鳗鲡循环水养殖中水处理技术与养殖效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着水环境的污染加剧,传统的依靠好水源养殖鳗鲡的方式受到了极大的挑战,这就使得发展循环水养殖模式意义特别重大。本课题组自行设计建立简易的鳗鲡循环水养殖系统,本系统包括A、B两套不同污水处理工艺流程:两套污水处理面积分别为302.86 m~2和196.17 m~2,A套处理工艺流程为养殖污水依次流经下行生物膜池、上行生物膜池、下行牡蛎壳池和上行牡蛎壳池进行生物和物理净化处理;B套为养殖污水仅流经下行牡蛎壳池和上行牡蛎壳池净化处理,然后通过曝气流入养殖池循环利用。本论文主要围绕两套处理工艺开展试验,研究A套不同日处理污水量及其处理效果、比较A、B两套处理效果的差异、比较A套的聚酰胺丝和B套的牡蛎壳两种填料的处理性能,同时研究了循环水养殖中采用不同增氧设备的增氧效果以及池塘精养模式与循环水养殖模式的鳗鲡养殖效果,结果如下。
     1.A套的污水处理效果。在三种不同污水日处理量下,生物膜池和牡蛎壳池的串联模式对养殖污水的处理具有显著的效果。日处理量为672 m~3时,A套处理池对TAN(氨氮)、NO_2~--N、浊度的平均去除率分别为86.53±2.03 %、95.32±1.54 %、90.5±2.4 %,进水pH为7.39,出水pH为8.56。日处理量为846 m~3时,对TAN、NO_2~--N、浊度平均去除率分别为82.3±3.83 %、94.2±1.34 %、91.5±2.6 %,进水pH为7.39,出水pH为8.26;日处理量为1560 m~3时,对TAN、NO_2~--N、浊度平均去除率为58.25±8.88 %、86.92±1.51 %、88.9±3.5 %,进水pH为7.53,出水pH为8.05。随着日处理量的增大,系统的去除率降低,但出水水质均符合《渔业水质标准》。
     2.比较研究A、B两套处理工艺对污水处理的效果。结果显示,日处理量为432m~3/d条件下,A套和B套处理池出水pH均升高,进水pH为7.36,出水pH分别升高到8.65和8.87。进水DO(溶解氧)为8.89±0.93 mg/L,出水DO分别为9.34±0.69 mg/L和8.28±0.75 mg/L。A套和B套处理池对浊度的去除率分别达到94.54±2.43 %和91.73±3.94 %。对氨氮的单位面积去除量分别为1325.13±171.49 mg/(m~2·d)和1838.81±269.16 mg/(m~2·d),单位面积去除量两者具有显著性差异(P < 0.05)。对亚硝酸盐氮的单位面积去除量分别为687.53±91.66 mg/(m~2·d)和678.27±122.74 mg/(m~2·d),单位面积去除量两者没有显著性差异(P > 0.05)。
     3.比较A套处理池中聚酰胺弹性填料和B套处理池中牡蛎壳填料在不同污水日处理量下的处理效果。在对比试验中,日处理量为432 m~3/d时,聚酰胺弹性填料和牡蛎壳填料对氨氮的单位面积去除量分别2238.63±168.83 mg/(m~2·d)和1625.94±181.28 mg/(m~2·d);对亚硝酸盐氮的去除量分别1142.64±317.29 mg/(m~2·d)和862.52±236.12 mg/(m~2·d);对活性磷的去除量分别为1347.84±535.17 mg/(m~2·d)和1548.86±491.76 mg/(m~2·d);对CODcr的去除量分别为91597.36±8262.62 mg/(m~2·d)和68157.21±7415.47 mg/(m~2·d)。日处理量提升至672 m~3/d时,聚酰胺弹性填料和牡蛎壳填料对氨氮的单位面积去除量分别2217.64±878.19 mg/(m~2·d)和1486.47±664.19 mg/(m~2·d);对亚硝酸盐氮的去除量分别为937.43±147.19 mg/(m~2·d)和611.10±95.78 mg/(m~2·d);对活性磷的去除量分别为923.44±233.00 mg/(m~2·d)和1607.59±300.34 mg/(m~2·d);对CODcr的去除量分别为73734.93±3934.23 mg/(m~2·d)和55935.16±2050.11 mg/(m~2·d)。
     4.应用A套循环水养殖模式与传统池塘精养模式的比较。结果显示采用室内循环水养殖模式的美洲鳗鲡生长率达56.9 %,饲料转化率达60.6 %,存活率为99.9 %,采用传统池塘精养模式的美洲鳗鲡生长率为25.0 %,饲料转化率为56.5 %,存活率为97.6 %,而且循环水养殖模式下,TAN质量浓度为0.61±0.31 mg/L,NO2--N质量浓度为0.15±0.10 mg/L,DO浓度为5.46±0.56 mg/L,pH为7.36±0.26,池塘精养模式下,TAN质量浓度为0.84±0.15 mg/L,NO2--N质量浓度为0.11±0.06 mg/L,DO浓度为6.08±0.60 mg/L,pH为7.53±0.06,均符合鳗鲡生长的水质要求。在节能减排方面,循环水养殖模式单位养殖面积可节约电能约10.2 %以上,养殖污水重复利用率为83.7 %,具有较好的经济效益和生态效益。
     5.应用微孔曝气增氧与水车式增氧机两种方式的增氧效果的比较。在鳗鲡循环水养殖中,未载鱼情况下,两种增氧方式的增氧能力具有极显著性差异(P < 0.01),微孔曝气增氧方式比水车式增氧机的单位水体增氧能力提高了15.85 %,增氧动力效率是水车式增氧机的2.36倍。在载鱼养殖情况下,使用微孔曝气增氧的试验池表层水的平均溶氧值为5.81±0.14 mg/L,而使用水车式增氧机的表层平均溶解氧值为6.39±0.25 mg/L,前者显著低于后者(P < 0.05),但底层水的溶解氧两者分别为5.74±0.14 mg/L和5.75±0.26 mg/L,两者没有显著差异(P > 0.05)。微孔曝气增氧方式单位养殖水体的用电量比水车式增氧机节省57.6 %,且无安全隐患。由于微孔曝气增氧池水的流动性小,鳗鲡活动消耗的能量减少,且水温较高,摄食量增大。因此,使用微孔曝气增氧方式的鳗鲡养殖效果较好。
     A套处理池在三种污水日处理量下,出水水质稳定,且符合鳗鲡生长的水质要求,能够在日常生产中应用。A、B两套处理池对各项水质指标的质量浓度处理效果明显,出水pH均有升高现象,其中B套对浊度和亚硝酸盐氮的单位面积去除量与A套相当,且B套结构简易,处理成本低。A、B套中两种填料的处理性能差异显著,聚酰胺填料因其比表面积大,对氨氮、亚硝酸盐氮和CODcr的去除效果较好,但对活性磷和浊度的去除不及牡蛎壳填料,另外,B套为新建处理池,整体生物附着量较少,处理效果还需进一步研究,因此,在生产中牡蛎壳填料具有更高的性价比。应用A套系统的循环水养殖模式的养殖效果显著好于池塘精养模式。在鳗鲡循环水养殖池中采用微孔曝气增氧方式的增氧效果明显优于水车式增氧机,具有运行安全、节约电能等优点。
In recent years, due to water pollution, the traditional way of eel culture by replacing large quantity of clean fresh water faces great challenges. This makes the development of adopting circulating water system for eel culture to be of great significance. Two sets of different aquaculture sewage treatments (A set and B set) in a circulating water system have been designed and practiced in eel culture. The areas of A set and B set were 302.86 m~2 and 196.17 m~2 respectively. The sewage from eel farming pond in A set was treated in order of descending polyamide yarn pool, uplink polyamide yarn pool, descending and uplink oyster shell pools. The sewage in B set was treated only by descending and uplink oyster shell pools. After treatment, water was reused for eel culture. The present research was mainly involved in the efficency of the two sets of sewage treatment. A study was carried out in A set on different daily treating sewage quantities to evaluate its efficiency. The treatment effect was also compared between A set and B set, and between polyamide yarn in A set and oyster shells in B set. Aerobic effect was evaluated by using different equipment in eel ponds. The culture effect was compared between the traditional way and circulating water aquiculture model. The results are as follows.
     1.Sewage treatment effect of A set. When daily treating sewage of 672m~3 in A set, the removal efficiencies of TAN(tatol ammonia nitrogen),NO_2~--N and turbidity were 86.53±2.03%,95.32±1.54% and 90.5±2.4% respectively; the pH value was 7.39 in influent, and increased to 8.56 in effluent. When daily treating sewage of 846 m~3, the removal efficiencies of TAN,NO_2~--N and turbidity were 82.3±3.83 %,94.2±1.34 % and 91.5±2.6%; the pH value increased from 7.39 in influent to 8.26 in effluent. When treating sewage of 1560 m~3, the removal efficiencies of TAN,NO_2~--N and turbidity were 58.25±8.88 %,86.92±1.51 % and 88.9±3.5%; the pH value increased from 7.53 in influent to 8.05 in effluent. The results indicated that the removal efficency decreased with the increasing of the treating quantity,but the effluent water complied with the water quality standard of fishery.
     2.Comparative study on the sewage treatment effect between A set and B set. When daily treating sewage of 432 m~3, the pH values in A set and B set rised from 7.36±0.07 in influent to 8.65 and 8.87 in effluent respectively. The DO(dissolved oxygen) in both sets was 8.89±0.93mg/L in influent, then were 9.34±0.69mg/L and 8.28±0.75 mg/L in effluent respectively. The average turbidity removal efficiencies in A set and B set were 94.54±2.43% and 91.73±3.94% respectively. The TAN removal quantities per unit area in A set and B set were 1325.13±171.49 mg/(m~2·d) and 1838.81±269.16 mg/(m~2·d), the former significantly lower than the latter (P < 0.05). The NO_2~--N removal quantity per unit area was 687.53±91.66 mg/(m~2·d) and 678.27±122.74 mg/(m~2·d) respectively, both had no significant difference (P > 0.05).
     3.Comparison of the treatment effects between the polyamide elastic packing in A set and the oyster shells packing in B set. When daily treating sewage of 432 m~3, the removal quantities per unit area of TAN by polyamide elastic and oyster shells were 2238.63±168.83 mg/m~2·d and 1625.94±181.28 mg/m~2·d respectively; the nitrite nitrogen were 1142.64±317.29 mg/m~2·d and 862.52±236.12 mg/m~2·d; the activity phosphorus were 1347.84±535.17 mg/m~2·d and 1548.86±491.76 mg/m~2·d. The CODcr were 91597.36±8262.62 mg/m~2·d and 68157.21±7415.47 mg/m~2·d. When daily treating swage of 672 m~3, the removal quantity per unit area of ammonia nitrogen by polyamide elastic and oyster shells were 2217.64±878.19 mg/m~2·d or 1486.47±664.19 mg/m~2·d; the nitrite nitrogen were 937.43±147.19 mg/m~2·d and 611.10±95.78 mg/m~2·d; the removal quantity of activity phosphorus were 923.44±233.00 mg/m~2·d and 1607.59±300.34 mg/m~2·d; the CODcr were 73734.93±3934.23 mg/m~2·d and 55935.16±2050.11 mg/m~2·d.
     4.The comparison of culture effects between circulating water aquaculture mode in A set and traditional way. The results showed that the growth rate of Auguilla rostrata in the circulating water model was 56.9%, feed conversion rate was 60.6%, and the survival rate was 99.9%, while the growth rate of Anguilla rostrata in the traditional way was 25.0%, the feed conversion rate was 56.5%, and the survival rate was 97.6%, In the circulating water model, the TAN concentration was 0.61±0.31 mg/L, NO2--N was 0.15±0.10 mg/L, the DO was 5.46±0.56 mg/L, pH was 7.36±0.26. while in traditional way, the TAN concentration was 0.84±0.15 mg/L, NO2--N was 0.11±0.06 mg/L, DO was 6.08±0.60mg/L, pH was 7.53±0.06. In energy conservation and emission reduction, the circulating water model could save more than 10.2% energy than traditional way and reuse 83.7% of discharged water.
     5.The comparison on the increasing oxygen by application of micropore aerators and waterwheel aerators in eel ponds. The results showed that there was significant difference in the aeration efficiency between the ways of aeration under unloading fish(P < 0.01). The aeration capacity of the micropore aerator was 15.85% higher than that of the waterwheel aerator, and the aeration efficiency of the former was 2.36 time as that of the latter. But under the case of loading fish, the average dissolved oxygen of surface water by the former was 5.81±0.14 mg/L, and that of the latter was 6.39±0.25mg/L; the dissolved oxygen of bottom water were 5.74±0.14 mg/L by the former and 5.75±0.26 mg/L by the latter. Using micropore aerator can save 57.6% electricity and was much safer than using waterwheel aerator. The eel grew much faster by the former than the latter.
     The effluent water from circulating water system was stability, and conform to the requirements for quality of the eel growth. The pH of effluent water rised obviously in both A set and B set. The removal effects of turbidity and nitrite nitrogen in B set were close to those of A set, and because of simple structure and low cost, B set had better application prospect. The treatment effect of polyamide elastic packing in A set and oyster shells packing in B had significant difference. The polyamide had better effect in the removal of ammonia nitrogen, nitrite nitrogen and CODcr because of its large surface area than the packing of oyster shells, but the removal effects of active phosphorus and turbidity of the polyamide were lower than those of oyster shells. It must be point out that the B set was new constructed, and there was less little biomass on the packing which might effect the treatment effect and need further study. In circulating water model in A set, the growth rate, feed conversion rate, survival rate and the cultivation effect were higher than those in traditional way. In comparison with waterwheel aerator, the way of microporous aeration achieved better cultural effect, and was more safety and energy saving.
引文
[1]樊海平.我国鳗鲡养殖业的现状与发展对策[J].科学养鱼,2006,2:1-2.
    [2]陈立法.鳗苗成功繁殖惊起国内波澜[J].海洋与渔业:水产前沿,2010,6:7-7.
    [3]罗国芝,朱泽闻.我国循环水养殖模式发展的前景分析[J].中国水产,2008,2:75-77.
    [4]丁永良,曲善庆.回眸工业化养鱼30年[J].现代渔业信息,2003(1):9-14.
    [5]丁永良,张明华.台湾省的特色水产养殖业与工业化养鱼[J].现代渔业信息,2003(6):9-13.
    [6]丁永良.世界工业化养鱼发展动向[J].河南水产,1999(1):33-34.
    [7]丁永良.纳米科技养鱼新技术综述[J].现代渔业信息,2003(12):3-8.
    [8]倪琦,雷霁霖,张和森,等.我国鲆鲽类循环水养殖系统的研制和运行现状[J].渔业现代化,2010, 4:1-9.
    [9]朱庆国.封闭式循环水饲养青石斑鱼试验[J].福建水产,2006,108(1):36-38.
    [10]吴雄飞,赵志东,李德尚,等.封闭式循环水虾-贝综合养殖模式的研究[J].中国水产学会2003年学术年会,2003,108(1):36-38.
    [11]刘寒文,白遗胜,万建业,等.循环水人工繁育鳜鱼试验[J].水产养殖,2008,2:14-15.
    [12]徐崇仁.台湾超集约循环水养殖之现况与展望[J].水产养殖,2008,2:14-15.
    [13]刘兴国,黄种持,任忻生.土池循环水无公害养鳗模式初探[J].渔业现代化,2005,5:18-19.
    [14]倪琦,管崇武,王剑锋,等.利用循环水和人工湿地技术改建鳗鲡精养池试验[J].渔业现代化,2009, 5:4-9.
    [15]Davidson J,Helwig N,Summerfelt S T.Fluidized sandbiofihers used tO remove ammonia,biochemical oxygen demand,total coliform bacteria,and suspended solids from an intensive aquaculture effluentl[J].Aquacultural Engineering,2008,(4):1-lO.
    [16]Ridha M T, Cruz E M. Effect of biofilter media on water quality and biological performance of the Nile tilapia(Orelchromis niloticus L).reared in a simple recirculating system[J]. Aquacultural Engineering,2001,24:157-166.
    [17]丁永良,张明华,张建华,等.鱼菜共生系统的研究[J].中国水产科学,1997,4(5):70-76.
    [18]Qin G,Liu C C K,Richman N H,et a1.Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology:a pilot study on Coconut Island, Hawaii[J].Aquacultural Engineering,2005.32:365-378.
    [19]郑瑞东,李田.泡沫分离法在工厂化养殖废水处理中的应用研究[J].渔业现代化,2005,33(2): 33-35.
    [20]杜守恩.两项新技术及其在海水苗种生产中的应用[J].海洋湖沼通报,1995,18(3):59-62.
    [21]Kazuyoshi Suzuki,Yasuo Tanaka,Takashi Osada, et al.Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration[J].Water Research, 2002,36:2991-2998.
    [22]金秀琴,吴振明.养殖生物用水净化处理新技术及应用[J].渔业现代化,1998,25(2):7-9.
    [23]王园园,泮进明,谢可军,等.工厂化水产养殖废水处理的研究与展望[J].中国农机化,2004(5): 54-56.
    [24]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报,2004,lO(4): 521-525.
    [25]China K.K.,Ong S.I.Water conservation and pollution control for intensive prawn farms[J].Water Science and Technology,1997,35(8):77-81.
    [26]江伟,江远清.生物转盘处理水产养殖废水的氨氮研究[J].北京水产,2O02,2l(3):12-l3.
    [27]Abeysinghe D.H, Shanabeh A,Rigden B.Biofilters for water reuse in aquaculture[J]. Water Science and Technology,1996,34(11):253-260.
    [28]刘鹰,王玲玲.集约化水产养殖污水处理技术及应用[J].淡水渔业,1999,29(10)22-24.
    [29]Jewell William J,Cummings Robert J.Expanded bed treatment of complete recycle aquaculture systems[J].Water Science and Technology,1990,22(1-2):443-450.
    [30]Arbiv R, Rijn J V. Performance of a treatment system for inorganic nitrogen removal in intensive aquaculture systems[J].Aquacultural Engineering.1995.(2):l89-203.
    [31]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报,2004,lO(4): 521-525.
    [32]Umble A K, Kctchum L H Jr. A Strategy for coupling municipal water treatment using the sequencing batch reactor with effluent nutrient recovery through aquaculture[J].Water Science and Tethnology,1996,35(1):l8-20.
    [33]Sauthier N,Grasmick A,Blancheton J P.Biological denitrification applied to a marine closed aquaculture system[J].Water Research,1998,32(6):1932-1938.
    [34]KimS K, Kong I, Lee B H, et a1.Removalof ammonium-N from a recirculation aquacultural system using an immobilized nitrifier[J].Aquacultural Engineering,2000,21:139-15O.
    [35]张伟权.南美白对虾半精养生产技术指南[M].中国科学院海洋研究所《海洋科学》编辑部.115-121.
    [36]Moriarty D J W.Control of luminous Vibrio species in penaeid aquaculture ponds[J]. Aquaculture,1998,164:351-358.
    [37]Dumas A,Laliberte G, Lessard P, et a1.Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri[J].Aquacultural Engineering.1998,17:57-68.
    [38]胡海燕,卢继武,杨红生.大型藻类对海水鱼类养殖水体的生态调控[J].海洋科学,2003,27(2):20.
    [39]莫照兰,王祥红,俞勇.等.虾池有机污染物降解细菌的筛选[J].水产学报,2000,24(4):334-338.
    [40]俞勇,李会荣,李筠.虾池养殖环境有机污染物降解细菌的筛选[J].青岛海洋大学学报,2003,33 (1):65-70.
    [41]Lin Y F,Jing S R,Lee D Y,et a1.Nutrient removal from aquaculture wastewater using a constructed wetlands system[J].Aquaculture,2002,209:169-184.
    [42]Tilley D R, Badrinarayannh, Rosatir,et a1. Constructed wetlands as recironlation filters large-scale shrimp aquaculture[J].Aquaculture Engineering,2002,26:81-109.
    [43]吴振斌,李谷,付贵萍,等.基于人工湿地的循环水产养殖系统工艺设计及净化效能[J].农业工程学报,2006,22(1):129-133.
    [44]Ian Mayer,Ewen McLean.Bioengineering and biotechnological strategies for reduced waste aquaculture[J].Water Science and Technology,1995,31(10):85-102.
    [45]Logsdon Gene.Is duckweed the ultimate wastewater purifier[J].BioCycle,1989,30(6):70-71.
    [46]黄国强,李德尚.一种新型对虾多池循环水综合养殖模式[J].海洋科学,2001,25(4):48-49.
    [47]何玉明,王维善,周凤建,等.生态型循环水处理系统在工厂化养鱼中的应用研究[J].渔业现代化,2006,34(5):9-l4.
    [48]熊国中,沈兵.海湖滨区鱼塘污染状况调查研究[J].云南环境科学,2000,19(3):32-34.
    [49]张列士.淡水养鱼高产新技术[M].第一版.北京:金盾出版社,1997.
    [50]萧秋成.水库渔业经济效益分析[J].江西水利科技,1991(3):250-274.
    [51]LOSORDOD T M.An introduction to recirculation production sys-tems design[C].Proceeding from the aquaculture symposium.Ithaca,New York:Cornell University.April4-6.
    [52]陈有光,段登选,马荣棣,等.公害工厂化温流水养鱼技术操作规程要点[J].渔业现代化,2003(5): 19-21.
    [53]刘鹰.封闭循环水工厂化养鱼系统的基础设计[J].水产科学,2004(12):36-38.
    [54]张义香.海水鱼类工厂化养殖的现状与发展趋势[J].水产科学,2005,24(5):5O-52.
    [55]薛志勇,曲克明,孙德强,等.工厂化循环水养殖项目的实施与效果[J].渔业现代化,2007(5):13-14.
    [56]杨红生.试论我国“蓝色农业”的第二次飞跃[J].世界科技与进展,1999(4):45-49.
    [57]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验[J].环境科学,1999.20(5):69-71.
    [58]J.J.chen,D.McCarty,D.Slack,et al.Full scale studies of a simplified aerated filter (BAF) for organic and a nitrogen removal[J].Wat.Sci.Tech.2000.41(4-5):1-4.
    [59]李晓莉,付永忠,石太宏.曝气生物滤池应用于封闭循环海水养殖系统的试验研究[J].环境科技,2009(02):43-45.
    [60]朱正齐,姜佩华,陈季华.曝气生物滤池(BAF)的研究进展[J].净水技术,2005(1):21-23.
    [61]黄健盛,谷晋川,王永强,等.曝气生物滤池处理生活污水试验研究[J].西华大学学报(自然科学版), 2006,25(4):47-49.
    [62]J.Cromphout.Design of an upflow biofilm reactor for the elimination of high ammonia conentration in eutrophic surface water[J].Water Supply,1992,10(3):145-150.
    [63]邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验研究[J].环境工程,2001,19(2): 22-24.
    [64]Allan TMann, Leopoldo Mendoza-Espinos, Tom Stephen-son. Performance of floation and sunken media biological aerated filters under unsteady conditions[J].Water Res,1999,33(4):1108 -1113.
    [65]Rebecca Moore,Joanne Quarmby,Tom Stephenson.The effects of media size on the performance of biological aerated filters[J].Water Res,2001:35(10):2514-2522.
    [66]张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状[J].北京石油化工学院学报,2005,13(3): 24-30.
    [67]田伟君,郝芳华,翟金波.弹性填料净化受污染入湖河流的现场试验研究[J].环境科学,2008(5): 1308-1312.
    [68]Nicol S,周培文.废弃贝壳的再利用[J].世界科学,1991(11):16-17.
    [69]许春辉.贝壳类材料装饰应用研究[D].苏州:苏州大学,2009.
    [70]李秀华,袁启明,杨正方.贝壳结构及陶瓷的仿生研究[J].硅酸盐通报,2003(2):53-56.
    [71]毕见重,路春美,王永征.贝壳的微观结构与煅烧特性[J].化工学报,2002,53(11):1128-1132.
    [72]Kwon Hyok Bo,Lee Chan Won,Jun Byung Sei.Recycling waste oyster shells for eutrophication control[J].Resources Conservation and Recycling,2004,41:75-82.
    [73]肖羽堂,吴鸣,刘辉,等.弹性填料微孔曝气生物膜法修复污染水源NH4+-N[J].环境科学,2001,22 (3):40-43.
    [74]张小东,杨波,陈季华,等.生态弹性填料及陶粒在微污染水体处理中的应用研究[J].中山大学学报(自然科学版).2007,(S1).
    [75]王建明.循环水鳗鲡养殖水处理技术的应用研究[D].厦门:集美大学,2010.
    [76]国家环境保护总局.水和废水检测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [77]赵亮,万全,孙德祥.光合细菌对河蟹全封闭育苗系统水质的影响[J].淡水渔业,204,34(1):12-15.
    [78]邓晓皋,唐斌.几株光合细菌的分离鉴定及用于水质净化的初步研究[J].四川师范学院学报, 2001,22(1):14-17.
    [79]熊小京,黄智贤,景有海,等.牡蛎壳填料浸没式生物滤池的除磷特性[J].环境污染与防治,2003,25 (6):329-331.
    [80]M M aurer,D A brmovich,H Siegrist,et al.Kinetics of biologically induced phosphorus precipitation in water treatment[J].Wat Res,1993,33(2):484-493.
    [81]王建国.养殖废水处理研究进展[J].广东化工,2010,37(6):214-216.
    [82]李雪梅.自然生物处理和石灰混凝沉降工艺处理养殖场废水的试验研究[D].四川:四川
    [83]张硕,董双林,王芳.中国对虾生物能量学研究温度和体重对能量收支的影响[J].青岛海洋大学学报,1998,28(2):228-232.
    [84]田相利,董双林,王芳.不同温度对中国对虾生长及能量收支的影响[J].应用生态学报,2004,15 (4):678-682.
    [85]董双林,堵南山,赖伟.pH值和Ca2+浓度对日本沼虾生长和能量收支的影响[J].水产学报,1994, 18(2):118-123.
    [86]林玉坤.欧洲鳗鲡池塘健康养殖的水质调控技术[J].中国水产,2005,5:41-43.
    [87]王兴强,马甡,董双林.盐度和蛋白质水平对凡纳滨对虾存活、生长和能量转换的影响[J].中国海洋大学学报,2005,35(1):33-37.
    [88]Lester L J,Pante M J.Penaeid temperature and salinity responses[A].Fast A W, Lester L J.Marine shrimp culture:principles and practices[C].Amsterdam:Elsevier,1992.515-534.
    [89]胡萍华,金一春,曲学伟,等.氨氮对白斑狗鱼成鱼的急性毒性研究[J].湖南农业科学2010,(3): 109-111
    [90]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究[J].水产养殖,2002,(01): 22-24.
    [91]Siikavuopio S I.Effect of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua[J].Aquaculture,2006(255):351-356.
    [92]夏苏东,李勇,王文琪,等.养殖自污染因子对虾蟹健康的影响及其机理与控制[J].水产科学,2009, 28(6):355-360.
    [93]中华人民共和国农业部.GB11607-89渔业水质标准[S].北京:中国标准出版社,1989.
    [94]郭国军,齐子鑫.精养池塘水质调控关键技术[J].河南水产,2009,(3):25-30.
    [95]杨明,臧维玲,戴习林,等.不同底质对罗氏沼虾幼虾生长的影响[J].水产科技情报,2008,35 (3):105-108.
    [96]郭恩棉,于友庆.沙质底质与无沙底质水族箱水质因子变化的比较[J].安徽农业科学,2009,37 (26):12689-12691,12718.
    [97]丁永良.谈增氧机[J].淡水渔业,1976,(8):9.
    [98]丁永良.增氧机的研究[J].农业机械学报,1986,(4):54-59.
    [99]薛勇.增氧机的配置与使用[J].农村科学试验,2008,(8):36.
    [100]陈东.高效使用增氧机[J].农家科技,2007,(7):46.
    [101]廖国章.增氧机的类型及其池塘增氧效果[J].海外渔业,2004,(1):42-45.
    [102]丁永良.增氧机的类型与生物学功能[J].中国水产,1992,(8):39-40.
    [103]丁永良.叶轮增氧机开创了我国池塘养鱼高产的新纪元[J].渔业现代化,2007,(5):3-7.
    [104]朱松明.叶轮式增氧机的研究[J].农业工程学报,1993,(1):105-110.
    [105]吴鸿举.叶轮式增氧机叶轮受力分析探讨[J].湖南农学院学报,1989,(3):91-97.
    [106]张蕾.优质鳗鱼高产养殖技术[J].渔业致富指南,2008,(4):40-41.
    [107]刘勃,王小蓉,蒋国春.底层管道微孔曝气增氧在常规鱼养殖池中的试验[J].水产养殖,2008,29 (4):28-29.
    [108]韩永良,蒋国春.河蟹养殖应用管道微孔曝气增氧新技术获高产高效[J].渔业致富指南,2008, 12:51.
    [109]陈凡,叶键,蒋静,等.微孔曝气底增氧系统在鳖虾混养中的应用[J].水产养殖,2009,(6):1-2.
    [110]彭刚,陆全平,朱银安.微孔增氧技术在青虾养殖中的应用试验[J].科学养鱼,2009,(2):34.
    [111]屠银华.应用池塘底部增氧技术养殖南美白对虾效果好[J].科学养鱼,2006,(9):31.
    [112]周惠钟,宣引明,王国兴,等.两种增氧机增氧及养殖效果的对比试验[J].水产养殖,2007,(4): 33-34.
    [113]王玮,陆庆刚,顾海涛,等.微孔曝气增氧机的增氧能力试验[J].水产学报,2010,34(1):97-100.
    [114]Capela S, Roustan M, He duit A. Transfer number in fine bubble diffused aeration systems [J].Water Sci Technol,2001,43:145-152.
    [115]Gillot S, Capela S,Heduit A. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants[J].Water Res.2000,34:678-683.
    [116]余立新,胡伯成,唐锡良,等.SC/T 6009–1999增氧机增氧能力试验方法[S].北京:中国标准出版社,1999.
    [117]冯国明.夏秋水产养殖高效管理措施[J].渔业致富经指南,2010,19:31.
    [118]史为良.水体溶氧的变化规律[J].农村养殖技术,2003,15:16.