用热聚法制备光纤氧传感器敏感材料及其性能,应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气态氧和溶解氧的测定在医学、工业分析、环境监测等领域中具有重要的意义。由于光纤氧传感器具有本质安全、灵敏度高、检测精度高、响应时间快、不受电磁干扰等优点,并可对危险环境中的气态氧和溶解氧进行远程、连续和在线监控,近年来,光纤氧传感器及其敏感材料的研究受到了人们的极大关注。本论文采用热聚法(包括载体共价法和载体共价-交联法)制备氧敏感材料以及在此基础上制备了对葡萄糖敏感的敏感材料,利用氧测试实验或分光光度计对氧敏感材料进行性能评价,研究氧敏感材料在光纤气态氧传感器和光纤溶解氧传感器中的应用以及氧敏感材料在光纤葡萄糖传感器中的应用。
     本论文主要包括以下五个方面的内容:
     (1)载体共价法制备氧敏感材料:通过红外光谱、扫描电镜图谱和氧测试实验探讨该氧敏感材料的制备机理,通过氧测试实验评价该氧敏感材料的氧敏感性和稳定性,同时研究了各种因素对该氧敏感材料性能的影响
     (2)载体共价—交联法制备氧敏感材料:通过红外光谱、扫描电镜图谱和氧测试实验探讨该氧敏感材料的制备机理,通过氧测试实验和分光光度计评价该氧敏感材料的氧敏感性和稳定性,同时研究了各种因素对该氧敏感材料性能的影响
     (3)氧敏感材料在光纤气态氧传感器中的应用:该传感器的响应时间为10s,检测下限为5ppm,检测精度为0.5%,具有较好的重复性和稳定性,迟滞较小,使用寿命至少为1年,适合各种环境下气态氧浓度的检测。
     (4)氧敏感材料在光纤溶解氧传感器中的应用:该传感器的响应时间为20s,重复性和稳定性较好,不受溶液pH值的影响,但受水温影响较大,只能用于低温溶解氧的检测。
     (5)氧敏感材料在光纤葡萄糖传感器中的应用:采用热聚法制备氧敏感材料并在此基础上制备了生物敏感材料——葡萄糖氧化酶玻璃微珠。该生物敏感材料具有较好的生物活性,可用于检测溶液中葡萄糖浓度。
The detection of the dissolved oxygen and the gaseous oxygen is very important in many fields such as medicine, industrial analysis and environmental monitoring. Therefore, the researches of fiber optical oxygen sensors have gotten attention of people in recent years. Fiber optic oxygen sensor have many advantages such as intrinsic safety and high sensitivity, high detection precision, quick response, anti-disturbance of electromagnetism, and it can be used for long-distance, successive and on-line monitoring of dissolved oxygen and the gaseous oxygen in dangerous environment. In this thesis, the oxygen sensitive materials and glucose sensitive materials had been developed by thermo-polymerization method including carrier covalence method and carrier covalence-cross linking method, and the properties had been investigated using the detection experiment of oxygen and spectrophotometer, at the mean time, the applications of oxygen sensitive materials in fiber optical gaseous oxygen sensor and fiber optical dis
    solved oxygen sensor, and that of biology sensitive materials in fiber optical dextrose sensor had been studied in this paper. Major content of this work includes five aspects as follows: (1). Oxygen sensitive materials had been prepared by carrier covalence method, and the preparation mechanism of the materials had been investigated by FI-IR, SEM, and the detection experiment of oxygen. Then through the detection of oxygen, the sensitivity and stability had been estimated, and it was studied that the properties of materials would be affected by the various factors.
    (2). Oxygen sensitive materials had been prepared by carrier covalence-cross linking method, and the preparation mechanism of the materials had been investigated by FI-IR, SEM, and the detection experiment of oxygen. Then through the detection of oxygen and spectrophotometer, the sensitivity and stability had been estimated, and it was studied that the properties of materials would be affected by the various factors.
    (3). For the detection of gaseous oxygen, the fiber optical sensor on basis of oxygen sensitive materials had a respond time of 10s, detection limit of 5ppm
    
    
    
    and detection precision of 0.5%. The sensor had good repeatability and stability, a less delay and at least 1 year life-span. And at the same time, the sensor could be used in various environments for the detection of gaseous oxygen.
    (4). The application of oxygen sensitive materials in fiber optical dissolved oxygen sensor was studied: The respond time is 20s and the repeatability and stability are excellent. The detection of the sensor is not affected by pH value, but is influenced by the temperature of solution, and only could be used in low-temperature solution for detection.
    (5). Glucose oxidase glass micro-pearls, the biology sensitive materials was prepared based on oxygen sensitive materials made by thermo-polymerization method, and could be utilized to detected the concentration of glucose in solution.
引文
[1] 刘迎春,叶湘滨.新型传感器及其应用.湖南:国防大学出版社,1990
    [2] 张志鹏,W. A. Gambling(英).光纤传感器原理.北京:中国计量出版社,1991
    [3] V.Ruddy, B.MacCraith, S.McCabe. Remote flammable gas sensing using a fluoride fiber evanescent prone. Proceedings of SPIE. 1990,1267:97~104
    [4] Brain Culshaw, Emery L. Moor, Zhang Zhi-Peng. Advanced in optical fiber sensor. SPIE optical Engineering Press. 1992, 161~164
    [5] 贾伯年,俞朴.传感器技.南京:东南大学出版社,1993
    [6] 廖延彪.中国光纤传感技术发展的概况.激光与红外.1996,26(4):243~246
    [7] S. M. Klainer. Environmental monitoring applications of fiber optic chemical sensors. Fiber optic chemical sensors, CRC press, Boca, Rtton. 1991,83~122
    [8] B.Culshaw, J.P.Dakin. Optical fiber sensors. Artech House, Vols.1,1989
    [9] K. Chan, H. Inaba, H. Ito, 10km-long Fiber-optical remote sensing of CH_4 gas by near Infrared absorption, Appl. Phys. B 1985, 38: 11~15
    [10] Li Shaohui, Zheng Dingfu, Zhang Gang, Zhang Zhipeng, A fiber sensor used to monitor the content of C_2H_2 gas in the transformer oil, SPIE. 2000, Vol.4077: 165~170
    [11] A.D.Kersey. Overview of multiplexing techniques for intex-fermetric fiber sensors. SPIE VOL. 838, fiber optic and laser sensors V.1987:184~193
    [12] F.A.Muhammad, H. S. Al-Raweshidy, J.M.Senior. Compensation for surface contamination with D-fiber sensor. Sensors and Actuators,B:Chemical. 1997,40(1):59~63
    [13] Stewart, George, A.Mencaglia, W. Philp, Jin Wei. Interferometric signals in fiber optic methane sensors with wavelength modulation of the DFB laser source. IEEE. 1998,16(1): 43~53
    [14] 叶险峰,汤伟中.CH_4气体光纤传感器的研究.半导体光电技术.2000,6:218~220
    [15] T.H.Dubaniewicz,J.E. Chilton. Fiber optics for mine gas monitoring New Technology in Mine Health and Safety. 1992, 24: 81~88
    [16] V.Kumar, D.Chandra. Fiber optic methane sensor for mines. Optical Applicata. 1997, 27(4): 279~290
    [17] 靳伟,廖延彪,导波光学传感器原理与技术.北京:科学出版社,1998
    
    
    [18] 刘瑞复,史锦珊.光纤氧传感器及其应用.北京:机械工业出版社.1987
    [19] Schulman S.G. Fluorescence and Phosphorescence Spectroscopy: Physic-chemical Principles and Practice [M]. Oxford: Pergamon press, 1977. 1~38
    [20] Scott K. Spear, Shawnna L. Patterson, Mark A. Arnold. Flow-through fiber-optic ammonia sensor for analysis of hippocampus slice perfusates. Analytica chimica acta. 1997, 357: 79~84
    [21] Vincenzo Tricoli, E.L. Cussler. Ammonia selective hollow fibers. Analytica chimica acta. 1997, 357: 79~84
    [22] Zhe Jin, Yongxuan Su, Yixiang Duan. Development of a polyaniline-based optical ammonia sensor. Sensors and actuators B. 2001, 72: 75~79
    [23] M.B.Tabacco, T.G.DiGiuseppe. Optical chemical sensors for environmental control and system management. Adv. Spare Res. 1996,18(4): 125~134
    [24] Kinpui Chan, Hiromasa Ito, Humio Inaba. Absorption measurement of v_2+2v_3 band of CH_4 at 1.33μm using an InGaAsP light emitting diode. Applied Optics. 1983, Vol.22, No.23: 3802~3804
    [25] Darryl Y. Sasaki, Seema Singh. Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films [J]. Sensors and Actuators B, 2001, 72: 51~55
    [26] G.Stewart, W.Jin, B.Culshaw. Prospects for fiber optic evanescent field gas sensors using absorption in the near-infrared Sensors and Actuators B: Chemical. 1997,38(1): 42~4730
    [27] Otto S.Wokfbeis, Ashutosh Sharma. Fibre-optic fluorosensor for sulphur dioxide. Analytica Chimica Acta, 1988, 208:53~58
    [28] Demas J.N, Degraff B.A, Xu W Y. Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models [J].Anal. Chen, 1995, 67:1377~1380
    [29] 严卫平,刘文琦,牛德芳,汤素芬.光纤气体传感器的研究.传感技术学报.1998,9:22~25
    [30] Gerhard J. Mohr, Sonja Draxler, Karolina Trznadel. Synthesis and characterization of fluorophore-absorber pairs for sensing of ammonia based on fluorescence. Analytica Chimica Acta.1998, 360:119~128
    [31] M R shariari, J Y Ding, J Tong etal. Sol-gel coating based fiber optic O_2/DO sensors.
    
    Proc. SPIE. 1994, 2086: 224~231
    [32] J.I.Peterson, etal.Anal.Chem. 1980, 52(6):864~868
    [33] Wolthuis R. A. IEEE Transactions on Biomidical Engineering. 1992,39(2): 185~192
    [34] Zeev Rosenxweig, Raoul Kopelman. Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor. Anal. Chem. 1996, 68:1408~1413
    [35] Zeev Rosenxweig, Raoul Kopelman. Development of a submicrometer optical fiber oxygen sensor. Anal. Chem. 1995, 67: 2650~2654
    [36] Xueping Li, Zeev Rosenzweig. A fiber optic sensor for rapid analysis of bilirubin in serum. Analytica Chinica Acta. 1997, 353: 263~273
    [37] Yadong Z, Angela R, Charies S. In situ fiber-optic oxygen consumption measurements from a working mouse heart. Anal. Chem. 1999, 71: 3887~3895
    [38] James N.D., De Graff B A. Oxygen sensors based on luminescence quenching [J]. Analytical Chemistry News&Features, 1999,10:793A~799A
    [39] 李伟,庄峙厦,王小如,等.基于荧光粹灭原理的光纤化学传感器在线监测水中溶解氧[J].北京大学学报(自然科学版).2001,37(2):226~230
    [40] 洪江星,李伟,庄峙厦,等.Sol-gel-derived film for oxygen sensor[J].高等学校化学学报,2000,21(12):34~37
    [41] 褚柳宁.介绍一种测量溶解氧的微星光纤氧传感器.1999,18(2):49~55
    [42] 张民权,陈焕钦,黄国贤.光学氧传感器的研制.分析试验室.1997,16(6):10~14
    [43] 张民权,沈慧芳,杨卓,等.基于荧光猝灭的氧传感器的研制(Ⅰ)——指示剂的合成和筛选.2001,29(1):51~55
    [44] 张民权,沈慧芳,杨卓,等.基于荧光猝灭的氧传感器的研制(Ⅱ)——氧传感器的设计及影响其性能的因素.2001,29(2):61~69
    [45] 吕太平,陈世光,乔小蓉.光纤氧传感器的研制及溶解氧的测定.分析化学.2001,29(2):245
    [46] 杨建华,侯宏,王磊.基于荧光猝灭原理的光学氧传感器.传感器技术.2001,20(9):21~23
    [47] 杨建华,侯宏,王磊.光学氧传感器氧敏感膜的光降解.传感器技术.2001,20(12):3~7
    [48] 何锐,刘光葵.氧传感器及其在汽车中的应用[J].传感器技术.1999,18(3):1~4
    [49] 康锡惠,刘梅清.光化学原理与应用.天津:天津大学出版社,1994.1~30
    
    
    [50] 李新霞,陈坚.光纤化学传感器分子探针的固定方法.化学传感器.1999,Vol.19,No.2:12~17
    [51] 钱军民,李旭祥.固定化技术在生物传感器中的应用.传感器技术.2001,Vol.20,No.7:6-9
    [52] 陈国珍,黄贤智,郑朱梓等.荧光分析法.北京:科学出版社,1990.134~136
    [53] 李果,吴联源,杨忠涛.原子荧光光谱分析.北京:地质出版社,1983.1~25
    [54] Dimarco G, Lanza M. Optical solid-state oxygen sensors using metal porphyry complexes immobilized in suitable polymeric matrices[J].sensors and Actuators B. 2000,63:42~48
    [55] 侯延民,唐江宏,宋书香.乙醇荧光光纤传感器的研究.光谱实验室.2001,3:201~204
    [56] 刘万俊,贺萍,刘万卉.水分荧光光纤化学传感器.光谱实验室.2000,5:262~265
    [57] 刘万卉,杨欣,宁富强等.基于共价固定化苯嵌蒽酮荧光猝灭的药根碱光化学传感器.分析化学.1999,9:17~21
    [58] 伍宣池,何建强.NaHSO_3-O_2-MnSO_4体系引发丙烯酰胺水溶液聚合反应的研究.高分子通讯.1986,6(12):402~408
    [59] James N. Braddock, Thomas J. Meyer. Kinetics of the oxidation of Fe(H_2O)_6 ~(2+)by polypyridine complexes of ruthenium(Ⅱ) negative enthalpies of act activation. Journal of the American Chemical Society. 1973. 95(10): 3158~3162
    [60] 徐运华.用于测定胆固醇含量的荧光式生物传感器研制及应用研究:[硕士学位论文].湖北:武汉理工大学生物中心,2001
    [61] 张建标.基于荧光猝灭原理的光纤氧传感器研究:[硕士学位论文].湖北:武汉理工大学光纤中心,2002
    [62] 北京大学化学系高分子教研室.高分子实验与专论.北京:北京大学出版社,1987.382~387
    [63] 朱健,朱秀林,程振平等.N取代丙稀酰胺的等离子体引发聚合及聚合物性能研究.应用化学.2002,1:53~57
    [64] Oguz Okay, Safiye B.Sariisik. Swelling behavior ofpoly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments. European Polymer Journal. 2000,36:393~399
    [65] Oachim Thiel, Gerd Maurer. Swelling equilibrium of poly acrylamide gels in aqueous salt and polymer solutions. Fluid Phase Equilibria. 1999, 165: 225~260
    
    
    [66] Sun Hang Cho, Mu Shik Jhon, Soon Hong Yuk. Temperature-sensitive swelling behavior of polymer gel composed of poly(N,N-dimethylaminoethyl methacrylate) and its copolymers. European polymer journal. 1999, 35: 1841~1845
    [67] 卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N—异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研研究.高分子学报.1998,2:39~42
    [68] Katsuto Otake, Hiroshi Inomata, Mikio Konn. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules. 1990, 23: 283~289
    [69] 秦正龙,孟庆华.传感器及其在水质监测中的应用.环境导报.1998,2:9~11
    [70] 李一峻,何锡文,史慧明.微型葡萄糖传感器及其在活体分析中的应用和进展.分析化学.1997,6:728~733
    [71] 虞颂庭.生物医学工程的基础与临床.天津:科学技术出版社,1958
    [72] 王顺光,吉鑫松,袁中一.醋酸纤维素膜为基础的葡萄糖生物传感器的研制.生物工程学报.1995,11:260~265