwave tempering and heating in a single-mode cavity:Numerical and experimental investigations [J]. Chemical Engineering and Processing: ProcessIntensification,2008,47(9-10):1656-1665.
    [88] Seyhun N, Ramaswamy H, Sumnu G, et al. Comparison and modeling of microwave tempering andinfrared assisted microwave tempering of frozen potato puree [J]. Journal of Food Engineering,2009,92(3):339-344.
    [89] Knoerzer K, Regier M, Schubert H. A computational model for calculating temperature distributionsin microwave food applications [J]. Innovative Food Science&Emerging Technologies,2008,9(3):374-384.
    [90] Ayappa K, Davis H, Davis E, et al. Analysis of microwave heating of materials with temperature‐dependent properties [J]. AIChE journal,1991,37(3):313-322.
    [91] Ayappa K, Davis H, Davis E, et al. Two‐dimensional finite element analysis of microwave heating[J]. AIChE journal,1992,38(10):1577-1592.
    [92] Geedipalli S, Rakesh V, Datta A. Modeling the heating uniformity contributed by a rotating turntablein microwave ovens [J]. Journal of Food Engineering,2007,82(3):359-368.
    [93] Decareau R V. Microwave foods: New product development [M]. Trumbull: Food&Nutrition Press,1992.
    [94] Yang H, Gunasekaran S. Comparison of temperature distribution in model food cylinders based onMaxwell's equations and Lambert's law during pulsed microwave heating [J]. Journal of FoodEngineering,2004,64(4):445-453.
    [95] Kostoglou M, Karapantsios T. Approximate computation of heat sources in axisymmetric microwaveheating [J]. American Institute of Chemical Engineers,2006,52(1):408-413.
    [96] Liu C M, Wang Q Z, Sakai N. Power and temperature distribution during microwave thawing,simulated by using Maxwell's equations and Lambert's law [J]. International journal of food science&technology,2005,40(1):9-21.
    [97] Basak T. Analysis of microwave propagation for multilayered material processing: Lambert's lawversus exact solution [J]. Industrial&engineering chemistry research,2004,43(23):7671-7675.
    [98] Datta A, Ni H. Infrared and hot-air-assisted microwave heating of foods for control of surfacemoisture [J]. Journal of Food Engineering,2002,51(4):355-364.
    [99] Datta A, Prosetya H, Hu W. Mathematical modeling of batch heating of liquids in a mirowave cavity[J]. Journal of microwave power and electromagnetic energy,1992,27(1):38-48.
    [100] Curet S, Rouaud O, Boillereaux L. Effect of sample size on microwave power absorption withindielectric materials:2D numerical results vs. closed‐form expressions [J]. American Institute ofChemical Engineers,2009,55(6):1569-1583.
    [101]张慜,张鹏.食品干燥新技术的研究进展[J].食品与生物技术学报,2006,25(002):115-119.
    [102] Tester R F, Karkalas J, Qi X. Starch—composition, fine structure and architecture [J]. Journal ofCereal Science,2004,39(2):151-165.
    [103] Muzimbaranda C, Tomasik P. Microwaves in physical and chemical modifications of starch [J].Starch‐St rke,1994,46(12):469-474.
    [104] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemicalproperties and structure of potato and tapioca starches [J]. Carbohydrate Polymers,1997,34(4):213-220.
    [105] Pinkrova J, Hubackova B, Kadlec P, et al. Changes of starch during microwave treatment of rice [J].Czech journal of food sciences,2003,21(5):176-184.
    [106] Anderson A K, Guraya H S. Effects of microwave heat-moisture treatment on properties of waxy andnon-waxy rice starches [J]. Food chemistry,2006,97(2):318-323.
    [107] Fan D, Ma W, Wang L, et al. Determination of structural changes in microwaved rice starch usingFourier transform infrared and Raman spectroscopy [J]. Starch‐St rke,2012.
    [108] Fan D, Ma S, Wang L, et al. Effect of microwave heating on optical and thermal properties of ricestarch [J]. Starch‐St rke,2012.
    [109] Fan D, Li C, Ma W, et al. A study of the power absorption and temperature distribution duringmicrowave reheating of instant rice [J]. International journal of food science&technology,2012.
    [110] Luo Z, He X, Fu X, et al. Effect of microwave radiation on the physicochemical properties of normalmaize, waxy maize and amylomaize V starches [J]. Starch‐St rke,2006,58(9):468-474.
    [111] Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemicalproperties and structure of cereal starches [J]. Carbohydrate Polymers,2000,42(2):193-199.
    [112] Stevenson D G, Biswas A, Inglett G E. Thermal and pasting properties of microwaved corn starch [J].Starch‐St rke,2005,57(8):347-353.
    [113] Hódsági M, Jámbor á, Juhász E, et al. Effects of microwave heating on native and resistant starches[J]. Acta Alimentaria,2012,41(2):233-247.
    [114] Dyrek K, Bidzińska E, abanowska M, et al. EPR study of radicals generated in starch bymicrowaves or by conventional heating [J]. Starch‐St rke,2007,59(7):318-325.
    [115] Fortuna T, Przetaczek-Ro nowska I, Dyrek K, et al. Some physicochemical properties of commercialmodified starches irradiated with microwaves [J]. Food Science and Technology,2008,11(4):20.
    [116] Bidzińska E, Dyrek K, Wenda E. Electron paramagnetic resonance study of thermally generatedradicals in native and modified starches [J]. Current Topics in Biophysics,2010,33:21-25.
    [117] Szepes A, Hasznos-Nezdei M, Kovács J, et al. Microwave processing of naturalbiopolymers—studies on the properties of different starches [J]. International journal of pharmaceutics,2005,302(1):166-171.
    [118] Mollekopf N, Treppe K, Fiala P, et al. Vacuum Microwave Treatment of Potato Starch and theResultant Modification of Properties [J]. Chemie Ingenieur Technik,2011,83(3):262-272.
    [119] Palav T, Seetharaman K. Impact of microwave heating on the physico-chemical properties of astarch–water model system [J]. Carbohydrate Polymers,2007,67(4):596-604.
    [120] Bilbao-Sáinz C, Butler M, Weaver T, et al. Wheat starch gelatinization under microwave irradiationand conduction heating [J]. Carbohydrate Polymers,2007,69(2):224-232.
    [121] Palav T, Seetharaman K. Mechanism of starch gelatinization and polymer leaching during microwaveheating [J]. Carbohydrate Polymers,2006,65(3):364-370.
    [122] Emami S, Perera A, Meda V, et al. Effect of microwave treatment on starch digestibility andphysic-chemical properties of three barley types [J]. Food Bioprocess Technol,2012,5:2266-2274.
    [123] Lares M, Pérez E. Determination of the mineral fraction and rheological properties of microwavemodified starch from Canna edulis [J]. Plant Foods for Human Nutrition (Formerly QualitasPlantarum),2006,61(3):109-113.
    [124] Zhang J, Wang Z W, Shi X M. Effect of microwave heat/moisture treatment on physicochemicalproperties of Canna edulis Ker starch [J]. Journal of the Science of Food and Agriculture,2009,89(4):653-664.
    [125] Zhang J, Chen F, Liu F, et al. Study on structural changes of microwave heat-moisture treatedresistant Canna edulis Ker starch during digestion in vitro [J]. Food Hydrocolloids,2010,24(1):27-34.
    [126] González Z, Pérez E. Evaluation of lentil starches modified by microwave irradiation and extrusioncooking [J]. Food Research International,2002,35(5):415-420.
    [127] Kappe C O. Microwave dielectric heating in synthetic organic chemistry [J]. Chemical SocietyReviews,2008,37(6):1127-1139.
    [128] Lidstr mP, Tierney J, Wathey B, et al. Microwave assisted organic synthesis--a review [J].Tetrahedron,2001,57(45):9225-9283.
    [129] Mochizuki D, Wada Y. Measurements of Accurate Temperatures in the Microwave Reactors [J].Mini-Reviews in Organic Chemistry,2011,8(3):294-298.
    [130] Welt B, Steet J, Tong C, et al. Utilization of microwaves in the study of reaction kinetics in liquidand semisolid media [J]. Biotechnology progress,1993,9(5):481-487.
    [131]方云,夏咏梅,黄伟.一种微波辅助非水相酶催化反应装置[P].中国,200510038966.2005-4-18.
    [132]范大明,陈卫,赵建新等.一种微波非热处理装置与使用该装置的液相体系微波非热处理方法
    [P].中国,200810094021.9.2008-4-28.
    [133] Piyasena P, Dussault C, Koutchma T, et al. Radio frequency heating of foods: principles, applicationsand related properties—a review [J]. Critical reviews in food science and nutrition,2003,43(6):587-606.
    [134] Jiao S, Johnson J, Tang J, et al. Dielectric properties of cowpea weevil, black-eyed peas and mungbeans with respect to the development of radio frequency heat treatments [J]. biosystems engineering,2011,108(3):280-291.
    [135] Liu Y, Tang J, Mao Z. Analysis of bread dielectric properties using mixture equations [J]. Journal ofFood Engineering,2009,93(1):72-79.
    [136] Goedeken D, Tong C, Virtanen A. Dielectric properties of a pregelatinized bread system at2450MHz as a function of temperature, moisture, salt and specific volume [J]. Journal of food science,1997,62(1):145-149.
    [137] Al-Muhtaseb A H, Hararah M A, Megahey E, et al. Dielectric properties of microwave-baked cakeand its constituents over a frequency range of0.915-2.450GHz [J]. Journal of Food Engineering,2010,98(1):84-92.
    [138] Ndife M, Sumnu G, Bayindirli L. Dielectric properties of six different species of starch at2450MHz[J]. Food Research International,1998,31(1):43-52.
    [139] Guan D G, Cheng M, Wang Y, et al. Dielectric Properties of Mashed Potatoes Relevant toMicrowave and Radio‐frequency Pasteurization and Sterilization Processes [J]. Journal of foodscience,2004,69(1):150-157.
    [140] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches. I. Effects of amylopectin,amylose, and lipids [J]. Cereal Chemistry,1990,67(6):551-557.
    [141] Decereau R, Peterson R. Microwave process engineering [J]. Ellios Horwood, Chichester,1986.
    [142] Mudgett R E. Microwave properties and heating characteristics of foods [J]. Food Technology,1986,40(6):84-93.
    [143] Roebuck B, Goldblith S, Westphal W. Dielectric properties of carbohydrate‐water mixtures atmicrowave frequencies [J]. Journal of food science,1972,37(2):199-204.
    [144] Nelson S, Prakash A, Lawrence K. Moisture and temperature dependence of the permittivities ofsome hydrocolloids at2.45GHz [J]. Journal of microwave power and electromagnetic energy,1991,26(3):178-185.
    [145] Ryynanen S, Risman P, Ohlsson T. The Dielectric Properties of Native Starch Solutions--A ResearchNote [J]. Journal of microwave power and electromagnetic energy,1996,31(1):50-53.
    [146] Piyasena P, Ramaswamy H, Awuah G, et al. Dielectric properties of starch solutions as influenced bytemperature, concentration, frequency and salt [J]. Journal of food process engineering,2003,26(1):93-119.
    [147] Zuercher J, Hoppie L, Lade R, et al. Measurement of the complex permittivity of bread dough by anopen-ended coaxial line method at ultrahigh frequencies [J]. Journal of microwave power andelectromagnetic energy,1990,25(3):161-167.
    [148] KimY R, Cornillon P. Effects of temperature and mixing time on molecular mobility in wheat dough[J]. Lebensmittel-Wissenschaft und-Technologie,2001,34(7):417-423.
    [149] García‐Rosas M, Bello‐Pérez A, Yee‐Madeira H, et al. Resistant starch content and structuralchanges in maize (Zea mays) tortillas during storage [J]. Starch‐St rke,2009,61(7):414-421.
    [150] Bao J, Wang Y, Shen Y. Determination of apparent amylose content, pasting properties and geltexture of rice starch by near‐infrared spectroscopy [J]. Journal of the Science of Food andAgriculture,2007,87(11):2040-2048.
    [151] Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman andFTIR spectroscopy [J]. Journal of agricultural and food chemistry,2002,50(14):3912-3918.
    [152] Chong C K, Xing J, Phillips D L, et al. Development of NMR and Raman spectroscopic methods forthe determination of the degree of substitution of maleate in modified starches [J]. Journal ofagricultural and food chemistry,2001,49(6):2702-2708.
    [153] Snape C E, Morrison W R, Maroto-Valer M M, et al. Solid state13C NMR investigation of lipidligands in V-amylose inclusion complexes [J]. Carbohydrate Polymers,1998,36(2-3):225-237.
    [154]熊犍,叶君,王茜.微波辐射对木薯淀粉结构的影响[J].化工学报,2006,57(5):1204-1208.
    [155] Karim A A, Norziah M, Seow C. Methods for the study of starch retrogradation [J]. Food chemistry,2000,71(1):9-36.
    [156] Li Y, Zhong F, Ma J, et al. Spectra analysis on rice starches from different varieties during pasting [J].Acta Polymerica Sinica,2008,(7):720-725.
    [157] Schuster K C, Ehmoser H, Gapes J R, et al. On-line FT-Raman spectroscopic monitoring of starchgelatinisation and enzyme catalysed starch hydrolysis1[J]. Vibrational Spectroscopy,2000,22(1-2):181-190.
    [158] Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapiocastarch by13C CP/MAS solid-state NMR [J]. Carbohydrate Polymers,2004,58(4):383-389.
    [159] Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinisation: origin ofthe enthalpic transition [J]. Carbohydrate Research,1992,227:103-112.
    [160]刘延奇,吴史博,毛自荐.固体核磁共振技术在淀粉研究中的应用[J].农产品加工.学刊,2008,(7):9-11.
    [161] Tan I, Flanagan B M, Halley P J, et al. A method for estimating the nature and relative proportions ofamorphous, single, and double-helical components in starch granules by13C CP/MAS NMR [J].Biomacromolecules,2007,8(3):885-891.
    [162] Spěvá ek J, Brus J. Solid‐State NMR Studies of Polysaccharide Systems.2008. Wiley OnlineLibrary:69-76.
    [163] B aszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch [J].Carbohydrate Polymers,2005,59(3):377-383.
    [164] Atwell W, Hood L, Lineback D, et al. The terminology and methodology associated with basic starchphenomena [J]. Cereal Foods World,1988,33.
    [165] Smith R, Whistler R, Paschall E. Starch: chemistry and technology [M]. NY: Academic Press,1967.
    [166] Olkku J, Rha C K. Gelatinisation of starch and wheat flour starch—a review [J]. Food chemistry,1978,3(4):293-317.
    [167] Sakonidou E, Karapantsios T, Raphaelides S. Mass transfer limitations during starch gelatinization[J]. Carbohydrate Polymers,2003,53(1):53-61.
    [168] Ndife M, Sumnu G, BayIndIrlI L. Differential scanning calorimetry determination of gelatinizationrates in different starches due to microwave heating [J]. Lebensmittel-Wissenschaft und-Technologie,1998,31(5):484-488.
    [169] Xue C, Sakai N, Fukuoka M. Use of microwave heating to control the degree of starch gelatinizationin noodles [J]. Journal of Food Engineering,2008,87(3):357-362.
    [170] Hills B, Takacs S, Belton P. A new interpretation of proton NMR relaxation time measurements ofwater in food [J]. Food chemistry,1990,37(2):95-111.
    [171] Ritota, M., Gianferri, R., Bucci, R.,&Brosio, E.(2008). Proton NMR relaxation study of swellingand gelatinisation process in rice starch–water samples. Food Chemistry,110(1),14-22.
    [172] Tang H R, Godward J, Hills B. The distribution of water in native starch granules--a multinuclearNMR study [J]. Carbohydrate Polymers,2000,43(4):375-387.
    [173] Choi S G, Kerr W L.1H NMR studies of molecular mobility in wheat starch [J]. Food ResearchInternational,2003,36(4):341-348.
    [174] Choi S G, Kerr W L. Effects of chemical modification of wheat starch on molecular mobility asstudied by pulsed1H NMR [J]. Lebensmittel-Wissenschaft und-Technologie,2003,36(1):105-112.
    [175] Chua K, Mujumdar A, Chou S. Intermittent drying of bioproducts--an overview [J]. BioresourceTechnology,2003,90(3):285-295.
    [176] Feng H, Tang J, MATTINSON D S, et al. Microwave and spouted bed drying of frozen blueberries:the effect of dryingand pretreatment methods on physical properties and retention of flavor volatiles[J]. Journal of food processing and preservation,1999,23(6):463-479.
    [177] Khraisheh M, McMinn W, Magee T. Quality and structural changes in starchy foods duringmicrowave and convective drying [J]. Food Research International,2004,37(5):497-503.
    [178] Bello‐Pérez L A, Colonna P, Roger P, et al. Structural properties of starches dissolved bymicrowave heating [J]. Starch‐St rke,1998,50(4):137-141.
    [179] Jarowenko W. Acetylated starch and miscellaneous organic esters [M]. Boca Raton: CRC press,1986.
    [180] Satge C, Verneuil B, Branland P, et al. Rapid homogeneous esterification of cellulose induced bymicrowave irradiation [J]. Carbohydrate Polymers,2002,49(3):373-376.
    [181] Lewandowicz G, Fornal J, Walkowski A, et al. Starch esters obtained by microwaveradiation—structure and functionality [J]. Industrial Crops and Products,2000,11(2):249-257.
    [182] Horchani H, Chaabouni M, Gargouri Y, et al. Solvent-free lipase-catalyzed synthesis of long-chainstarch esters using microwave heating: Optimization by response surface methodology [J].Carbohydrate Polymers,2010,79(2):466-474.
    [183] Singh A V, Nath L K, Guha M, et al. Microwave Assisted Synthesis and Evaluation of Cross-LinkedCarboxymethylated Sago Starch as Superdisintegrant [J]. Pharmacology&Pharmacy,2011,2(1):42-46.
    [184] Pal S, Nasim T, Patra A, et al. Microwave assisted synthesis of polyacrylamide grafted dextrin(Dxt-g-PAM): Development and application of a novel polymeric flocculant [J]. International journalof biological macromolecules,2010,47(5):623-631.
    [185] Bengtsson N E, Ohlsson T. Microwave heating in the food industry [J]. Proceedings of the IEEE,1974,62(1):44-55.
    [186] Khatoon N, Prakash J. Nutrient retention in microwave cooked germinated legumes [J]. Foodchemistry,2006,97(1):115-121.
    [187] Chamchong M, Datta A. Thawing of foods in a microwave oven: I. Effect of power levels and powercycling [J]. Journal of microwave power and electromagnetic energy,1999,34(1):8-21.
    [188] Cocci E, Sacchetti G, Vallicelli M, et al. Spaghetti cooking by microwave oven: Cooking kineticsand product quality [J]. Journal of Food Engineering,2008,85(4):537-546.
    [189] Cho S Y, Lee J W, Rhee C. The cooking qualities of microwave oven cooked instant noodles [J].International journal of food science&technology,2010,45(5):1042-1049.
    [190] Umbach S, Davis E, Gordon J, et al. Water self-diffusion coefficients and dielectric propertiesdetermined for starch-gluten-water mixtures heated by microwave and by conventional methods [J].Cereal Chemistry,1992,69:637-637.
    [191] Yin Y, Walker C. A quality comparison of breads baked by conventional versus nonconventionalovens: a review [J]. Journal of the Science of Food and Agriculture,1995,67(3):283-291.
    [192] Sumnu G. A review on microwave baking of foods [J]. International journal of food science&technology,2001,36(2):117-127.
    [193] Goebel N, Grider J, Davis E, et al. The effects of microwave energy and convection heating on wheatstarch granule transformations [J]. Food microstructure,1984,3.
    [194] Shukla T. Bread and bread-like dough formulations for the microwave [J]. Cereal Foods World,1993,38(2):95-96.
    [195] Ovadia D, Walker C. Microwave pressure baking with vacuum cooling.1996. Internationalmicrowave power institute:89-92.
    [196] Finot P. Effect of microwave treatments on the nutritional quality of food [J]. Cahiers de Nutrition etde Dietetique,1996,31(4):239-246.
    [197] Iwaguch S, Matsumura K, Tokuoka Y, et al. Sterilization system using microwave and UV light [J].Colloids and surfaces B: Biointerfaces,2002,25(4):299-304.
    [198] Ohlsson T. More uniformity in heat from microwave ovens [J]. Food Technology InternationalEurope1991:77-78,80-81.
    [199] George R, Evans D, Hooper G. Assessment and improvement of the manufacturers' reheatinginstructions for microwaveable lasagne based upon the voluntary UK new microwave labellingscheme [M]. Great Britain, Ministry of Agriculture, Fisheries and Food, Food Safety Directorate,2002.
    [200] Fik M, Macura R. Quality changes during frozen storage and thawing of mixed bread [J].Food/Nahrung,2001,45(2):138-142.
    [201] Yagi S, Shibata K. Microwave defrosting under reduced pressure [P]. US,20020195447.
    [202] Virtanen A, Goedeken D, Tong C. Microwave Assisted Thawing of Model Frozen Foods Using Feed‐back Temperature Control and Surface Cooling [J]. Journal of food science,1997,62(1):150-154.
    [203] Jason A C. Microwave Thawing: Some Basic Considerations [M]. Torry Research Station,1974.
    [204] Ohlsson T. Low Power Microwave Thawing of Animal Foods [M]. London and New York: ElsevierApplied Sceience,1984.
    [205] Uzzan M, Ramon O, Kopelman I J, et al. Mechanism of crumb toughening in bread-like products bymicrowave reheating [J]. Journal of agricultural and food chemistry,2007,55(16):6553-6560.
    [206] Swain M J, Swain M V L, L. R S. A new test procedure to determine the heating performance ofdomestic microwave ovens [J]. Inetrnational Appliance Manufacturing,1998,98:72-77.
    [207] Mudgett R. Dielectric properties of foods [M]. Orlando: Academic,1985.15-56.
    [208] Jeong J, Han S, Hwang H, et al. Identification of spoilage bacteria isolated from aseptic packagedcooked rice and application of acidic electrolyzed saline solution as water-for-cooked rice [J]. KoreanJournal of Food Science and Technology,1999,31.
    [209] Mizrahi S. Mechanisms of Objectionable Textural Changes by Microwave Reheating of Foods: AReview [J]. Journal of food science,2012,77(1): R57-R62.
    [210] Fletcher P D I, Grice D D, Haswell S J. Microwave spectra of mixtures of non-absorbing solidparticles and absorbing liquids [J]. physical Chemistry Chemical Physics,2009,11(6):958-962.
    [1]王领军,王立,姚惠源等.大米淀粉的性质,生产及应用[J].粮食与饲料工业,2004,(011):22-25.
    [2] Yang C, Lai H, Lii C. The modified alkaline steeping method for the isolation of rice starch [J]. FoodSci,1984,11:158-162.
    [3]易翠平,倪凌燕,姚惠源.大米淀粉的纯化及性质研究[J].中国粮油学报,2005,20(003):5-8.
    [4] Tanaka K, Sugimoto T, Ogawa M, et al. Isolation and characterization of two types of protein bodiesin the rice endosperm [Oryza sativa][J].Agricultural and Biological Chemistry,1980,44.
    [5] Fujii T. Purification and processing of starch: Purification of starch by surface active agents, and fattysubstances in starch and its effects on physical properties of starch [J]. Denpun Kagaku,1973,19:159-168.
    [6] Puchongkavarin H, Varavinit S, Bergthaller W. Comparative study of pilot scale rice starch productionby an alkaline and an enzymatic process [J]. Starch‐St rke,2005,57(3‐4):134-144.
    [7] Lumdubwong N, Seib P. Rice starch isolation by alkaline protease digestion of wet-milled rice flour[J]. Journal of Cereal Science,2000,31(1):63-74.
    [8] Wang L, Wang Y J. Comparison of protease digestion at neutral pH with alkaline steeping method forrice starch isolation [J]. Cereal chemistry,2001,78(6):690-692.
    [9]李福谦,唐书泽,李爱萍等.碱消化法提纯大米淀粉的研究[J].食品与发酵工业,2005,31(007):55-58.
    [10]李翠莲,方北曙,黄中培.大米淀粉的制备[J].食品科技,2007,32(010):68-69.
    [11]芦鑫,张晖,姚惠源.中性蛋白酶—超声波处理降低大米淀粉中蛋白质的残留[J].粮食与饲料工业,2006,(011):24-26.
    [12] Hu X, Mallikarjunan P. Thermal and dielectric properties of shucked oysters [J]. LWT-Food Scienceand Technology,2005,38(5):489-494.
    [13]段玉平.炭黑,聚苯胺及其填充材料的制备和电磁特性[D]:博士论文.大连:大连理工大学,2006.
    [14]于秋生.大米淀粉发展前景诱人[J].农产品加工,2009,(003):10-11.
    [15] Lii C Y, Tsai M L, Tseng K H. Effect of amylose content on the rheological property of rice starch [J].Cereal chemistry,1996,73(4):415-420.
    [16] Tsai M L, Li C F, Lii C Y. Effects of granular structures on the pasting behaviors of starches1[J].Cereal chemistry,1997,74(6):750-757.
    [17]金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].化学工业出版社,2008.
    [18] Schubert H, Regier M. Microwave processing of foods [M].北京:中国轻工业出版社,2008.58-92.
    [19] Fixman M. Charged macromolecules in external fields. I. The sphere [J]. The Journal of ChemicalPhysics,1980,72:5177.
    [20] Chew W, Sen P. Dielectric enhancement due to electrochemical double layer: Thin double layerapproximation [J]. The Journal of Chemical Physics,1982,77:4683.
    [21] Carrique F, Criado C, Delgado A. Analysis of some dielectric properties of colloidal suspensions [J].Journal of colloid and interface science,1993,156:117-117.
    [22] Schwan H, Schwarz G, Maczuk J, et al. On the low-frequency dielectric dispersion of colloidalparticles in electrolyte solution [J]. The Journal of Physical Chemistry,1962,66(12):2626-2635.
    [23] Schwarz G. A theory of the low frequency dielectric dispersion of colloidal particles in electrolytesolution [J]. The Journal of Physical Chemistry,1962,66(12):2636-2642.
    [24] Bilbao-Sáinz C, Butler M, Weaver T, et al. Wheat starch gelatinization under microwave irradiationand conduction heating [J]. Carbohydrate polymers,2007,69(2):224-232.
    [25] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemicalproperties and structure of potato and tapioca starches [J]. Carbohydrate polymers,1997,34(4):213-220.
    [26] Ryynanen S, Risman P, Ohlsson T. The Dielectric Properties of Native Starch Solutions--A ResearchNote [J]. Journal of microwave power and electromagnetic energy,1996,31(1):50-53.
    [27] Matitsine S, Hock K, Liu L, et al. Shift of resonance frequency of long conducting fibers embedded ina composite [J]. Journal of applied physics,2003,94:1146.
    [1] Council N R. Microwave processing of materials [M]. Washington, D.C.: National Academy Press,1994.
    [2] Metaxas A, Meredith R J. Industrial microwave heating [M]. London: Inst of Engineering&Technology,1983.
    [3] Venkatesh M, Raghavan G. An overview of microwave processing and dielectric properties ofagri-food materials [J]. Biosystems Engineering,2004,88(1):1-18.
    [4] Motwani T, Seetharaman K, Anantheswaran R C. Dielectric properties of starch slurries as influencedby starch concentration and gelatinization [J]. Carbohydrate polymers,2007,67(1):73-79.
    [5] Hasted J, Ritson D, Collie C. Dielectric properties of aqueous ionic solutions. Parts I and II [J]. TheJournal of Chemical Physics,1948,16:1.
    [6] Kaatze U. Complex permittivity of water as a function of frequency and temperature [J]. Journal ofChemical and Engineering Data,1989,34(4):371-374.
    [7]李翠莲,方北曙,黄中培.大米淀粉的制备[J].食品科技,2007,32(010):68-69.
    [8]芦鑫,张晖,姚惠源.中性蛋白酶—超声波处理降低大米淀粉中蛋白质的残留[J].粮食与饲料工业,2006,(011):24-26.
    [9] Sihvola A. Electromagnetic mixing formulas and applications [M]. Padstow: Inspec/Iee,1999.
    [10] Jylha L, Sihvola AH. Numerical modeling of disordered mixture using pseudorandom simulations [J].Geoscience and Remote Sensing, IEEE Transactions on,2005,43(1):59-64.
    [11] Lyashchenko A. Concentration transition from water-electrolyte to electrolyte-water solvents and ionicclusters in solutions [J]. Journal of Molecular Liquids,2001,91(1):21-31.
    [12]李玉红,赵孔双.浓差极化的介电模型——复合膜/溶液体系的数值模拟[J].化学学报,2007,65(19):2124-2132.
    [13]黄卡玛,凌小平,杨晓庆等.微波频率下乙酸乙酯皂化反应等效介电系数的实验研究[J].电子学报,2004,32(5):833-835.
    [14] Ndife M, Sumnu G, Bayindirli L. Dielectric properties of six different species of starch at2450MHz[J]. Food research international,1998,31(1):43-52.
    [15] Borin I A, Skaf M S. Molecular association between water and dimethyl sulfoxide in solution: Amolecular dynamics simulation study [J]. The Journal of Chemical Physics,1999,110:6412.
    [16] Senadeera G, Mori T. A New Crystal Structure for (BEDT-TTF)2SbF6and Some of its PhysicalProperties [J]. Bull. Mater. Sci.,2005,28(1).
    [17] Luzar A, Chandler D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures bycomputer simulations [J]. The Journal of Chemical Physics,1993,98:8160.
    [18]殷之文.物理学.电介质物理学[M].北京:科学出版社,2003.
    [19] MolitonA. Basic electromagnetism and materials [M]. NewYork: Springer Verlag,2007.
    [20] Debye PJ W. Polar molecules [M]. NewYork,1929.
    [21] West J, Hench L. Principles of Electronic Ceramics [M]. NewYork: John Wiley&Sons,1990.
    [22] Schwan H, Schwarz G, Maczuk J, et al. On the low-frequency dielectric dispersion of colloidalparticles in electrolyte solution1[J]. The Journal of Physical Chemistry,1962,66(12):2626-2635.
    [23] Yang C K, Zhao J, Lu J P. Magnetism of transition-metal/carbon-nanotube hybrid structures [J].Physical review letters,2003,90(25):257203.
    [24] Langevin P. de Physique4,678(1905).1905.70.
    [25] Debye P. Einige resultate einer kinetischen theorie der isolatoren [J]. Phisik. Zeits,1912,13:97-100.
    [26] Piotr, P.; Wiewio, R.; Hideaki, S.; Edward, W.; Castner, J. Aqueous dimethyl sulfoxide solutions: Inter-and intra-molecular dynamics [J]. J. Chem. Phys.2002,116,4643.
    [1] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches. I. Effects of amylopectin,amylose, and lipids [J]. Cereal Chemistry,1990,67,551-557.
    [2] Palav T, Seetharaman K. Impact of microwave heating on the physico-chemical properties of astarch–water model system [J]. Carbohydrate polymers,2007,67,596-604.
    [3] Roebuck B, Goldblith S, Westphal W. Dielectric properties of carbohydrate‐water mixtures atmicrowave frequencies [J]. Journal of Food Science,1972,37,199-204.
    [4] García‐Rosas M, Bello‐Pérez A, Yee‐Madeira H, et al. Resistant starch content and structuralchanges in maize (Zea mays) tortillas during storage [J]. Starch‐St rke,2009,61,414-421.
    [5] Bao J, WangY, ShenY. Determination of apparent amylose content, pasting properties and gel textureof rice starch by near‐infrared spectroscopy [J]. Journal of the Science of Food and Agriculture,2007,87,2040-2048.
    [6] Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman andFTIR spectroscopy [J]. Journal of agricultural and food chemistry,2002,50,3912-3918.
    [7] Chong C K, Xing J, Phillips D L, et al. Development of NMR and Raman spectroscopic methods forthe determination of the degree of substitution of maleate in modified starches [J]. Journal ofagricultural and food chemistry,2001,49,2702-2708.
    [8] Vandeputte G, Vermeylen R, Geeroms J, et al. Rice starches. I. Structural aspects provide insight intocrystallinity characteristics and gelatinisation behaviour of granular starch [J]. Journal of CerealScience,2003,38,43-52
    [9] Vermeylen R, Goderis B, Reynaers H, et al. Amylopectin molecular structure reflected inmacromolecular organization of granular starch [J]. Biomacromolecules,2004,5,1775-1786
    [10] Thys R C S, Westfahl Jr H, Nore a C P Z, et al. Effect of the alkaline treatment on the ultrastructureof C-type starch granules [J]. Biomacromolecules,2008,9,1894-1901.
    [11] Jenkins PJ, Cameron R E, DonaldAM. Auniversal feature in the structure of starch granules fromdifferent botanical sources [J]. Starch‐St rke,1993,45,417-420.
    [12] Jenkins P, Comerson R, DonaldA, et al. In situ simultaneous small and wide angle x‐ray scattering:Anew technique to study starch gelatinization [J]. Journal of Polymer Science Part B: PolymerPhysics,1994,32,1579-1583.
    [13] Jenkins P, DonaldA. The influence of amylose on starch granule structure [J]. International Journal ofBiological Macromolecules,1995,17,315-321.
    [14] Atichokudomchai N, Varavinit S, Chinachoti P. Astudy of ordered structure in acid-modified tapiocastarch by13C CP/MAS solid-state NMR [J]. Carbohydrate polymers,2004,58,383-389.
    [15] Cameron R E, DonaldAM. Asmall‐angle x‐ray scattering study of starch gelatinization in excessand limiting water [J]. Journal of Polymer Science Part B: Polymer Physics,1993,31,1197-1203.
    [16] Morrison W. Starch lipids and how they relate to starch granule structure and functionality [J]. CerealFoods World,1995,40,437-446.
    [17] Koroteeva D A, Kiseleva V I, Sriroth K, et al. Structural and thermodynamic properties of ricestarches with different genetic background:: Part1. Differentiation of amylopectin and amylosedefects [J]. International Journal of Biological Macromolecules,2007,41,391-403.
    [18] Tester R F, Karkalas J, Qi X. Starch—composition, fine structure and architecture [J]. Journal ofCereal Science,2004,39,151-165
    [19] Snape C E, Morrison W R, Maroto-Valer M M, et al. Solid state13C NMR investigation of lipid ligandsin V-amylose inclusion complexes [J]. Carbohydrate polymers,1998,36,225-237.
    [20] YaoY, Zhang J, Ding X. Structure-retrogradation relationship of rice starch in purified starches andcooked rice grains: Astatistical investigation [J]. Journal of agricultural and food chemistry,2002,50,7420-7425.
    [21] Tan I, Flanagan B M, Halley PJ et al. Amethod for estimating the nature and relative proportions ofamorphous, single, and double-helical components in starch granules by13C CP/MAS NMR [J].Biomacromolecules,2007,8,885-891.
    [22] Spěvá ek, J., Brus, J., Solid‐State NMR Studies of Polysaccharide Systems. Wiley Online Library2008, pp.69-76.
    [23]朱育平.小角X射线散射:理论,测试,计算及应用[M].化学工业出版社,2008.
    [24] Blazek J, Gilbert E P. Application of small-angle X-ray and neutron scattering techniques to thecharacterisation of starch structure: Areview [J]. Carbohydrate polymers,2011,281-293.
    [25] Waigh TA, DonaldAM, Heidelbach F, et al. Analysis of the native structure of starch granules withsmall angle x‐ray microfocus scattering [J]. Biopolymers,1999,49,91-105.
    [26] Vermeylen R, Derycke V, Delcour J A, et al. Gelatinization of starch in excess water: Beyond themelting of lamellar crystallites. Acombined wide-and small-angle X-ray scattering study [J].Biomacromolecules,2006,7,2624-2630.
    [27] DonaldAM, Kato K L, Perry PA, et al. Scattering studies of the internal structure of starch granules[J]. Starch‐St rke,2001,53,504-512.
    [28] Cardoso M B, Westfahl Jr H. On the lamellar width distributions of starch [J]. Carbohydrate polymers,2010,81,21-28.
    [29]陈翠兰,张本山,陈福泉.淀粉结晶度计算的新方法[J].食品科学,2011,32,68-71.
    [30]陈福泉,张本山,卢海凤等. X射线衍射在淀粉颗粒结晶度研究中的应用[J].食品科学,2010,31,284-287.
    [31] Flores-Morales A, Jiménez-Estrada M, Mora-Escobedo R. Determination of the structural changes byFT-IR, Raman, and CP/MAS13C NMR spectroscopy on retrograded starch of maize tortillas [J].Carbohydrate polymers,2011,87(1),61-68.
    [32] Van Soest J, De Wit D, Tournois H, et al. Retrogradation of potato starch as studied by Fouriertransform infrared spectroscopy [J]. Starch‐St rke,1994,46,453-457.
    [33] Kacuráková M, Mathlouthi M. FTIR and laser-Raman spectra of oligosaccharides in water:characterization of the glycosidic bond [J]. Carbohydrate Research,1996,284,145-157.
    [34]龙剑英,龙翔云.淀粉分子电子结构的量子化学研究(Ⅰ):结构单元,糖苷键和氢键的特性[J].广西科学,2002,9,34-37.
    [35] Iizuka K, Aishima T. Starch Gelation Process Observed by FT‐IR/ATR Spectrometry withMultivariate DataAnalysis [J]. Journal of Food Science,1999,64,653-658.
    [36]吴跃.抗高直连大米淀粉回生的物理修饰及其回生的检测和表征[D]:[博士学位论文].无锡:江南大学2010.
    [37]金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].化学工业出版社,2008.
    [38] Cael J J, Koenig J L, Blackwell J. Infrared and Raman spectroscopy of carbohydrates. Part VI: Normalcoordinate analysis of V‐amylose [J]. Biopolymers,1975,14,1885-1903.
    [39] Santha N, Sudha K, Vijayakumari K, et al. Raman and infrared spectra of starch samples of sweetpotato and cassava [J]. Journal of Chemical Sciences,1990,102,705-712.
    [40] Gidley M J, Bociek S M. Molecular organization in starches: a carbon13CP/MAS NMR study [J].Journal of theAmerican Chemical Society,1985,107,7040-7044.
    [41] Gidley M J, Bociek S M. Carbon-13CP/MAS NMR studies of amylose inclusion complexes,cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkageconformation and solid-state carbon-13chemical shifts [J]. Journal of the American Chemical Society,1988,110,3820-3829.
    [42] Delval F, Crini G, Bertini S, et al. Characterization of crosslinked starch materials with spectroscopictechniques [J]. Journal of applied polymer science,2004,93,2650-2663.
    [43]刘延奇,吴史博,毛自荐.固体核磁共振技术在淀粉研究中的应用[J].农产品加工·学刊,2008,9-11.
    [44] Paris M, Bizot H, Emery J, et al. Crystallinity and structuring role of water in native and recrystallizedstarches by13C CP-MAS NMR spectroscopy:1: Spectral decomposition [J]. Carbohydrate polymers,1999,39,327-339.
    [45] Morrison W R, Tester R F, Gidley M J, et al. Resistance to acid hydrolysis of lipid-complexed amyloseand lipid-free amylose in lintnerised waxy and non-waxy barley starches [J]. Carbohydrate Research,1993,245,289-302.
    [46] Morrison W, Law R, Snape C. Evidence for inclusion complexes of lipids with V-amylose in maize,rice and oat starches [J]. Journal of Cereal Science,1993,18,107-109.
    [47]范进填,淀粉糊化动力学[J].食品机械,1991,1:26-28.
    [48] Lii C, TsaiMandTsengK. Effect ofAmylose Content on the Rheological Properties of Rice Starch[J].Cereal Chem,1996,73(4):415-420.
    [49] Tester R F and Morrison W R. Swelling and Gelatinization of Cereal Starches:ⅡWaxy RiceStarches[J]. Cereal Chem,1990,67(6):558-563.
    [50]熊善柏,赵思明,姚霓等.稻米淀粉糊化进程研究[J].粮食与饲料工业,2001,5:14-16.
    [51]二国二郎,淀粉科学手册[M].王徽青译.北京轻工业出版社,1990:31-41
    [52] Perry P, DonaldA. The role of plasticization in starch granule assembly [J]. Biomacromolecules,2000,1,424-432.
    [53] Perry P, DonaldA. The effect of sugars on the gelatinisation of starch [J]. Carbohydrate polymers,2002,49,155-165.
    [54] Waigh TA, Gidley M J, Komanshek B U, et al. The phase transformations in starch duringgelatinisation: a liquid crystalline approach [J]. Carbohydrate Research,2000,328,165-176.
    [55] Waigh TA, Kato K L, DonaldAM, et al. Side‐Chain Liquid‐Crystalline Model for Starch [J].Starch‐St rke,2000,52,450-460.
    [56] Daniels D, DonaldA. Soft material characterization of the lamellar properties of starch: smecticside-chain liquid-crystalline polymeric approach [J]. Macromolecules,2004,37,1312-1318.
    [57] Jenkins PJ, DonaldAM. Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study[J]. Carbohydrate Research,1998,308,133-147.
    [58] Vermeylen R, Goderis B, Reynaers H, et al. Gelatinisation related structural aspects of small and largewheat starch granules [J]. Carbohydrate polymers,2005,62,170-181.
    [59] Cardoso M B, Samios D, Silveira P. Study of protein detection and ultrastructure of Brazilian ricestarch during alkaline extraction [J]. Starch‐St rke,2006,58,345-352.
    [60] Jenkins PJ, DonaldAM. Breakdown of crystal structure in potato starch during gelatinization [J].Journal of applied polymer science,1997,66,225-232.
    [61] Wu W. Small-angle X-ray study of particulate reinforced composites [J]. Polymer,1982,23,1907-1912.
    [62] TanabeY, Strobl G, Fischer E. Surface melting in melt-crystallized linear polyethylene [J]. Polymer,1986,27,1147-1153.
    [63] Hsiao B S, Gardner K C H, Wu D Q, et al. Time-resolved X-ray study of poly (aryl ether ether ketone)crystallization and melting behaviour:1. Crystallization [J]. Polymer,1993,34,3986-3995.
    [64] Goderis B, Reynaers H, Koch M, et al. Use of SAXS and linear correlation functions for thedetermination of the crystallinity and morphology of semi‐crystalline polymers. Application to linearpolyethylene [J]. Journal of Polymer Science Part B: Polymer Physics,1999,37,1715-1738.
    [65] Engel M, Stühn B, Schneider J J, et al. Small-angle X-ray scattering (SAXS) off parallel, cylindrical,well-defined nanopores: from random pore distribution to highly ordered samples [J]. Applied PhysicsA: Materials Science&Processing,2009,97,99-108.
    [66] Putseys J, Gommes C, Puyvelde PV, et al. In situ SAXS under shear unveils the gelation of aqueousstarch suspensions and the impact of added amylose-lipid complexes [J]. Carbohydrate polymers,2011,84(3),1141-1150.
    [67] Crist B. Analysis of small-angle X-ray scattering patterns [J]. Journal of Macromolecular Science, PartB,2000,39,493-518.
    [68] Daniels D, DonaldA. An improved model for analyzing the small angle x‐ray scattering of starchgranules [J]. Biopolymers,2003,69,165-175.
    [69] Vermeylen R, Goderis B, Delcour J A. An X-ray study of hydrothermally treated potato starch [J].Carbohydrate polymers,2006,64,364-375.
    [70] Tester R F, Debon S J J.Annealing of starch—a review [J]. International Journal of BiologicalMacromolecules,2000,27,1-12.
    [71] Flory PJ, Yoon D Y, Dill K A. The interphase in lamellar semicrystalline polymers [J].Macromolecules,1984,17,862-868.
    [72] Zhao H, Dong B Z, Guo M F, et al. Determination of average thickness of transition layer of crystalpolymer by small angle X-ray scattering [J]. Nuclear Techniques,2002,25(10):837-840.
    [1] Aggarwal P, Dollimore D. Athermal analysis investigation of partially hydrolyzed starch [J].Thermochimica acta,1998,319,1725.
    [2] Blazek J, Gilbert E P. Application of small-angle X-ray and neutron scattering techniques to thecharacterisation of starch structure: A review [J]. Carbohydrate Polymers,2011,85,281293.
    [3] Colonna P, Tayeb J, Mercier C. Extrusion cooking of starch and starchy products [J]. Extrusioncooking,1989,247319.
    [4]夏清,陈常贵.化工原理[M].天津:天津大学出版社,2005.
    [5] Sumnu G. Areview on microwave baking of foods [J]. International journal of food science&technology,2001,36,117-127.
    [6] Atwell W, Hood L, Lineback D. et al. The terminology and methodology associated with basic starchphenomena [J]. Cereal foods world (USA),1988.
    [7] Smith R, Whistler R, Paschall E. Starch: chemistry and technology [M]. NY: Academic Press,1967.
    [8] Olkku J, Rha C K. Gelatinisation of starch and wheat flour starch--A review [J]. Food Chemistry,1978,3,293-317.
    [9] Sakonidou E, Karapantsios T, Raphaelides S. Mass transfer limitations during starch gelatinization [J].Carbohydrate polymers,2003,53,53-61.
    [10] Palav T, Seetharaman K. Mechanism of starch gelatinization and polymer leaching during microwaveheating [J]. Carbohydrate polymers,2006,65,364-370.
    [11] Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical propertiesand structure of cereal starches [J]. Carbohydrate polymers,2000,42,193-199.
    [12] Bilbao-Sainz C, Butler M, Weaver T. et al. Wheat starch gelatinization under microwave irradiationand conduction heating [J]. Carbohydrate polymers,2007,69,224-232.
    [13] Ozawa T. Critical investigation of methods for kinetic analysis of thermoanalytical data [J]. Journal ofThermal Analysis and Calorimetry,1975,7(3),601617.
    [14] Chan J, Balke S. The thermal degradation kinetics of polypropylene: Part III. Thermogravimetricanalyses [J]. Polymer degradation and stability,1997,57(2),135149.
    [15] Guinesi LS, da Róz AL, Corradini E. et al. Kinetics of thermal degradation applied to starches fromdifferent botanical origins by non-isothermal procedures [J]. Thermochimica acta,2006,447(2),190196.
    [16] Ernst R R, Bodenhausen G, WokaunA. Principles of nuclear magnetic resonance in one and twodimensions [M]. Clarendon press Oxford,1987.
    [17] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times [J]. Review ofScientific Instruments,1958,29(8),688-691.
    [18] Donovan J W. Phase transitions of the starch–water system [J]. Biopolymers,1979,18,263-275.
    [19] EliassonAC. Starch in food: Structure, function and applications [M]. CRC,2004:156-184.
    [20] Marques P, Lima A, Bianco G. et al. Thermal properties and stability of cassava starch filmscross-linked with tetraethylene glycol diacrylate [J]. Polymer degradation and stability,2006,91(4),726732.
    [21] Sin LT, Rahman WAWA, Rahmat AR. et al. Determination of thermal stability and activationenergy of polyvinyl alcohol–cassava starch blends [J]. Carbohydrate Polymers,2011,83,303305.
    [22] Wang L, Xie B, Xiong G. et al. Study on the granular characteristics of starches separated fromChinese rice cultivars [J]. Carbohydrate Polymers,2012,87,1038-1044.
    [23] Fan D M, Ma W R, Wang LY. et al. Determination of structural changes in microwaved rice starchusing Fourier transform infrared and Raman spectroscopy [J]. Starch‐St rke,2012.
    [24] Kohyama K, Sasaki T. Differential scanning calorimetry and a model calculation of starches annealedat20and50C [J]. Carbohydrate Polymers,2006,63(1),8288.
    [25]张锦胜.核磁共振及其成像技术在食品科学中的应用研究[D]:[博士学位论文].南昌:南昌大学生命科学学院,2007.
    [26]陈卫江.核磁共振技术在淀粉糊化回生中的研究与应用[D]:[硕士学位论文].南昌:南昌大学生命科学学院,2007.
    [27] Pitombo R N M, Lima G A M R. Nuclear magnetic resonance and water activity in measuring thewater mobility in Pintado (Pseudoplatystoma corruscans) fsh [J]. Journal of Food Engineering,2003,58(1),59-66.
    [28] Choi S G, Kerr W L.1H NMR studies of molecular mobility in wheat starch [J]. Food ResearchInternational,2003,36(4),341-348.
    [29] Tang H R, Godward J, Hills B. The distribution of water in native starch granules--a multinuclearNMR study [J]. Carbohydrate polymers,2000,43(4),375-387.
    [30]王欣,陈庆华.浅述玻璃化转变温度与食品成分的关系[J].粮油食品科技,2004,4:52-54.
    [31] Bhavesh K. Patel, Koushik Seetharaman. Effect of heating rate on starch granule morphology and size[J]. Carbohydrate polymers,2006,65(3),381-385.
    [1]徐恩峰,孔保华.微波食品的研究与开发[J].肉类工业,2003(5):25-29.
    [2] Darrington H. Coating: The microwave challenge[J]. Food manugacture,1991(7):22-23.
    [3]程裕东,刘军辉.微波食品的开发及其技术应用[J].中国食品学报,2003,(3):93-99.
    [4] Goebel N K, Grider J, Davis E A,et al. The effects of microwave energy and conventional heating onwheat starch granule transformations [J]. Food Microstruc,1984,3(1):73-82.
    [5] Shimon M. Mechanisms of Objectionable Textural Changes by Microwave Reheating of Foods:AReview [J]. Journal of Food Science.2011,71:57-62.
    [6]胥义,周国燕,胡桐记等.用DSC测定兔主动脉血管冻结相变区间的表观比热容及其影响因素[J].制冷学报,2005,26(12):2310-2313.
    [7]徐林.高温过程中食品模拟物传热的研究[D].无锡:江南大学,2005.
    [8] Niassar M S, Hozawa M, Tsukada T. Development of probe for thermal conductivity measurement offood materials under heated and pressurized conditions [J]. Journal of Food Engineering,2000,43:133-139.
    [9]毛丹,陈沅江,吴超.热线法测定散体硫化矿石导热系数[J].金属矿山,2009,4:65-69.
    [10] Santos W N D. Thermal properties of polymers by non-steady-state techniques [J]. Polymer Testing,2007,26:556–566.
    [11]陈清华,张国枢,秦汝祥等.热线法同时测松散煤体导热系数及热扩散率[J].中国矿业大学学报,2009,38(3):336-340.
    [12] Hu X P, Mallikarjunan P. Thermal and dielectric properties of shucked oysters [J]. LWT,2005,38:489-494.
    [13] Khraisheh M AM, Cooper T J R, Magee T RA. Microwave andAir Drying I. FundamentalConsiderations andAssumptions for the Simplified Thermal Calculations of Volumetric PowerAbsorption [J]. Journal of Food Engineering,1997,33:207-214.
    [14] Vittorio R R, Francesco M, Umberto T. Modelling of microwave heating of foodstuff: study on theinfluence of sample dimensions with a FEM approach [J]. Journal of Food Engineering,2005,71:233–241.
    [15] Kai K, Marc R, Helmar S. Acomputational model for calculating temperature distributions inmicrowave food applications [J]. Innovative Food Science and Emerging Technologies,2008,9:374–384.
    [16] Mohammad R H, DoY B, Prashanta D. Analysis of microwave heating for cylindrical shaped objects[J]. International Journal of Heat and Mass Transfer,2010,53:5129–5138.
    [17]马振华等.现代应用数学手册.计算与数值分析卷[M].北京:清华大学出版社,2007.12:666-697.
    [18]李春香,范大明,陈卫等.米饭热物性和介电特性研究[J].食品科学,2011(32):103-107.
    [19] LiuY, Tang J, Mao Z H. Analysis of bread loss factor using modified Debye equations [J]. Journal ofFood Engineering,2009,93:453–459.
    [20] Suvi R. Microwave heating uniformity of multicomponent prepared foods [D]. Helsinki: University ofHelsinki Department of Food Technology,2002.
    [21] Pieter V, Ashim K. D, Nguyen T, et al. Acomputation of airflow effects on heat and mass transferin amicrowave oven [J].Journal of Food Engineering,2003,59:181-190.
    [22] Yang H W, Gunasekaran S. Comparison of temperature distribution in model food cylinders based onMaxwell’s equations and Lambert’s law during pulsed microwave heating [J]. Journal of FoodEngineering,2004,64:445–453.
    [23] Dong S L, Dong-Hyuk S, Kit LY. Improvement of temperature uniformity in microwave-reheated riceby optimizing heat/hold cycle [J]. Food Service Technology,2002,2:87–93.
    [24] Geedipalli S S R, Rakesh V, Datta A.K. Modeling the heating uniformity contributed by a rotatingturntable in microwave ovens [J]. Journal of Food Engineering,2007,82:359–368.