大鼠减体积肝移植术后肝脏再生差异蛋白及再生诱导免疫低反应性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨改良后的大鼠减体积肝移植模型的效果;为进一步进行大鼠减体积肝移植术后肝脏再生及免疫的研究提供重要的技术平台和前提条件。
     方法:
     1.实验大鼠均为健康的SD大鼠,体重260-280 g,供体为雌性,受体为雄性,供、受体体重相差10 g左右,一般为供体体重比受体体重轻。
     2.供体采用单人裸眼操作,在取肝的过程中即进行减体积操作;修肝时将套管柄置于门静脉和肝下下腔静脉的正前方,将幽门静脉结扎点外翻于套管外并置于套管柄的左侧,即肝脏的左侧;将右肾上腺静脉结扎点外翻于套管外并置于套管柄的右侧,即肝脏的右侧;供肝套管完成后用灌注液对门静脉和肝下下腔静脉进行冲洗;然后以左膈静脉为标识点进行7-0无损伤血管缝线吊线。3.受体切肝前采用单人裸眼操作,从新肝移植开始采用双人裸眼配合操作;供体完成胆道支撑架安置以后,受体即开始手术;肝上下腔静脉吻合时,左右固定位点采用“8”字形外翻缝合,后壁和前壁分别采用连续吻合,门静脉和肝下下腔静脉采用改良的双袖套法,胆道支撑管法建立大鼠减体积的稳定模型。
     4.改良的的大鼠减体积肝移植采用文献报道的方法进行,供肝在修肝盆中进行相应的肝叶切除。
     5.改良前和改良后两组术中和术后均观察大鼠的症状和体征、各种并发症的发生情况、术后生存情况、肝功能的变化等等。
     结果:
     1.改良后的减体积肝移植模型供体手术时间为32±2 min,修肝时间为6±2 min,受体手术时间为40±3 min,无肝期时间为14±3 min,供肝的冷保存时间为51±3min;手术的成功率为92%,术后3 d的存活率为85%,术后2周存活率为83%;术后并发症较改良前明显减少,差异有显著性(P<0.05)。
     2.术后1 d、3 d和7 d的肝功能ALT变化为改良后较改良前低,改良后血清ALT与同期的改良前组比较差异有显著性(P<0.05);术后第14 d和21 d,改良后血清ALT与同期的改良前组比较差异无显著性(P>0.05)。
     3.术后1 d、3 d和7 d的肝功能TBIL变化为改良后较改良前低,改良后血清TBIL与同期的改良前组比较差异有显著性(P<0.05);术后第14 d和21 d,改良后血清TBIL与同期的改良前组比较差异无显著性(P>0.05)。4.术后1 d、3 d和7 d的胆碱酯酶变化为改良后较改良前升高,改良后血清胆碱酯酶与同期的改良前组比较差异有显著性(P<0.05);术后第14 d和21 d,改良后血清胆碱酯酶与同期的改良前组比较差异无显著性(P>0.05)。
     5.术后1 d和3 d的血氨变化为改良后较改良前降低,改良后血清血氨与同期的改良前组比较差异有显著性(P<0.05);术后第7 d、14 d和21 d,改良后血清血氨与同期的改良前组比较差异无显著性(P>0.05)。
     结论:
     1.改良大鼠减体积模型采用供体灌注完成后,在切取供肝的过程中进行相应肝叶的切除;可获得高质量、满意的减体积供肝;供受体手术配合,尽量的缩短供肝的冷保存时间;改进的血管吻合技术缩短无肝期、减少术后出血;对诸多细节操作的改进等;这些可以尽量的减少大鼠减体积肝移植术中和术后的并发症,提高大鼠减体积肝移植模型的成功率和长期生存率。是一种值得推广的大鼠减体积肝移植模型。
     2.成功的改良大鼠减体积肝移植模型为我们下一步进行大鼠减体积肝移植术后肝脏的再生和免疫的研究提供了研究的基础和前提。
     目的:
     探讨在成功建立大鼠减体积肝移植模型的基础上;利用蛋白质组学的技术研究大鼠减体积肝移植术后肝脏再生的蛋白质组学的变化,找到与肝脏再生有关的差异蛋白质。
     方法:
     1.实验大鼠供体均为健康的Lewis雌性大鼠,体重200-230 g左右;受体为均为健康的Wistar雄性大鼠,体重220-250 g左右。
     2.采用改良法建立Lewis-Wistar的大鼠减体积肝移植模型,供肝与受体肝之比大约50%左右。术后使用FK506抗免疫排斥药物,按照0.1 mg/kg·d服用。在肝移植术后1 d、3 d和7 d获取移植后的肝脏组织标本,供体和受体的正常肝脏组织标本在进行移植手术时获取,将标本放置在-70℃冰箱保存。
     3.将获取的标本进行大鼠减体积肝移植术后的蛋白质组学的检测分析。对移植后的肝脏组织与供体和受体正常肝脏组织进行比较蛋白质组学的研究,即在双向电泳的基础上进行MS-MS串联质谱分析,从而鉴定表达差异在10倍以上的蛋白质点,分析差异表达的蛋白质的功能,以及与大鼠减体积肝移植术后肝脏再生的相关性等。
     结果:
     1.得到了分辨率较高、重复性较好的双向凝胶电泳图谱,以差异10倍以上为标准,共找到了72个差异蛋白质点。
     2.对72个差异表达的蛋白质点进行MS-MS串联质谱鉴定和肽谱指纹图分析,72个点全部鉴定出,共鉴定到40种蛋白。
     3.这些蛋白主要参与细胞信号转导、应激反应、氧化还原、碳水化合物代谢、能量代谢、氨基酸代谢和细胞骨架等生理过程。有些蛋白直接或者间接参与肝移植术后肝脏再生的过程。
     结论:
     1.成功建立Lewis-Wistar大鼠减体积肝移植模型。
     2.采用比较蛋白质组学的方法成功鉴定了72个差异蛋白质点40种蛋白。
     3.找到与大鼠减体积肝移植术后肝脏组织细胞再生有关的差异蛋白,这些蛋白质对大鼠减体积肝移植术后肝脏组织细胞的再生作用可能主要通过两个方面完成:一是直接促进肝脏组织细胞的再生:一是间接的促进肝脏组织细胞的再生。
     4.为下一步深入研究大鼠减体积肝移植术后肝脏再生的机理等相关问题提供了一定的基础研究成果。
     目的:
     在成功建立大鼠减体积肝移植模型的基础上,研究减体积肝移植术后肝脏再生的一般情况,受体骨髓干细胞跨细胞分化成肝细胞;在肝脏再生基本完全后(大约在减体积肝移植术后第9 d),撤除抗免疫排斥药物以后观察各组排斥反应发生的情况,最终得出:减体积肝移植术后,肝脏再生诱导免疫低反应并探讨可能的机理。
     方法:
     1.实验大鼠供体均为健康的Lewis雌性大鼠,体重200-230 g左右,受体均为健康的Wistar雄性大鼠,体重240-380 g左右。
     2.采用改良法建立Lewis-Wistar的大鼠减体积肝移植模型,详细见第一部分模型的建立。
     3.实验分组
     (1)实验一组(A组):全肝移植组。供体和受体体重相差在10 g以内。
     (2)实验二组(B组):50%肝移植组。供体与受体肝脏质量比大约为50%。
     (3)实验三组(C组):30%肝移植组。供体与受体肝脏质量比大约为30%。
     4.实验分为两个小部分
     (1)第一小部分:观察不同体积的大鼠肝移植术后肝脏的再生情况。术后使用FK506抗免疫排斥药物,按照0.1 mg/kg·d服用。在肝移植术后1 d、2 d和7 d获取血和移植后的肝脏组织标本,留待作相关指标的检测。
     (2)第二小部分:观察肝脏再生诱导免疫低反应。不同减体积肝移植术后,待肝脏再生基本完全后,同时撤除FK506,观察其三组的排斥反应的发生情况。在撤除FK506后的0 d、3 d、7 d和11 d取血和肝脏组织标本,留待作相关指标的检测。
     5.移植大鼠生存状态观察和移植排斥反应的判断:大鼠术后3 d内死亡,则弃之不用,并给与补充。观察每组的生存时间,根据国际公认的Banff评分系统判断排斥反应程度。
     6.血清生化检测ALT、AST、TBIL;血清细胞因子检测IL-2、IFN-γ、IL-4、IL-10、TGF-β_1的水平。
     7.肝脏组织的ELISA检测:观察肝脏再生的IL-6和TNF-α水平;观察排斥反应TGF-β_1水平。
     8.肝脏组织免疫组化检测:观察肝脏再生的IL-6、TNF-α、PCNA和Ki-67。观察肝脏排斥反应的ICAM-1、NFκB/p65和TGF-β_1。
     9.应用原位杂交技术检测肝脏组织的Y染色体,以证实受体骨髓干细胞跨细胞分化成肝细胞。
     10.肝脏组织的HE染色、电镜和凋亡检测。观察肝脏织形态结构和排斥反应。
     结果:
     1.大鼠减体积肝移植术后肝脏再生先增快(在减体积肝移植术后第2 d最明显),后减慢,在术后第7 d,肝脏基本达到移植前受体的肝脏体积和质量。
     2.肝脏再生的过程中,C组中Y染色体的阳性率最高,B组次之,而A组的Y染色体的阳性率最低。
     3.大鼠减体积肝移植肝脏再生过程中,肝脏组织中的IL-6和TNF-α水平表现为先升高,后减低,即在术后第2 d,肝脏组织中的IL-6和TNF-α水平最高,而后降低。
     4.观察排斥反应时,血清中的IL-2和IFN-γ水平,A组最高,B组次之,C组最低;相反,IL-4和IL-10的水平,C组最高,B组次之,而A组最低。
     5.血清中的TGF-β_1表现为先升高,后降低。升高时,A组升高最快、最高,B组次之,C组升高得最慢、最低;降低时,A组降低的速度最快、降低最明显,B组次之,而A组下降最慢、减低的程度最小。肝脏组织中的TGF-β_1则表现为持续升高,以A组最为明显,B组次之,C组最低。
     6.肝脏组织的免疫组化ICAM-1、NFκB/p65、TGF-β_1,肝细胞凋亡以及HE染色等进一步证实了A组的组织局部的炎症反应最重,B组次之,而C组最轻。
     结论:
     1.成功建立Lewis-Wistar大鼠减体积肝移植模型。
     2.大鼠减体积肝移植术后肝脏再生过程中,有骨髓干细胞跨细胞分化成肝细胞。
     3.在大鼠减体积肝移植肝脏再生基本完全的基础上,撤除FK506后,C组发生的排斥反应程度最低,B组次之,而A组的排斥反应程度最重。
     4.大鼠减体积肝移植术后肝脏再生诱导免疫低反应的原理可能与受体骨髓干细胞跨细胞分化成肝细胞以及机体的多因素共同参与了肝脏的再生过程有关系。
Objective:
     It was the foundation and prerequisite for the next research of liver regeneration and it's immune hyporesponsiveness that The improved model of reduced-size liver transplantation in the rat was investigated.
     Methods:
     1.The donors were female and the receptors were male,which were healthy SD rats and weight range was 260-280 g,weight of the receptor was more than that of the donor,about 10g.
     2.Operation of donor was performed by only one person with the naked eye,during which reduced-size donor liver was performed.The handle of self-made cuff was placed in the good front of portal vein and inferior vena cava respectively,which the tied ligature of pyloric veins was turned inside out of the self-made cuff, furthermore,the tied ligature was placed in the left of the self-made cuff;the same to inferior vena cava except that the tied ligature of right renal vein was placed in the right of the self-made cuff.Then the portal vein and inferior vena cava were received washing with self-made perfusate respectively.
     3.Operation of the receptor was performed by two person with the naked eye,with improved dual-cuff technique of Kamada and stay pipe of biliary tract.The fixed points of left and right were connected by anastomosis of "8" type turning inside out while inosculating inferior vena cava.
     4.The pre-improved model of reduced-size liver transplantation in rat was performed by reported in the literature,in which lobes of rat liver were removed in liver repair basin.
     5.The symptoms and signs> all complications、survival conditions、liver function change of rats were observed after liver transplantation in the improved and pre-improved model groups.
     Results:
     1.The average operation time of gaining the donor and preparating the donor liver were 32±2 minutes and 6±2 minutes respectively.The average operation time of gaining the receptor and the anhepatic were 40±3 minutes and 14±3 minutes respectively.And cold preservation time of liver donor was 51±3 minutes.The general successful rate was 92%,three-day survival rate was 85%and two-week survival rate was 83%.The postoperative complications was reduced clearly.the contrast was significant difference(P<0.05).
     2.ALT values of ldpo(days post operation),3dpo and 7dpo in improved group were reduced progressively in pre-improved group in comparation with that of pre-improved group,which was significantly difference(P<0.05) in two groups at the same time.But ALT values of 14dpo and 21dpo in improved group were non-significant difference(P>0.05) in comparation with that of pre-improved group.
     3.Compared with pre-improved group,TBIL values in improved group were reduced progressively advanced at 1dpo,3dpo and 7dpo,which were significantly difference (P<0.05) in two groups at the same time.But the level of 14dpo and 21dpo in two groups were non-significant difference(P>0.05).
     4.Compared with pre-improved group,XCHE values in improved group was progressive advanced at 1dpo,3dpo and 7dpo,which were significantly difference (P<0.05) in two groups at the same time.But the level of 14dpo and 21dpo in two groups were non-significant difference(P>0.05).
     5.Compared with pre-improved group,AMON values in improved group was reduced progressively at ldpo and 3dpo,which were significant difference(P<0.05) in two groups at the same time.But the level of it in two groups at 7dpo,14dpo and 21dpo were non-significant difference(P>0.05) at the same time.
     Conclusions:
     1.It was better method of obtaining high quality and satisfied reduced-size liver in the rat that lobes of rat liver in operating on donor liver were removed after liver donor perfusion.The operation of donor and receptor was intercoordination,which may shorten cold preservation time of liver donor;The improved vascular anastomosis may shorten anhepatic time and reduce bleeding complications;It was worthy of being accepted model of reduced-size liver transplantation in the rat that the improved model may reduce in-operation and post-operation complications after liver transplantation,and raise succeed rate of rat liver transplantation and survival rate of receptor.
     2.It was maybe the foundation and prerequisite for hepatic rebirth and immune experimental research after liver transplantation that improved model of reduced-size liver transplantation in the rat was established successfully.
     Objective:
     To search for the differential proteins related to liver regeneration after transplantation,it was studied on the base of the success in the reduce-size liver transplantation in rat applying of technology of proteomics.
     Methods:
     1.Experimental donors were healthy and female Lewis rats,weight range was 200-230 g.The receptor were healthy and male Wistar rats,weight range was 220-250 g.
     2.Models of reduced-size liver transplantation in rats were established successfully, which weight ratio of the donor and the receptor liver was about 50%.The postoperative rats accepted immunosuppressive treatment of KF506,with 10mg/kg·d.The postoperative liver specimens were harvested by 1 d,3 d and 7 d after reduce-size liver transplantation.And the normal liver specimens of the donors and the receptors were harvested during reduce-size liver transplantation,which were kept in a -70℃refrigerator for the proteomics test.
     3.The harvested liver tissue specimens were accepted proteomic test and analysis.The first step,comparative proteome analysis with postoperative liver tissue and normal donor,receptor liver tissue.Namely,they were accepted MS-MS spectrometry after two-dimensional electrophoresis(2-DE) for identifying proteins stains with differentiation exceeding 10 times.At last,the function of differential proteins related to liver regeneration was analyzed after reduce-size liver transplantation in rats.
     Results:
     1.The results showed the high-resolution and reproduciblity 2-DE patterns about postoperative liver tissue and normal donors and receptors,and found 72 differential protein stains by taking 10 times measure.
     2.Seventy-two differentially expressed protein spots were all identified by MS-MS spectrometry and PMF.At last,Forty proteins were identified successfully.
     3.The identified proteins mostly participated in physiology pathway:signal transduct -ion,stress defence,redox homeostasis,carbohydrate metabolism,energy, aminoacid metabolism and cell cytoskeleton,and so on.Some of which participated in liver regeneration after reduce-size liver transplantation by means of direct and indirect physiology pathway.
     Conclusion:
     1.Reduce-size liver transplantation models in rats were established successfully,with Lewis to Wistar.
     2.Sevety-two differential protein spots and forty proteins were identified successfully. 3.The differential proteins related to liver regeneration were found successfully after reduce-size liver transplantation,which maybe participate in liver regeneration after reduce-size liver transplantation through two aspects as follows:on one hand,to promote liver regeneration by direct physiology pathway;on other hand,to promote liver regeneration by indirect physiology pathway.
     4.provided fundamental research results for next research related to liver regeneration mechanism after reduce-size liver transplantation.
     Objective:
     Liver regeneration and how many the recipients' bone marrow stem cells differentiated to hepatocytes,and it's possible mechanism of immune hyporesponsiveness induced by liver regeneration after removing immunosuppressive drugs were studied on the basis of successful murine model of reduced-size liver transplantation.
     Methods:
     1.Experimental donors were healthy and female Lewis rats,whose weights varied from 200 to 230 g.Recipients were healthy and male Wistar rats,whose weights varied from 240 to 380 g.
     2.Models were operated via method of improved Lewis-Wistar reduced-size liver transplantation;details can be seen in the first part.
     3.Experimental groups:
     (1) Group A:whole liver transplantation group.The donors' weight was less than that of receptors.
     (2) Group B:50%liver transplantation group.The ratio of donors' to recipients' liver weights was about 50%.
     (3) Group C:30%liver transplantation group.The ratio of donors' to recipients' liver weights was about 30%.
     4.The entire experiment can be divided into two parts.
     (1) To observe situations of liver regeneration among groups that accepted different volume liver transplantations.After operations,used FK506 as immunosuppressive drug,whith 0.1 mg/kg·d.On the first day and 3rd day and 7th day after transplantation,sampled serum and liver tissue for relevant tests.
     (2) To observe low immunological reject reaction induced by liver regeneration. When liver regeneration followed partial liver transplantation finished, removed usage of FK506,then observed rejection among 3 groups.On the 0 dpo,3 dpo,7 dpo and 11 dpo after removal FK506,sampled serum and liver tissue for relevant tests.
     5.Survival situation and rejection reaction of rats were observed and judged:If rat died within 3 days after operation,the rat would be excluded,another would be compensated.The degree of rejection was judged by Banff score system.
     6.The level of ALT,AST,TBIL in serum and level of serum cytokines IL-2,IFN-γ, IL-4,IL-10 and TGF-β_1 were tested.
     7.Levels of IL-6 and TNF-αin liver tissues were detested by ELISA,which related to regeneration after liver transplantation,and the level of TGF-β_1 related to rejection was detested.
     8.To detect variation of IL-6,TNF-α,PCNA and Ki-67 related regeneration after liver transplantation,liver tissues immunochemical methods were performed.And then, expression variation of ICAM-1,NFκB/p65 and TGF-β_1 related to rejection after operation was detested in same methods.
     9.Y chromosome in liver tissues was detested by hybridization in situ,In ordor to prove bone marrow stem cells of recipients differentiated into hepatocytes.
     10.To observe morphous and rejection reaction of liver tissues.Liver tissues were treated by hematoxylin and eosin stain,and seen under electron microscopy and detested by Tunnel methods to showe celluar apoptosis,
     Results:
     1.In the early stage of regeneration followed reduced-size liver transplantation, regeneration was accelerated(on the second day of operation,it got to climax),then decelerated.On the 7th day of operation,liver' weight achieved to as big as that of pre-transplantation.
     2.In the process of regeneration,Y chromosome positive rate was the highest in the group C,lower in group B,lowest in group A.
     3.In the process of regeneration,levels of IL-6 and TNF-a in liver tissues were ascend -ing in early stage(the summit appeared in the second day),then they were descending.
     4.When observing rejection,levels of IL-2 and IFN-γin serum were the highest in group A,lower in group B,the lowest in group C.On the opposite,the levels of IL-4 and IL-10 in serum were the highest in group C,lower in group B,the lowest in group A.
     5.The serum level of TGF-Pi were ascending at the beginning,then carried on descending.When it was ascending,group A appeared fastest and highest,then the group B,but group C was last one.On the other hand,in the process of TGF-β_1 descending,it can be seen to decrease fastest and most in group A,then group B, group C followed.Meanwhile,TGF-β_1 level in liver tissues appeared increasing persistently,same mode as IL-2 and IFN-γin serum,the most apparent is group A, group B is the second,at last,group C.
     6.By immunochemical examination of ICAM-1、NFκB/p65、TGF-β_1,hepatocyte apoptosis and hematoxylin and eosin stain analysis,the most severely imflammation reaction was observed in group A,better in group B,then group C.
     Conclusions:
     1.Lewis-Wistar improved reduced-size liver transplantation models was builted successfully.
     2.In the process of liver regeneration after improved reduced-size liver transplantation, bone marrow stem cells differentiated into hepatocytes.
     3.On the basis of complete liver regeneration after improved reduced-size liver transplantation,most severel rejection was observed in group A,better in group B, and best in group C after removing FK506.
     4.The mechanism of low immunological reaction induced by improved reduced-size liver transplantation maybe relate to the process of bone marrow stem cells differentiated into hepatocytes,and multiple factors maybe contribute to this process.
引文
[1]Kawasaki S,Makuuchi M,et al.Liver regeneration in recipients and donors after transplantation[J].Lancet,1992,339(8793):580-581
    [2]Nakagami M,Morimoto T,Itoh K,et al.Patterns of restoration of remnant liver volume after graft harvesting in donors for living related liver Transplantation [J].Transplant Proc,1998,30(1):195-199
    [3]Fujii H,Hirose T,Oe S,et al.Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice[J].J Hepatol,2002,36(5):653-659
    [4]Baba S,Fujii H,Hirose T,et al.Commitment of bone marrow cells to hepatic stellate cells in mouse[J].J Hepatol,2004,40(2):255-260
    [5]Conzelmann LO,Hines IN,Kremer M,et al.Extrahepatic cells contribute to the progenitor/stem cell response following reduced-size liver transplantation in mice[J].Exp Biol Med(Maywood),2007,232(4):571-580
    [6]Tomiyama K,Miyazaki M,Nukui M,et al.Contribution of cells of intact extra -hepatic tissue origin to hepatocyte regeneration in transplanted rat liver[J].Transplantation,2007,83(5):624-630
    [7]Eguchi S, Takatsuki M, Yamanouchi K, et al. Regeneration of graft livers And limited contribution of extrahepatic cells after partial liver transplantation in humans[J]. Dig Dis Sci, 2010, 55(3): 820-825
    [8]Reding R. Long-term complications of immunosuppression in pediatric liver recipients[J]. Acta Gastroenterol Belg, 2005, 68(4): 453-456
    [9]Neuberger J, Adams DH. What is the significance of acute liver allograft rejection?[J]. J Hepatol, 1998, 29(1): 143-150
    
    [10]Klompmaker LJ, Gouw AS, Haagsma EB, et al. Selective treatment of early acute rejection after liver transplantation: effects on liver, infection rate, and outcome[J]. Transpl Int, 1997, 10(1): 40-44
    
    [11]Gupta P, Hart J, Cronin D, et al. Risk factors for chronic rejection after pediatric liver transplantation[J]. Transplantation, 2001, 72(60): 1098-1102
    [1]Marc H,Dahlke,Felix C,et al.Differences in attitude toward living and post mortal liver donation in the United States Germany and Japan[J].Psychosomatic,2005,46:58-64
    [2]Strong RW,Lynch SV,Org TH,et al.Successful liver transplantation from a living donor her son[J].N Eng J Med,1990,322(21):1505-1507
    [3]Sun J,Zeng Q,Wu M.Experience with orthotopic rat liver transplantation[J].Chin Med J(Engl),1990,103(2):142-144
    [4]Kamada N,Calne RY.Orthotopic liver transplantation in the rat:techniques using cuff for portal vein anastomosis and biliary drainage[J].Transplantation,1979,28(1):47-49
    [5]Kashfi A,Mehrabi A,Pahlavan PS,et al.A review of various techniques of orthotopic liver transplantation in the rat[J].Transplant Proc,2005,37(1):185-188
    [6]Lee S,Charters AC,Chandler JG,Orloff MJ.A technique for orthotopic liver transplantation in the rat[J].Transplantation,1973,16(6):664-669
    [7]Lee S,Charters AC 3rd,Orloff MJ.Simplified technic for othotopic liver transplantation in the rat[J].Am J Surg,1975,130(1):38-40
    [8]Miyata M,Fischer JH,Fuhs M,et al.A simple method for orthotopic liver transplantation in the rat cuff technique for the vascular anastomoses[J].Transplantation,1980,30(5):335-338
    [9]Zimmerman B,Tsui F,Delovitch T.Immunosuppressive ALS.Ⅱ.Antibody to Ⅰ a antigens in heterologous anti-lymphocyte serum[J].Immunology,1979,37(1):179-186
    [10]Kashfi A,Mehrabi A,Pahlavan PS,et al.A review of various techniques of orthotropic liver transplantation in the rat[J].Transplantation Proc,2005,37(1):185-188
    [11]Steinbauer E,FodraC,MullerV,et al.Partial orthotopic liver transplantation in rats[J].Eur Surg Res,1995,27:205-215
    [12]陈国勇,曲青山,蔡文利,等.大鼠减体积肝移植模型的改良[J].河南外科学杂志,2006,12(1):5-7
    [13]汤黎明,钱建民,陆森,等.大鼠原位部分肝移植模型的建立及技术改进[J].中国现代医学杂志,2002,12(6):19-24
    [14]Ma M,Ma ZH.Effect of tumor necrosis factor-alpha in rats with hepatic ischemia-reperfusion injury.Hepatobiliary Pancreat Dis Int,2008,7(3):296-299
    [15]Delriviere L,Gibbs P,Kobayashi K,et al.Technical details for safer venous and biliary anastomoses for liver transplantation in the rat[J].Microsurgery,1998,18(1):12-18
    [16]Omura T,Ascher NL,Emond JC.Fifty-percent partial liver transplantation in the rat[J].Transplantation,1996,62(2):292-293
    [17]徐贵云,江艺,陈海燕,等.大鼠40%小体积肝移植模型建立及移植肝的病理观察[J].肝胆外科杂志,2008,16(6):454-457
    [18]Kiso S,Kawara S,Tamura S,et al.Role of heparin-binding epidermal growth factor-like growth factor as a hepatotrophic factor in rat liver regeneration after partial hepatectomy[J].Hepatology,1995,22(5):1584-1590
    [19]Arai M,Thurman RG,Lemasters JJ.Ischemic preconditioning of rat livers against cold storage-reperfusion injury:role of nonparenchymal cells and the phenomenon of heterologous preconditioning[J].liver Transpl,2001,7(4):292-299
    [20]Selzner N,Selzner M,Tian Y,et al.Cold ischem is decreases liver regeneration after partial liver transplantation in the rat:A TNF-alpha/IL-6 dependent mechanism[J].Hepatology,2002,36(4):812-818
    [21]Zhong Z,Schwabe RF,Kai Y,et al.Liver regeneration is suppressed in small-for-size liver grafts after transplantation:involvement of c-Jun N-terminal kinase,cyclin D1,and defective energy supply[J].Transplantation,2006,82(2):241-250
    [22]Kaizu T,Ikeda A,Nakao A,et al.Donor graft adenoviral iNOS gene transfer ameliorates rat liver transplant preservation injury and improves survival[J].Hepatology,2006,43(3):464-473
    [23]Shiminzu H,Miyazaki M,Ito H,et al.Mechanism of cold ischemia-reperfusion in rats[J].Hepatogastroenterology,2001,48(37):216-219
    [24]Fassbender K,Fatar M,Ragoschke A,et al.Subacute but not acute generation of nitric oxide in focal cerebral ischemia[J].Stroke,2000,31(9):2208-2211
    [25]Li H,Forstermann U.Nitric oxide in the pathogenesis of vascular disease[J].J Pathol,2000,190(3):244-254
    [26]Ruxana T,Sadikot E,Jansen D,et al.High-Dose Dexamethasone Accentuates Nuclear Factor-B Activation in Endotoxin-Treated Mice[J].Am J Respir Crit Care Med,2001,164(5):873-878
    [27]Schemmer P,Schoonhoven R,Swenbery JA,et al.Gentle in situ liver manipulation during organ harvest decreases survival after rat liver transplantation[J]. Transplantation, 1998, 65(8): 1015-1020
    [28]Jia C, Wang W, Zhu Y, et al. Suprahepatic vena cava manipulative bleeding alleviates hepatic ischemia-reperfusion injury in rats. Dig Liver Dis, 2008, 40(40): 285-292
    [29]Tokunaga Y, Ozaki N, Wakashiro S, et al. Effects of perfusion pressure during flushing on the viability of the procured liver using non invasive fluorometry[J]. Transplantation, 1988, 45(6):1031-1035
    
    [30]Guo H, Wu Y J, ZhenG S S, cc al . Application of modified two-cuff technique and multinlycosides tripterynium wilfordii in hamster-to-rat liver xeno-transplant models [J]. World J Gastroenterol, 2003, 9(7):1550-1553
    
    [3l]Kamada N, Calne RY. A surgical experience with five hundred thirty liver transplantation in the rat[J]. Surgery, 1983, 93:64
    [32]Mever K, Brown MF, Zobari G, et al. ICAM-1 upregulation in distant tissue after hepatic ischemia/reperfusion: a clue to the mechanism of multiple organ failure[J]. J Pediatr Surg, 1998, 33:350
    [33]Goto M, Takei Y, Kawano S, et al. Tumor necrosis factor and endotoxin in the pathogenesis of liver and pulmonary injuries after orthotopic liver transplantation in rat[J]. Hepatology, 1992, 16:487
    [34]Peng Y, Gong J P, Yan L N, et al. Improved two-cuff technique for orthotopic liver transplantation in rat[J]. Hepatobiliary Pancreat Dis Int, 2004, 3(1):33-37
    
    [35]Yang N, Yang GS, Qin JW, et al. Modifications of reduced size hepatic transplantation in rats[J]. Journal of Medical Colleges of PLA, 2003, 18(4):235-236
    
    [36]Calne RY, Smith DP, Mcmaster P, et al. Use of partial cardiopulmonary bypass during the anhepatic phase of othotopic liver grafting[J]. Lancet, 1979, 8143(2):612-615
    [1]曾嵘,夏其吕.蛋白质化学与蛋白质组学,1 ed.北京:科学出版社;2004
    [2]Wasinger VC,Cordwell SJ,Cerepa-Poljak A,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J].Electrophoresis,1995,16(7):1090-1094
    [3]Wilikins MR,Pasquail C,Appel RD,et al.From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J].Biotechnology,1996,14(1):61-65
    [4]Links AJ.2-D Proteome Analysis Protocols.Totowa,New Jersey.Humana Press;1999
    [5]Petricoin EF,Zoon KC,Kohn EC,et al.Clinical proteomics:translating benchside promise into bedside reality[J]. Nat Rev Drug Discov, 2002, 1(9): 683-695
    [6]Quadroni M, James P. Proteomics and automation[J]. Electrophoresis, 1999, 20(4-5):664-677
    
    [7]Walsh BJ, Molloy MP, Williams KL. The Australian Proteome Analysis Facility(APAF)Assembling large scale proteomics through integration and automation[J]. Electrophoresis, 1998, 19(11):1883-1890
    
    [8]Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry, 1976, 72: 248-254
    
    [9]Candiano G, Bruschi M, . Musante L, etal.. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25(9):1327-1333
    
    [10]Katayama H., Nagasu T., Oda Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 2001, 15(16):1416 - 1421
    
    [11]Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822): 860-921
    [12]Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351
    [13]Ashcroft AE. Protein and peptide identification: the role of mass spectrometry in proteomics[J]. Nat. Prod. Rep, 2003, 20(4): 202-215
    [14]Mo W, Karger BL. Analytical aspects of mass spectrometry and proteomics[J]. Curr. Opin. Chem. Biol, 2002, 6(5): 666-675
    [15]Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246: 64-71
    
    [16]Tanaka K, Waki H, Ido Y, et al. Protein and polymer analysis up to m/z 100.000 by laser ionisation time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 1988, 2 : 151-153
    
    [17]Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science, 1989, 246(4926): 64-71
    [18]Allen MH, Grindstaff DJ, Vestal ML, et al. A comparison of electrosprayionization m. s. and matrix-assisted laser desorption time-of-flight m. s. for the analysis of protein mixtures [J]. Biochem Soc Trans, 1991, 19(4): 954-957
    [19]Hillenkamp F, Karas M, Beavis RC, et al. Matrix-assisted laser desorption/ionization time of flight mass spectrometry of biopolymers[J]. Anal Chem, 1991, 63(24): 1193A-1203A
    [20]Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons[J]. Anal Chem, 1988, 60(20): 2299-2301
    [21]Gevaert K, Vandekerckhove J. Protein identification methods in proteomics [J]. Electrophoresis, 2000, 21(6): 1145-1154
    [22]Yost RA, Boyd RK. Tandem mass spectrometry: quadrupole and hybrid instruments [J]. Methods Enzymol, 1990, 193:154-200
    [23]Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation[J]. Methods Enzymol, 1990, 193: 455-479
    [24]Hayes RN, Gross ML. Collision-induced dissociation[J]. Methods Enzymol, 1990, 193:237-263
    [25]Page JS, Masselon CD, Smith RD. FTICR mass spectrometry for qualitative and quantitative bioanalyses[J]. Current opinion in Biotechnology, 2004, 15(1): 3-11
    [26]Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer[J]. Mass Spectron Rev, 1998, 17(1): 1-35
    [27]Corshkov MV, Pasa-Tolic L, Bruce JE, et al. A dual-trap design and its applications in electrospray ionization FTICR mass spectrometry[J]. Anal Chem, 1997, 69(7): 1307-1314
    [28]McLuckey SA, Van Berkel GJ, Goeringer DE, et al. Ion trap mass spectrometry. Using high-pressure ionization[J]. Anal Chem, 1994, 66(14): 737A-743A
    [29]Lombardi D, Mileo AM. Protein interactions provide new insight in to nm23/nucleoside diphosphate kinase functions[J]. J Bioenerg Biomenbr, 2003,35(10): 67-71
    [30]Angela de S. NM23/nucleoside diphosphate kinase and signal transduction [J]. Bioenerg Biomembr, 2000, 32(3): 269-275
    [31]Kimura N, Shimada N, Nomura K, et al. Iaolation and characterization of a cDNA clone encoding rat nucleoside diphosphate kinase[J]. J Biol Chem, 1990, 265(26): 15744-15749
    [32]Lacombe ML, Wallet V, Troll H, et al. Functional cloning of a nucleoside diphosphate kinase from Dictyostelium discoideum[J]. J Biol Chem, 1990, 265(17):10012-10018
    [33]Twigger SN, Shimoyama M, Bromberg S, et al. The Rat Genome Database, update 2007-easing the path from disease to data and back again[J]. Nucleic Acids Res, 2007, 35(Database issue): D658-D662
    [34]Hoffmann R, Valencia A. A gene network for navigating the literature [J]. Nat Genet, 2004, 36(7): 664
    [35]Bult CJ, EppigJT, KadinJA, et al. The Mouse Genome Database(MGD) : mouse biology and model systerms[J]. Nucleic Acids Res, 2008, 36(Database issue): D724-D728
    
    [36]Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for a novel gene associated with low tumor metastatic potential [J]. J Natl Cancer Inst, 1998, 80(3): 200-204
    [37]Lacombe ML, Milon L, Munier A, et al. The human Nm23/nucleoside diphosphate kinases[J]. J Bioenerg Biomembr, 2000, 32(3): 247-258
    [38]Lascu I, Gonin P. The catalytic mechanism of nucleoside diphosphate kinases[J]. J Bioenerg Biomembr, 2000, 32(3): 237-246
    [39]Dabernat S, Larou M, Masse K, et al. Organization and expression of mouse nm23-M1 gene. Comparison with nm23-M2 expression[J]. Gene, 1999, 236(2): 221-230
    [40]Shimada N, Ishikawa N, Munakata Y, et al. A second form(beta isoform) of nucleoside diphosphate kinase from rat. Isolation and characterization of complementary and genomic DNA and expression[J]. J Biol Chem, 1993, 268(4):2583-2589
    [41]Lakso M, Steeg PS, Westphal H. Embryonic expression of Nm23 during mouse organogenesis[J]. Cell Growth Differ, 1992, 3(12): 873-879
    
    [42]Ouatas T, Selo M, Sadji Z, et al. Differential expression of nucleoside diphosphate kinases(NDPK/NM23) during xenopus early development[J]. Int J Dev Biol, 1998, 42(1): 43-45
    [43]Steeg P S, Bevilacqua G, Kopper L, et al. Evidence for a Novel Gene associated with low tumor metastatic potential[J]. J Natl Cancer Inst, 1988, 80(3): 200-204
    [44]Leone A, FlatowU, King CR, et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells [J]. Cell, 1991,65(1): 23-35
    [45]Vogel HJ. Calmodulin: a versatile calcium mediator protein[J]. Biochem Cell Biol, 1994, 72(4): 357-376
    [46]ChinD, Means AR. Calmodulin: a prototypical calcium sensor [J]. Trends Cell Biol,2000, 10(8): 322-328
    [47]Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin[J]. Annu Rev Biophys Biomol Struct, 1995, 24: 85-116
    [48]Li CJ, Heim R, Lu P, et al. Dynamic redistribution of calmodulin in HeLa Cells during cell division as revealed by a GFP-calmodulin fusion protein technique [J]. J Cell Sci, 1999, 112(pt 10): 1567-1577
    [49]Iwasaki T, Murata-Hori M, Ishitobi S, et al. Diphosphorylated MRLC is required for organization of stress fibers in interphase cells and the contractile ring in dividing cells[J]. Cell Struct Funct, 2001, 26(6): 677-683
    [50]Gonda K, Hanyu K, Watanabe Y, et al. Ca2+/calmodulin and P85 cooperatively regulate an initiation of cytokinesis in Tetrahymena[J]. J Cell Sci, 1999, 112(pt 21): 3619-3626
    [51]Hansen AJ, Zeuthen T. Extracelluar ion concentrations during spreading depression and ischemia in the rat brain cortex[J]. Acta Physiol Scand, 1981,113(4): 437-445
    [52]Watterson DM, Harrelson WG Jr, KellerPM, et al. Structural similarities between the Ca2+-dependent regulatory proteinS of 3 : 5 -cyclic nucleotide phosphodiesterase and actomyosin ATPase[J]. J Biol Chem, 1976, 251(15):4501-4513
    
    [53]Chin JH, Buckhokz TM, Delorenzo RJ. Calmodulin and protein phosphorylation : implications in brain ischemia[J]. Prog Brain Res, 1985, 63:165-184
    [54]Berkowitz SA, Wolff J. Intrinsic calcium sensitivity of tubulin polymerization. the contributions of temperature, tubulin concentration, and associated proteins[J]. J Biol Chem, 1981, 256(21):11216-11223
    [55]Single B, Leist M, Nicotera P. Simultaneous release of adenylate kinase and cytochrome c in cell death[J]. Cell Death Differ, 1998, 5(12): 1001-1003
    [56]Kohler C, Gahm A, Noma T, et al. Release of adenylate kinase from the mitochondrial intermembrane space during apoptosis[J]. FEBS Lett, 1999, 447(1):10-12
    [57]Ritassa F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia, 1962, 18: 571-573
    [58]Tavaria M, Gabriele T, Kola I, et al. A hitchhiker's guide to the human Hsp70 family[J]. Cell Stress and Chaperones, 1996, 1: 23-28
    [59]Wei Y Q, Zhao X, Kariya Y, et al. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein(HSP)70 expression in tunmor cells[J]. Cancer Immunol Immunother, 1995, 40(2): 73-78
    [60]Kojika S, Sugita K, Inukai T, et al. Mechanisma of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70kDa beat shock proteins[J]. Leukemia, 1996, 10(6): 944-999
    [61]Zhao X, Wei Y Q. Increase in the thermosensitivity of cervical cancer and ovarian cancer cells by HSP70 antisense oligode-oxynuleotides[J]. Chinese J Oncology, 2000, 22(2): 99-101
    [62]Karmazyn M H, Mailker K, Currie R W. Acquisition and decay of heat-shock-enhanced pstischemic ventricular recovery[J]. Am J Physiol Heart Circ Phyiol, 1990, 259(2): 424-431
    [63]Wynn R M, Davie J R, Cox R P, et al. Molecular chaperones : heat-shock proteins, foldases, and matchmakers[J]. J Lab Clin Med, 1994, 124(1): 31-36
    [64]Park H S, Lee J S, Huh S H, et al. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase[J]. EMBO J, 2001, 20(3): 446-456
    
    [65]Gabai V L, Mabuchi K, Mosser D D, et al. Hsp72 and stress kinase c-Jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis[J]. Mol Cell Biol, 2002, 22(10): 3415-3424
    [66]Nakamura K, Rokutan K, Mami N, et al. Induction of heat shock protein and their implication in protection against ethanol-induced damsge in cultured guinea pig gastric mucosal cells[J]. Gastroenterology, 1991, 101(10): 161-166
    [67]Li L, Shen G, Li GC. Effects of expressing human HSP70 and its deletion derivatives on heat killing and on RNA and protein synthesis[J]. Experimental Cell Research, 1995, 217(20: 460-468
    [68]Kettner S, Kalthoff F, Graf P, et al. EW1-2/CD316 is an inducible receptor of HSPA8 on human dendritic cells[J]. Molecular and Cellular Biology, 2007, 27 (21) :7718-7726
    [69]Massa, SM, Longo FM, Zuo J, et al. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain[J]. J Neurosci Res, 1995, 40(6) :807-819
    [70]Voloboueva LA, Duan M, Ouyang Y, et al. Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro[J]. J cereb Blood Flow Metab, 2008, 28(5): 1009-1016
    [71]Jez JM, Flynn TG, Penning TM. A new nomenclature for the aldo-keto reductase superfamily[J]. Biochem Phamacol, 1997, 54(6): 639-647
    
    [72]Chung S, Lamendola J. Cloning and sequence determination of human placental aldose reductase gene[J]. J Biol Chem, 1989, 264(25): 14775-14777
    [73]Jiang T, Che O, Lin Y, et al. Aldose reductase regulates TCF-beta 1-induced production of fibronectin and type IV collagen in cultured rat mesangial cells[J]. Nephrol, 2006, 11(11): 105-112
    [74]Ramana KV, Chandra D, Srivastava S, et al. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells[J]. J Biol Chem, 2002, 277(35):32063-32070
    [75]Ramana KV, Bhatnagar A, Srivastava SK. Aldose reductase regulates TNF-alpha-induced cell signaling and apoptosis in vascular endothelial cells[J]. FEBS Lett, 2004, 570(1-3): 189-194
    [76]Srivastava S, Ramana KV, Bhatnagar A, et al. Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells[J]. Diabetes, 2006, 55:901-910
    [77]Ramana KV, Bhatnagar A, Srivastava SK, et al. Mitogenic responses of vascularsmooth muscle cells to lipid peroxidation derived aldehyde 4-hydroxy-trans-2-nonenal(HNE): Role of aldose reductase catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth[J]. J Biol Chem, 2006,281(26): 17652-17660
    [78]Srivastava S, Dixit BL, Ramana KV, et al. Structural and kinetic modifications of aldose reductase by S-nitrosothiols[J]. Biochem J, 2001, 358(Pt 1):111-118
    [79]IkawaM, Impraim CC, Wang G, et al. Isolation and characterization of aldehydedehydrogenase isozymes from usual and atypical human livers[J]. J Biol Chem, 1983, 258(10):6282-6287
    [80]Ohsawa I, Nishimaki K, Yasuda, et al. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells[J]. J Neurochem, 2003, 84(5): 1110-1117
    [81]OhtaS, Ohsawa I, Kamino K, et al. Mitochondrial ALDH2 deficiency as an oxidative stress[J]. Ann N Y Acad Sci, 2004, 1011: 36-44
    [82]Chen CH, Budas G, Churchill E, et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J]. Science, 2008, 321(5895): 1493-1495
    [83]Chen ZQ, Zhang J, Stamler JS. From the cover: identification of the enzymatic mechanism of nitroglycerin bioactivation[J]. Proc Natl Acad Sci(PNAS), 2002,99(12): 8306-8311
    [84]Wang B, Wang J, Zhou S, et al. The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer's disease in Chinese[J]. J Neurol Sci, 2008, 268(1-2): 172-175
    [85]Mazurek S. Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours [J]. Ernst Schering Found Symp Proc, 2007,(4): 99-124
    
    [86]Eigenbrodt E, Basenau D, Holthusen S, et al. Quantification of tumor type M2 pyruvate kinase(Tu M2-PK) in human carcinomas[J]. Anticancer Res, 1997, 17(4B):3153-3156
    [87]Koss K, Maxton D, Jankowski JA. Faecal dimeric M2 pyruvate kinase in colorectalcancer and polyps correlates with tumour staging and surgical intervention[J]. Colorectal Dis, 2008, 10(3):244-248
    [88]Mazurek S, Boschek CB, Hugo F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading[J]. Semin Cancer Biol, 2005, 15(4):300-308.
    [89]Mazurek S, Grimm H, Boschek CB, et al. Pyruvate kinase type M2: a crossroad in the tumor metabolome[J]. Br J Nutr, 2002, 87(Suppl-1): S23-S29
    [90]Mazurek S, Eigenbrodt E. The tumor metabolome[J]. Anticancer Res, 2003, 23(2A): 1149-1154
    [91]Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J]. Nature, 2008, 452(7184): 230-233
    [92]Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells[J]. Radiother Oncol, 2009, 92(3): 329-333
    [93]Christofk HR, Vander Heiden MG, Wu N, et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein[J]. Nature, 2008, 452(7184): 181-186
    [94]Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis[J]. Biochemistry, 2005, 44(27) : 9417-9429
    [95]Arakaki N, Nagao T, Niki R, et al. Possible role of cell surface H+ ATP synthase in the extracellular ATP synthasis and proliferation of human umbilical vein endothelial cells[J]. Mol Cancer Res, 2003, 1(13): 931-939
    [96]Dimroth P, Kaim G, Matthey U. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases[J]. J Exp Biol, 2000, 2O3(Pt 1): 51-59
    
    [97]Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1, 0 ATP synthase is active in ATP synthasis and is inhibited by angiostatin[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6656-6661
    
    [98]Boyer PD. The ATP synthase-a splendid molecular machine[J]. Annu Rev Biochem, 1997, 66(1): 707-749
    [99]Digel JG, Hightower KE, McCarty RE. Subunit movement during catalysis by F1-F0-ATP synthases[J]. J Bioenerg Biomembr, 1996, 28(5): 439-442
    [100]Fillingame RH. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine[J]. J Exp Biol, 1997, 200(Pt 2): 217-224
    [101]Krysko DV, Vandenabeele P. From regulation of dying cell engulfment to development of anti-cancer therapy[J]. Cell Death Differ, 2008, 15(1): 29-38
    [102]Barker RN, Erwig LP, Hill KS, et al. Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells[J]. Clin Exp Immunol, 2002, 127(2): 220-225
    [103]Yang J, Wong RK, Park M, et al. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells[J]. Diabetes, 2006, 55(1): 193-201
    [104]Meijer AJ, Lamers WH , Chamuleau RA. Nitrogenmetabolism and ornithine cycle function[J]. Physiol Rev, 1990, 70(3) :701-748
    [105]Christoffels VM, Van Den Hoff MJ, Moorman AF, et al. The far-upstream enhancer of the carbamoyl-phosphate synthetase I gene is responsible for the tissue specificity and hormone inducibility of its expression[J]. J Biol Chem. 1995, 270(42): 24932-24940
    [106]Hoofenkamp M, Stallen JM, Lamers WH, et al. In vivo footprinting of the carbamoylphosphate synthetase I cAMP-response unit indicates important roles for FoxA and PKA in formation of the enhanceosome[J]. Biochimie, 2006, 88(10):1357-1366
    [107]Christoffels VM, Grange T, Kaestner KH, et al. Glucocorticoid receptor, (7EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene[J]. Mol Cell Biol, 1998,18(11) :6305-6315
    [108]Schoneveld OJ, Gaemers IC, Das AT, et al. Structural requirements of the glucocorticoid-response unit of the carbamoyl-phosphate synthase gene[J]. Biochem J. 2004, 382(Pt 2) :463-470
    [109]Schoneveld OJ, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signaling[J]. Biochim Biophys Acta, 2004,1680(4): 114-128
    [110]Ronald D. Unterman, Kevin R. Lynch, HiraL. Nakhasi, et al. Cloning and sequence of several α 2u-globulin cDNAs[J]. Proc Natl Acad Sci USA, 1981, 78(6):3478-3482
    [111]Dugina V, Zwaenepoel I, Gabbiani G, et al. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity [J]. J Cell Sci, 2009,122(Pt 16): 2980-2988
    
    [112]Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the aminoterminal tryptic peptide[J]. J Mol Biol,1978, 126(4): 783-802
    [113]Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs[J]. J Cell Sci, 2001, 114(Pt 24), 4557-4565
    
    [114]Zacharowski K, Zacharowski PA, Friedl P, et al. The effects of the fibrin- derived peptide Bbeta(15-42) in acute and chronic rodent models of myocardial ischemia- reperfusion [J]. Shock, 2007, 27(6) : 631-637
    [115]Petzelbauer P, Zacharowski PA, Miyazaki Y, et al. The fibrin-derived peptide B beta(15-42) protects the myocardium against ischemia- reperfusion injury[J]. Nat Med, 2005,11: 298-304
    
    [116]Loike JD, Sodeik B, Cao L, et al. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen[J]. Proc Natl Acad Sci USA, 1991, 88(3):1044-1048
    [117]Blancke F, Claeys MJ, Jorens P, et al. Systemic inflammation and reperfusion injury in patients with acute myocardial infarction[J]. Mediators Inflamm, 2005,14(6): 385-389
    [118]Hancock JT, Desikan R, Neill SJ. Role of active oxygen species in cell plant signalling pathways[J]. Biochem Soc Trans, 2001, 29(Pt 2): 345-350
    [1]Starzl TE,Marchioro TL,Vonkaulla KN,et al.HOMOTRANSPLANTATION OF THE LIVER IN HUMANS[J].Surg Gynecol Obstet,1963,117:659-676
    [2]RaiaS,Nery JR,Mies S.Liver transplantation from live donors[J].Lancet,1989,2(8661):497
    [3]Reding R.Long-term complications of immunosuppression in pediatric liver recipients[J].Acta Gastroenterol Belg,2005,68(4):453-456
    [4]Avitzur Y,De Luca E,Cantos M,et al.Health status ten years after pediatric liver transplantation—-looking beyond the graft[J].Transplantation,2004,78(4):566-573
    [5]Berg UB,Ericzon BG,Nemeth A.Renal function before and long after liver transplantation in children[J].Transplantation,2001,72(4):631-637
    [6]Bucuvalas JC,Alonso E.Long-term outcomes after liver transplantation in children[j].Curr Opin Organ Transplant,2008,13(30):247-251
    [7]Otley CC,Pittelkow MR.Skin cancer in liver transplant recipients[J].Liver Transpl,2000,6(3):253-262
    [8]Herman S, Rogers HD, Ratner D. Immunosuppression and squamous cell carcinoma: a focus on solid organ transplant recipients[J]. Skinmed, 2007, 6(5): 234-238
    
    [9]Quatresooz P, Pierard QE, Paquet P, et al. Cutaneous cancers after organ transplantation[J]. Rev Med Liege, 2007, 62(110; 663-668
    [10]Kawasaki S, Makuuchi M, et al. Liver regeneration in recipients and donors after transplantation[J]. Lancet, 1992, 339(8793):580-581
    [11]Nakagami M, Morimoto T, Itoh K, et al. Patterns of restoration of remnant liver volume after graft harvesting in donors for living related liver transplantation [J]. Transplant Proc, 1998, 30(1):195-199
    [12]Fujii H, Hirose T, Oe S, et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice[J]. J Hepatol, 2002, 36(5): 653-659
    [13]Baba S, Fujii H, Hirose T, et al. Commitment of bone marrow cells to hepatic stellate cells in mouse[J]. J Hepatol, 2004, 40(2): 255-260
    [14]Conzelmann LO, Hines IN, Kremer M, et al. Extrahepatic cells contribute to the progenitor/stem cell response following reduced-size liver transplantation in mice[J]. Exp Biol Med (Maywood), 2007, 232(4): 571-580
    
    [15]Tomiyama K, Miyazaki M, Nukui M, et al. Contribution of cells of intact extrahepatic tissue origin to hepatocyte regeneration in transplanted rat liver[J]. Transplantation, 2007, 83(5):624-630
    [16]Eguchi S, Takatsuki M, Yamanouchi K, et al. Regeneration of graft livers and limited contribution of extrahepatic cells after partial liver transplantation in humans[J]. Dig Dis Sci, 2010, 55(3): 820-825
    [17]Di Campli C, Piscaglia AC, Giuliante F, et al. No evidence of hematopoietic stem cell mobilization in patients submitted to hepatectomy or in patients with acute on chronic liver failure[J]. Transplant Proc, 2005, 37(6) :2563-2566
    [18]Moritoki Y, Ueno Y, Kanno N, et al. Lack of evidence that before marrow cells contribute to cholangiocyte repopulation during experimental cholestatic ductal hyperplasia[J]. Liver Int,2006, 26(4):457-466
    
    [19]am Esch JS 2nd, Knoefel WT, Klein M, et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel conceptto support hepatic regeneration[J]. Stem Cells, 2005, 23(4): 463-470
    [20]Ferry N, Hadchouel M. Liver regeneration: with a little help from marrow[J]. J Hepatol, 2002, 36(5): 695-697
    [21]Kamada N, Davies HS, Roser B. Reversal of transplantation immunity by liver grafting[J]. Nature, 1981, 292(5826): 840-842
    [22]Zimmermann FA, Davies HS, Knoll PP, et al. Orthotopic liver allografts in the rat. The influence of atrain combination on the fate of the graft[J]. Transplantation, 1984, 37(4): 406-410
    [23]Newsome PN, Johannessen I, Boyle S, et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion[J]. Gastroenterology, 2003, 124(7): 1891-1900
    [24]Sakaida I, Terai S, Yamamoto N, et al. Transplantation of bone marrow cells reduces CCL4-induced liver fibrosis in mice[J]. Hepatology, 2004, 40(6): 1304-1311
    [25]Ren X, Hogaboam C, Carpenter A, et al. Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70%.hepatectomy[J]. J Clin Invest, 2003, 112(9): 1407-1418
    [26]Jaumot M, Estanyol JM, Serratosa J, et al. Activation of cdk4 and cdk2 during rat liver regeneration is associated with intranuclear rearrangements of cyclin-cdk complexes[J]. Hepatology, 1999, 29(2): 385-395
    [27]Garcia-Lastra R, San-Miguel B, Crespo I, et al. Signaling pathways involved in liver injury and regeneration in rabbit hemorrhagic disease, an animal model of virally-induced fulminant hepatic failure[J]. Vet Res, 2010, 41(1): 2
    [28]Oh SH, Witek RP, Bae SH, et al. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy -induced liver regeneration[J]. Gastroenterology, 2007, 132(2): 1077-1087
    [29]Grompe M. Bone marrow-derived hepatocytes[J]. Novartis Found Symp, 2005, 265:20-27
    
    [30]Grompe M. The role of bone marrow stem cells in liver regeneration[J]. Semin Live Dis, 2003, 23(4): 363-372
    [31]Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells[J]. Science, 1999, 284(541): 1168-1170
    [32]Theise ND, Nimmakayslu M, Gardner R, et al. Liver from bone marrow in humans[J]. Hepatology, 2000, 32(1): 11-16
    [33]Oh SH, Hatch HM, Petersen BE. Hepatic oval ' stem' cell in liver regeneration [J]. Semin Cell Dev Biol, 2002, 13(6): 405-409
    [34]Yamada Y, Webber EM, Kirillova I, et al. Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for type 1 but not type 2 receptor[J]. Hepatology. 1998, 28(4): 959-970
    [35]Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy[J]. Surgery, 2008, 143(6): 790-802
    [36]Kovalovich K, DeAngelis RA, Li W, et al. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice[J]. Hepatology, 2000, 31(1): 149-159
    [37]Fietta P, Delsante G. The effector T helper cell triade[J]. Riv Biol, 2009,102(1): 61-74
    [38]Mossann TR, Sad S. The expanding universe of T cells subject:Th1 Th2 and more [J]. Immunology Today, 1996, 17(2):138-146
    [39]Afzali B, Lombardi G, Lechler RI, et al. The role of T helper 17 (Thl7) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease[J]. Clin Exp Immunol, 2007, 148(1): 32-46
    [40]Wang YL, Tang ZQ, Gao W, et al. Influence of Th1, Th2, and Th3 cytokines during the early phase after liver transplantation[J]. Transplant Proc, 2003, 35(8): 3024-3025
    [41]Rifkin, DB, Kojima S, Abe M, et al. TGF-β : Structure, function, and formation[J]. Thromb Haemost, 1993, 70(1): 177-179
    [42]Flaumenhaft R, Kojima S, Abe M, et al. Activation of latent transforming growth factor beta[J]. Adv Pharmacol, 1993, 24: 51-76
    [43]Geissmann F, Revy P, Regnault A, et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells[J]. J Immunol , 1999,162(8):4567-4575
    
    [44]Ohtani T, Mizuashi M, Nakagawa S, et al. TGF-beta1 dampens the susceptibility of dendritic cells to environmental stimulation, leading to the requirement for danger signals for activation[J]. Immunology, 2009, 126(4): 485-499
    
    [45]Mollah ZU, Aiba S, Nakagawa S, et al. Interleukin-3 in cooperation with transforming growth factor beta induces granulocyte macrophage colony stimulating factor independent differentiation of human CD34+ hematopoietic progenitor cells into dendritic cells with features of Langerhans cells[J]. J Invest Dermatol, 2003, 121(60): 1397-13401
    
    [46]border WA, Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair[J]. J Clin Invest ,1992 ,90(1):1-7
    
    [47]Bottinger EP. TGF-beta in renal injury and disease[J]. Semin Nephrol, 2007, 27(3): 309-320
    
    [48]Woodside DG, Kram RM, Mitchell JS, et al. Contrasting roles for domain 4 of VCAM-1 in the regulation of cell adhesion and soluble VCAM-1 binding to integrin alpha4betal [J]. J Immunol, 2006, 176(8): 5041-5049
    
    [49]Vonderheide RH, Springer TA. Lymphocyte adhesion through very late antigen 4: evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium[J]. J Exp Med, 1992, 175(6): 1433-1442
    
    [50]Chuluyan HE, Osborn L, Lobb R, et al. Domains 1 and 4 of vascular cell adhesion molecule-1 (CD106) both support very late activation antigen-4 (CD49d/CD29)-dependent monocyte transendothelial migration[J]. J Immunol, 1995,155(6): 3135-3145
    
    [51]Snover DC, Sibley RK, Freese DK,et al. Orthotopic liver transplantation: a pathological study of 63 serial liver biopsies from 11 patients with special reference to the diagnostic features and natural history of rejection[J]. Hepatology, 1984, 4(6): 1212-1222
    [52]Nakayama J, Ota H, Katsuyama T, et al. Pathological examination for liver transplantation[J]. Rinsho Byori, 2000, 48(11): 1022-1028
    [53]Porter KA. Pathology of liver transplantation[J]. Transplantation, 1969, 2:129-170
    [54]Adams DH, Wang L, Hubscher SG, et al. Hepatic endothelial cells: targers in liver allograft rejection?[J]. Transplantation, 1989, 47(3): 479-482
    [55]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity[J]. Annu Rev Immunol, 2000, 18: 621-663
    [56]Kanarek N, London N, Schueler-Furman O, et al. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity[J]. Cold Spring Harb Perspect Biol, 2010, 2(2): a000166
    [57]Yoshidome H, Kato A, Edwards MJ, et al. Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice: implications of a central role for nuclear factor kappaB[J].Hepatology, 1999, 30(1): 203-208
    [58]Musikacharoen T, Matsuguchi T, Kikuchi T, et al. NF-κB and STATS play important roles in the regulation of mouse Toll-like receptor -gene expression[J]. J Immunol, 2001;166: 4516-4524
    [59]Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation[J]. Sci Signal, 2008, 1(1): pel
    [60]Neuberger J, Adams DH. What is the significance of acute liver allograft rejection?[J]. J Hepatol, 1998, 29(1): 143-150
    [61]Klompmaker LJ, Gouw AS, Haagsma EB, et al. Selective treatment of early acute rejection after liver transplantation: effects on liver, infection rate, and outcome[J]. Transpl Int, 1997, 10(1): 40-44
    
    [62]Libby P, Pober JS. Chronic rejection[J]. Immunity, 2001, 14: 387-397
    [63]Gupta P, Hart J, Cronin D, et al. Risk factors for chronic rejection after pediatric liver transplantation[J]. Transplantation, 2001, 72(60): 1098-1102
    [64]Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts[J]. Nature, 1969, 223 (5205):472-476
    [65]Lenti LM, Rademacher J, Cansolino L, et al. Liver transplantation in swine: a model for tolerance induction[J]. Minerva Chir, 2006, 61(5): 393-402
    [66]Starzl TE, Marchioro TL, Porter KA, et al. Factors Determining Short-and Long-Term Survival after Orthotopic Liver Homotransplantation in the Dog[J]. Surgery, 1965, 58: 131-155
    [67]Tryphonopoulos P, Tzakis AG, Weppler D, et al. The role of donor bone marrow infusions in withdrawal of immunosuppression in adult liver allotransplantation[J]. Am J Transplant, 2005, 5(3): 608-613
    [68]LeeJH, Lee SK, Lee HJ, et al. Withdrawal of immunosuppression in pediatric liver transplant recipients in Korea[J]. Yonsei Med J, 2009, 31, 50(6): 784-788
    [69]Eason JD, Cohen AJ, Nair S, et al. Tolerance: is it worth the risk?[J].Transplantation, 2005, 79(9): 1157-1159
    [70]DevlinJ, Doherty D, Thomson L, et al. Defining the outcome of immunosuppression withdrawal after liver transplantation[J]. Hepatology, 1998, 27(4): 926-933
    [71]Oike F, Yokoi A, Nishimura E, et al. Complete withdrawal of immunosuppression in living donor liver transplantation[J]. Transplant Proc, 2002, 34(5): 1521
    
    [72]Girlanda R, Rela M, Williams R, et al. Long-term outcome of immunosuppression withdrawal after liver transplantation[J]. Transplant Proc, 2005, 37(4): 1708-1709
    [73]Assy N, Adams PC, Myers P, et al. Randomized controlled trial of total immuno -suppression withdrawal in liver transplant recipients: role of ursodeoxycholic acid[J]. Transplantation, 2007, 83(12): 1571-1576
    [74]Koshiba T, Li Y, Takemura M, et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplant-tation[J]. Transpl Immunol, 2007, 17(2): 94-97
    [75]Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation[J]. Am J Transplant, 2006, 6(8): 1774-1780
    [76]Martinez-Llordella M, Puig-Pey I, Orlando G, et al. Multiparameter immune profiling of operational tolerance in liver transplantation[J]. Am J Transplant,2007, 7(2): 309-19
    [77]Koshiba T, Li Y, Takemura M, et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living -donor liver transplantation[J]. Transpl Immunol, 2007, 17(2):94-97
    [78]Pons JA, Revilla-Nuin B, Baroja-Mazo A, et al. FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal[J]. Transplantation, 2008, 86(10): 1370-1378
    [79]Ronald D. Unterman, Kevin R. Lynch, Hira L. Nakhasi, et al. Cloning and sequence of several α 2u-globulin cDNAs[J]. Proc Natl Acad Sci USA, 1981, 78(6):3478-3482
    [80]Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells[J]. J Clin Invest, 2002, 109(10): 1291-1302
    [81]Cantz, T, Manns MP, Ott M. Stem cells in liver regeneration and therapy[J]. Cell Tissue Res, 2008, 331(1): 271-282
    [82]Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans [J]. Hepatology, 2000, 32(1): 11-16
    [83]Theise ND, Badve S, Saxena R, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation[J]. Hepatology, 2000, 31 (1):235-240
    [84]Regeneration of graft livers and limited contribution of extrahepatic cells after partial liver transplantation in humans[J]. Dig Dis Sci, 2010, 55(3): 820-825
    [85]Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nat Med, 2000, 6(11): 1229-1234
    [86]Liu F, Pan XB, Chen GD, et al. Hematopoietic stem cell mobilization after rat partial orthotopic liver transplantation[J]. Transplantat Proc, 2006, 38(5): 1603-1609
    [87]Dirsch 0, Chi H, Gu YL, et al. Influence of stem cell mobilization and liver regeneration on hepatic parenchymal chimerism in the rat[J]. Transplantation, 2006, 81(12): 1695-1699
    [88]Liu F, Pan X, Chen G, et al. Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation[J]. Liver transpl, 2006, 1129-1137
    [1]Starzl TE,Marchioro TL,Vonkaulla KN et al.Homotransplantation of the liver in humans.Surg Gynecol Obstet,1963,117:659-76.
    [2]Starzl TE,Groth CG,Brettschneider L et al.Orthotopic homotransplantation of the human liver[J].Ann Surg,1968,168(3):392-415
    [4]Smith B.Segmental liver transplantation from a living donor[J].J Pediatric Surg,1969,4(1):126-32
    [5]RaiaS,Nery JR,Mies S.Liver transplantation from live donors[J].Lancet,1989,2(8661):497
    [6]Strong RW,Lynch SV,Ong TH,et al.Successful liver transplantation from a living donor to her son[J].N Engl J Med,1990,322(21):1505-7
    [7]Nagasue N,Kohno H,Matsuo S,et al.Segmental(partial) liver transplantation from a living donor[J].Transplant Proc,1992,24(5):1958-9
    [8]Fan ST,Lo CM,Liu CL,et al.Safety of donors in live donor liver transplantation using right lobe grafts[J].Arch Surg,2000,135(3):336-340
    [9]Akabayashi A,Slingsby BT,Fujita M.The first donor death after living-related liver transplantation in Japan[J].Transplantation,2004,77(4):634
    [10]Adam R,Lucidi V,Karam V.Liver transplantation in Europe:is there a room for improvement?[J].J Hepatol,2005,42(1):33-40
    [11]Trotter JF,Wachs M,Everson GT.Adult-to-adult transplantation of the right hepatic lobe from a living donor[J].N Engl J Med,2002,346(14):1074-1082
    [12]Leevy CB.Abnormalities of liver regeneration:a review.Dig Dis,1998,16(2):88-98
    [13]Kitamura T, Watanabe S, Sato N. Liver regeneration, liver cancers and cyclins [J]. J Gastroenterol Hepatol ,1998,13(suppl):S96-S99
    [14]Kawasaki S, Makuuchi M, Ishizone S, et al. Liver regeneration in recipients and donors after transplantation[J]. Lancet , 1992,339(8793):580-581
    [15]Nakagami M, Morimoto T, Itoh K, et al. Patterns of restoration of remnant liver volume after graft harvesting in donors for living related liver transplantation [J]. Transplant Proc, 1998, 30(1):195-199
    [16]Eguchi S, Yanaga K, Sugiyama N, et al. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation[J]. Liver Transpl, 2003, 9(6):547 - 551
    [17]Akamatsu N, Sugawara Y, Kaneko J, et al. Effects of middle hepatic vein reconstruction on right liver graft regeneration[J]. Transplantation, 2003, 76(5) :832-837
    [18]Marcos A, Fisher RA, Ham JM, et al. Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation [J]. Transplantation, 2000,69(7):1375-1379.
    [19]Fujii H, Hirose T, Oe S, et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice[J]. J Hepatol,2002,36(5):653 - 659
    [20]Conzelmann LO, Hines IN, Kremer M, et al. Extrahepatic cells contribute to the progenitor/stem cell response following reduced-size liver transplantation in mice. Exp Biol Med (Maywood), 2007,232(4):571 - 580.
    [21]Tomiyama K, Miyazaki M, Nukui M, et al. Contribution of cells of intact extrahepatic tissue origin to hepatocyte regeneration in transplanted rat liver[J]. Transplantation, 2007, 83(5):624 - 630
    [22]Di Campli C, Piscaglia AC, GiulianteF, et al. No evidence of hematopoietic stemcell mobilization in patients submitted to hepatectomy or in patients with acute on chronic liver failure. Transplant Proc, 2005, 37(6):2563 - 2566
    [23]Moritoki Y, Ueno Y, Kanno N, et al. Lack of evidence that before marrow cells contribute to cholangiocyte repopulation during experimental cholestatic ductal hyperplasia[J]. Liver Int, 2006,26(4):457-466
    [24]am Esch JS 2nd, Knoefel WT, Klein M, et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel conceptto support hepatic regeneration[J]. Stem Cells, 2005, 23(4):463 - 470
    [25]Ferry N, Hadchouel M. Liver regeneration: with a little help from marrow[J]. J Hepatol,2002, 36(5):695-697
    [26]Desmots F, Rissel M, GilotD, et al. Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth facor positive regulate the murine GSTA4 enzyme in hepatocytes[J]. J Biol Chem, 2002 ,277(20):17892-17900
    [27]Michalopoulos GK, Defrances MC. Liver regeneration[J]. Science, 1997,276(5309):60-66
    
    [28]Fausto N. Liver regenerates [J]. J Hepatol, 2000,32(1 Suppl): 19-31
    [29]Fausto N. Liver regeneration: from laboratory to clinic[J]. Liver Transpl, 2001,7(10): 835-844
    [30]Ramadori G, Armbrust T. Cytokines in liver[J]. Eur J Gastroenterol Hepatol, 2001,13(7): 777-784
    [31]Streetz KL, Luedde T, Manna MP, et al. Interleukin 6 and liver regeneration[J]. Gut, 2000,47(2): 309-312
    [32]Wallenius V, WalleniusK, Jannsson JO, etal. Normal pharmacologically-induced but decreased regenerative liver growth in interleukin-6-deficient(IL-6(-/-)) mice[J]. J Hepatol, 2000,33(3): 967-974
    [33]Takahashi H, MenjoM, Kaneko Y, et al. Cdk4 activation si dependent on the subunit rearrangement in the complexes[J]. Biochem Biophys Res Commun, 2000,267(1): 388-393
    [34]Zimmermann A. Liver regeneration: the emergence of new pathway[J]. Med Sci Monit, 2002, 8(3): RA52-63
    [35]KibaT, SaitoS, NumataK. etal. Fas(APO-1/CD95) mRNA is down-regulated in liver regeneration after hepatectomy in rats[J]. J Gastroenterol, 2000,35(1): 34-38
    [36]Taira K, Hiroyasu S, Shiraishi M, et al. Role of the Fas system in liver regeneration after a partial hepatectomy in rats. Eur Surg Res, 2001, 33(5-6):334-341
    [37]Cantz, T, Manns MP, Ott M. Stem cells in liver regeneration and therapy[J]. Cell Tissue Res, 2008, 331(1): 271-282
    [38]Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans [J]. Hepatology, 2000, 32(1): 11-16
    [39]Theise ND, Badve S, Saxena R, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation[J]. Hepatology, 2000, 31(1): 235-240
    [40]Regeneration of graft livers and limited contribution of extrahepatic cells after partial liver transplantation in humans[J]. Dig Dis Sci, 2010, 55(3):820-825
    [41]Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nat Med, 2000, 6(11) : 1229-1234
    [42]Liu F, Pan XB, Chen GD, et al. Hematopoietic stem cell mobilization after rat partial orthotopic liver transplantation[J]. Transplantat Proc, 2006, 38(5): 1603-1609
    [43]Dirsch 0, Chi H, Gu YL, et al. Influence of stem cell mobilization and liver regeneration on hepatic parenchymal chimerism in the rat[J]. Transplantation, 2006, 81(12): 1695-1699
    [44]Liu F, Pan X, Chen G, et al. Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation[J]. Liver transpl, 2006, 1129-1137
    [45]Yamanaka N, Okamoto E, Kawamura E, et al. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function[J]. Hepatology, 1993, 18(1) :79-85
    [46]Nadalin S, Testa G, Malago M, et al. Volumetric and functional recovery of the liver after right hepatectomy for living donation[J]. Liver Transpl, 2004, 10(8) : 1024-1029
    
    [47] Junko Haga, Motohide Shimazu, Wakabayashi G , et al. Liver Regeneration in Donors and Adult Recipients After Living Donor Liver Transplantation[J]. Liver Transpl ,2008,14(12):1718-1724
    [48]Kawasaki S, Makuuchi M, Ishizone S, et al. Liver regeneration in recipients and donors after transplantation[J]. Lancet, 1992, 339(8793):580-581
    [49]Mazzaferro V, Porter KA, Scotti-Foglieni CL et al. The hepatotropic influence of cyclosporine[J]. Surgery,1990, 107(5):533-539
    [50]Starzl TE, Porter KA, Mazzaferro V, et al. Hepatotrophic effects of FK506 in dogs[J]. Transplantation, 1991, 51 (1) :67-70
    [51]Kato Y, Shimazu M, Wakabayashi G, et al. Significance of portal venous flow in graft regeneration after living related liver transplantation[J]. Transplant Proc, 2001, 33(1-2):1484-1485
    [52]Kido M, Ku Y, Fukumoto T, et al. Significant role of middle hepatic vein in remnant liver regeneration of right-lobe living donors[J]. Transplantation, 2003, 75(9):1598-1600
    [53]Ibrahim S, Chen CL, Wang CC, et al. Liver regeneration and splenic enlargement in donors after living-donor liver transplantation[J]. World J Surg, 2005,29 (12):1658-1666
    [54]Wakabayashi G, Shimazu M, Ueda M, et al. Liver regeneration after resection: molecular and cellular mechanism[J]. Nippon Geka Gakkai Zasshi,2004, 105(10):650-653.
    [55]Hongcui Cao, Jiong Yu, Wei Xu. et al. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy[J]. Proteome Science, 2009, 29(7):48-62
    [56]White P, Brestelli JE, Kaestner KH, et al. Identification of transcriptional networks during liver regeneration[J]. J Biol Chem ,2005, 280(5): 3715-3722
    [57]Clark DA, Chaouat G, Wong K, et al. Tolerance mechanisms in pregnancy: a reappraisal of the role of class I paternal MHC antigens[J]. Am J Reprod Immunol,2010, 63(2):93-103
    [58]ChinenJ, Buckley RH. Transplantation immunology: solid organ and bone marrow [J]. J Allergy Clin Immunol, 2010,125(2 Suppl 2):S324-35
    [59]Olthoff KM,Judge TA,Gelman A E,et al.Adenovirus gene transfer into cold-preserved liver allografts:survival pattern and unresponsiveness following transduction with CTLA-4 Ig[J].N atM ed,1998,4(2):194-200
    [60]Cheung ST,T sui TY,W angWL,et al.Liver as an ideal target fo rgene therapy:exp ression of CTLA 4 Ig by retroviral gene transfer[J].Gastroe ntero 1 Hepato 1,2002,17:1008-1014
    [61]Chang GJ,Liu T,Feng S,et al.Targeted gene therapy with CD40 Ig to induce long term acceptance of liver allografts[J].Surgery,2002,132(2):149-156
    [62]Roza Nurieva,Sunil Thomas,Thang Nguyen,et al.T-cell tolerance or function is determined by combinatorial costimulatory signals[J]EMBO J,2006,25(11):2623-2633
    [63]L ederman S,Yellin MJ,Krichevsky A,et al.Identification of a novel surface p ro tein on activated CD4+T cell that induces contact-dependent B cell differe -ntiation[J].J Exp Med,1992,175(4):1091
    [64]Starzl TE,Anthony J,Demetris AJ,et al.Donor cell chimerism permitted by immuno suppressive drugs:a new view of organ transplantation[J].Immunology Today,1993,14(6):326-332
    [65]周广臣,谢叔良,陈家存.门静脉注射供体脾细胞诱导免疫耐受机制的研究[J].徐州医学院学报,2001,21(3):203
    [66]Steinman RM,Inaba K,Turley S,et al.Antigen capture,pro-cessing,and presentation by dendritic cells:recent cell biological studies[J].Hum Immunol,1999,60(7):562-567
    [67]Thomson AW,Lu L,Mura Se N,et al.Microch- imerism,dendritic cell progenitors and transplantationtol erance[J].Stem Cells(Dayt),1995,13(6):622-639
    [68]Khoury SJ,Gallon L,Verburg RR,et al.Exvivo treatment of antigen presenting cells with CTLA4Ig and encephalitogenic peptide preventsex perimental autoimmune cephalomyelitis in the Lew is rat[J].J Immunol,1996,157(8):3700-3705
    [69]De Smedt T,Van Mechelen M,DeBecker G,et al.Effect ofinterleuk in 10 on dendritic cell maturation and function[J].Eur J Immunol,1997,27(5):1229-1235
    [70]RonchettiA , Rovere P, Iezzi G, et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen presenting cells, and cytok in es[J]. J Immuno 1, 1999, 163 (1) : 130-136
    [71]Daisuke Tokita, Tina L. Sumpter, Giorgio Raimondi.et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells[J]. J Hepatol, 2008, 49(6): 1008-1018
    [72]Lu L , Woo J , Rao A S, et al. Propagation of dendritic cell progenitors form normalmouse liver using GM -CSF and theirmaturational development in the presence of type 1 collagen [J]. J Exp Med, 1994, 179(6): 1823-1434
    [73]Thomson AW , Lu L. Dendritic cells as regulators of immune reactivity: implications for transplantation [J]. Transplantation, 1999, 68(1):1—8
    
    [74]Herkel J , Brunner SM ,Meyer-Z, Bushenfefelde KH, et al. Humoral mechanisms in T cell vaccination and functional characterization of anti-lymphocytic autoanti -bodies [J]. Autoimmun, 1997, 10(2): 137-146
    [75]Papalo is B, Wahoff D, Asshaim T, et al. T-cell vaccination pro-longs hear but. not islet allo Papalo is B, Wahoff D, Asshaim T graft survival in rats[J]. T ransplant Proc, 1995, 27(6): 3189
    [76]Herkel J , Brunners, Meyer KH, et al. Humoralmechanisms of T cell vaccination:induction and functional characterization of anti-lymphocytic autoantibodies[J]. Auto immune, 1997, 10(2): 137
    [77]Qiang you, linling Cheng. Mechanism of T Cell Tolerance Induction by Murine Hepatic Kupffer Cells [J] Hepatology, 2008,48(3): 978-990
    [78]Mao-Lin Yan, Yao-Dong Wang, Yi-Feng Tian, et al. Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2,3-dioxygenase[J]. World J Gastroenterol, 2010, 16(5): 636-640
    [79]Dresske B, Lin X, Huang DS, et al. Spontaneous tolerance: experience with the rat liver transplant model[J]. Hum Immunol, 2002, 63(10): 853-861
    [80]Liu J, Gao Y, Wang S, et al. Effect of operationsynchronizing transfusion of apoptotic spleen cells from donor rats on acute rejection of recipient rats after liver transplantation. World J Gastroenterol, 2005, 11(8):1161-1166
    [81]Nagasaki K, Obara H, Xiong A, et al. Liver allografts are toleragenic in rats conditioned with posttransplant total lymphoid irradiation. Transplantation, 2007, 84(5):619-628
    [82]Glennie S, Soeiro I, Dyson PJ, et al. Bonemarrow mesenchymal stem cells induce division arrest anergy of activated T cells [J]. Blood, 2005, 105 (7) : 2821-2827
    [83]Aggarwal S, Pittenger MF. Humanmesenchymal stem cellsmodulate alloge-neic immune cell responses[J]. Blood, 2005, 105 (4):1815-1822
    [84]Peiman Hematti, MD, Assistant Professor of Medicine. Role of mesenchymal stromal cells in solid organ transplantation[J]. Transplant Rev (Orlando). 2008 October, 22(4): 262-273
    [85]Sheng H, Wang Y, J in Y, et al. A critical role of IFN-gamma in priming MSC -mediated suppression of T cell proliferation through up regulation of B7-H1 [J].Cell Res, 2008, 18(8) : 846-857
    [86]Ren C, Kumar S, Chanda D, et al. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model [J]. Stem Cells, 2008, 26 (9) : 2332 -2338
    [87]Zhang B, Liu R, Shi D, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population[J]. Blood, 2009, 113 (1) : 46 - 57
    [88]Megan Sykes, M. D, et al. Hematopoietic Cell Transplantation for Tolerance Induction:Animal Models to Clinical Trials[J] Transplantation. 2009, 87(3): 309 - 316
    [89]Hayashi H, LeGuern C, Sachs DH, Sykes M. Alloresistance to K locus mismatched bone marrow engraftment is mediated entirely by CD4+ and CD8+ T cells[J]. Bone Marrow Transplant, 1996, 18(2):285 - 292
    [90]Wekerle T, Sayegh MH, Hill J, et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. [J]Exp Med, 1998, 187(12):2037 - 2044
    [91]Fehr T, Takeuchi Y, Kurtz J, Wekerle T, et al. Early regulation of CD8 T cell alloreactivity by CD4+CD25- T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation[J]. Eur J Immunol, 2005 ,35 (9):2679-2690
    
    [92]Fehr T, Wang S, Haspot F, et al. Rapid deletional peripheral CD8 T cell tolerance induced by allogeneic bone marrow: role of donor class II MHC and B cells[J]. J Immunol, 2008, 181(6):4371-4380
    
    [93]Tomita Y, Khan A, Sykes M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantion in mice conditioned with a non-myeloablative regimen. [J]Immunol. 1994, 153 (3): 1087-1098
    
    [94]Tomita Y, Sachs DH, Khan A, et al. Additional mAb injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mAbs and 3 Gy whole body irradiation[J]. Transplantation, 1996, 61(3):469-477
    
    [95]Tomita Y, Khan A, Sykes M. Mechanism by which additional monoclonal antibody injections overcome the requirement for thymic irradiation to achieve mixed chimerism in mice receiving bone marrow transplantation after conditioning with anti-T cell mAbs and 3 Gy whole body irradiation[J]. Transplantation, 1996 , 61(3):477 - 485
    
    [96]Khan A, Tomita Y, Sykes M. Thymic dependence of loss of tolerance in mixed allogeneic bone marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance. [J]Transplantation, 1996, 62(3): 380-387
    
    [97]Manilay JO, Pearson DA, Sergio JJ, Swenson KG, Sykes M. Intrathymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmye -loablative conditioning regimen. [J] Transplantation, 1998, 66(1):96 - 102
    
    [98]Berg UB, Ericzon BG, Nemeth A. Renal function before and long after liver transplantation in children[J]. Transplantation, 2001, 72(4): 631-637
    [99]Zimmermann FA, Davies HS, Knoll PP, et al. Orthotopic liver allografts in the rat. The influence of atrain combination on the fate of the graft[J]. Transplantation, 1984, 37(4): 406-410
    
    [100]Tryphonopoulos P, Tzakis AG, Weppler D, et al. The role of donor bone marrow infusions in withdrawal of immunosuppression in adult liver allotransplantation[J]. Am J Transplant, 2005, 5(3): 608-613
    
    [101]Pons JA, Revilla-Nuin B, Baroja-Mazo A, et al. FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal[J]. Transplantation, 2008, 86(10): 1370-1378