左卡尼汀在肾小管上皮细胞氧化应激损伤中的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾脏缺血再灌注损伤可发生于多种疾病情况下,如休克、外科手术、移植、糖尿病肾病、慢性肾小管-间质损伤等,并伴随着氧化应激的增加。氧化应激由活性氧介导,包括自由基如超氧阴离子、羟基和非自由基如过氧化氢。活性氧在肾组织中的肾小球、间质肾小管、系膜细胞中产生,而组织中的抗氧化防御系统如低分子量抗氧化剂(抗坏血酸素C、谷胱甘肽、维生素E等)、ROS反应酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶)以及氧化还原调节酶等会同时被激活,抑制活性氧生成并降解活性氧。若活性氧的产生量超过机体自身的清除能力,会同时破坏机体抗氧化酶,通过脂质氧化、分解DNA、和蛋白变性等损伤细胞。肾移植过程中移植肾不可避免遭受缺血再灌注损伤,其中主要为氧化应激损伤。肾脏冷保存时组织缺氧,移植恢复血液灌注后即激活瀑布式的炎症反应,产生大量活性氧。移植后活性氧的增加可能还参与了慢性移植肾肾病的发生。活性氧导致的线粒体肿胀,凋亡蛋白酶-3的激活,直接引起细胞坏死或凋亡。在肾脏缺血再灌注损伤后的第一个24小时内,抗凋亡蛋白Bcl-2家族如Bc1-2和Bcl-XL,以及凋亡前蛋白Bax、p53、FADD和Bak在近曲、远曲小管的表达均增加,并且与损伤严重程度相关。抗氧化剂治疗能减轻氧化应激,抑制细胞凋亡和坏死,改善移植物保存效果,减轻相关的损伤和炎症反应。
     左卡尼汀(L-carnitine, LC),一种L-赖氨酸的衍生物,是内源性的线粒体膜复合物。人体左卡尼汀的主要生理作用是辅助长链脂肪酸转运到线粒体内部进入β氧化循环,做为一种营养添加剂已应用30余年。左卡尼汀对肾组织的保护作用已经在多种氧化应激模型中得到证实,如:顺铂导致的肾或小肠损伤模型,庆大霉素引起肾毒性模型,肾的缺血再灌注模型以及慢性肾衰模型。左卡尼汀能抑制肾脏缺血再灌注损伤中血清和肾组织MDA的生成。有学者发现左卡尼汀有清除DPPH、超氧阴离子、过氧化氢的能力,提高抗氧化酶的活性,如SOD, CAT和GPx等,并能降低肾组织中的MDA浓度。
     根据以上的发现,本研究应用人体近曲小管上皮细胞HK-2作为细胞模型,研究左卡尼汀抗氧化作用的分子机制。作为活性氧的主要成员,过氧化氢在氧化还原过程中产生,被认为是引起细胞内信号传递的信使。过氧化氢能引起脂质过氧化和DNA损伤。因此,我们应用过氧化氢诱导HK-2细胞氧化应激,验证使用左卡尼汀预处理能减轻过氧化氢对HK-2的氧化作用。在此基础上,我们还进一步研究了左卡尼汀在氧化应激中ROS的生成,脂质过氧化、抗氧化系统、线粒体功能和细胞凋亡情况。
     第一章左卡尼汀对氧化应激损伤肾小管上皮细胞的保护作用
     目的建立过氧化氢诱导的人肾小管上皮细胞系(HK-2)氧化应激损伤模型,探讨左卡尼汀(L-carnitine, LC)对过氧化氢氧化应激损伤人肾小管上皮细胞的保护作用及其可能机制。
     方法用不同浓度的H202作用于人肾小管上皮细胞(HK-2),四甲基偶氮唑蓝(MTT)法检测细胞活力,建立造成肾小管上皮细胞氧化应激损伤模型;实验分为5组:正常细胞组、H202损伤组、单独LC组、LC保护组、N-乙酰半胱氨酸(NAC)组,MTT法检测各组细胞活力,采用酶化学法测定细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活性、以及测定其总抗氧化能力(T-AOC)、丙二醛(MDA)水平;以氧化敏感的2,7-二氢二氯荧光素(DCFH-DA)染色,荧光显微镜观察及流式细胞仪测定细胞内活性氧(ROS)强度,碘化丙啶(PI)染色流式细胞仪测定HK-2细胞的凋亡率。实验组测量值用均数±标准差(x±s)表示,应用SPSS16.0统计分析软件对数据进行分析,各组比较应用单因素方差分析(One-Way ANOVA)、组间多重比较应用LSD-t检验,P<0.05表示差异有统计学意义。
     结果H2O2500μM×30min处理后HK-2细胞活性较正常细胞显著降低(P<0.001),单独应用LC 10μM、50μM、100μM处理12小时HK-2细胞活力显著高于正常对照组(P<0.001),H202损伤前使用LC预处理12小时能抑制H202损伤所导致的HK-2细胞活力降低(P<0.001);H2O2500μM×30min处理后,细胞中SOD,GSH-Px和CAT含量及T-AOC显著低于正常细胞组(P<0.001),而LC保护组,细胞中SOD, GSH-Px和CAT含量及T-AOC显著高于H202损伤组(P<0.001);H202损伤组MDA、ROS水平高于正常细胞组,细胞凋亡率高于正常细胞组,差别有统计学意义(P<0.001),而LC保护组MDA、ROS水平以及细胞凋亡率均显著低于H202损伤组(P<0.001)。表明肾小管上皮细胞在经左卡尼汀预处理之后,抗损伤能力加强,损伤程度减少。
     结论左卡尼汀对氧化应激所致的肾小管上皮细胞损伤具有保护作用,其作用机制可能与增强细胞抗氧化能力,减少自由基生成,抑制脂质过氧化反应,减少细胞凋亡有关。
     第二章线粒体通路在左卡尼汀抑制氧化应激诱导HK-2细胞凋亡中的作用
     目的探讨线粒体通路在左卡尼汀(L-carnitine, LC)对过氧化氢氧化应激致人肾小管上皮细胞凋亡中的作用。
     方法建立H202诱导的肾小管上皮细胞氧化应激损伤模型;实验分为五组:正常细胞组、H202损伤组、单独LC组、LC保护组、N-乙酰半胱氨酸(NAC)组;Hoechst 33258染色观察细胞凋亡,计算细胞凋亡率;流式细胞仪检测线粒体膜电位和半胱天冬酶3 (caspase-3)的活性;蛋白质印迹法检测凋亡相关活性蛋白Bcl-2和Bax的表达以及细胞色素C的释放。各实验组测量值用均数±标准差(x±s)表示,应用SPSS16.0统计分析软件对数据进行分析,各组比较应用单因素方差分析(One-Way ANOVA)、组间多重比较应用LSD-t检验,P<0.05为差异有统计学意义。
     结果Hoechst 33258染色结果显示H2O2损伤组出现典型的细胞致密浓染,核固缩、边缘化等凋亡形态学改变;H2O2损伤组细胞凋亡率显著高于正常对照组(P<0.001),不同浓度LC保护组细胞凋亡率显著低于H202损伤组(P<0.001),且该效应呈剂量依赖性;使用流式细胞议检测H202损伤组caspase-3活性显著高于正常对照组(P<0.001),而LC保护组caspase-3活性显著低于H202损伤组(P<0.001);过氧化氢作用可使HK-2细胞线粒体功能紊乱,H202损伤组较正常细胞组线粒体膜电位显著降低(P<0.001),Bax/Bcl-2显著升高(P<0.001),胞浆细胞色素C显著升高(P<0.001);而LC保护组较H2O2损伤组线粒体膜电位显著升高(P<0.001),Bax/Bc1-2显著降低(P<0.001),胞浆细胞色素C显著降低(P<0.001),提示左卡尼汀预处理能剂量依赖性的抑制上述细胞凋亡时的线粒体功能紊乱。
     结论左卡尼汀对氧化应激所致的肾小管上皮细胞凋亡具有抑制作用,其作用机制可能与改善线粒体功能有关。
Increased oxidative stress have been implicated in a variety of kidney diseases, such as renal ischemia-reperfusion (I/R) injury caused by shock or during surgery or transplantation, diabetic nephropathy, and chronic tubulointerstitial injury. It is mediated by reactive oxygen species (ROS), including free radicals such as superoxide ions and hydroxyl radicals as well as non-free radical species such as hydrogen peroxide (H2O2). ROS can be generated within the nephron segments like the glomeruli and proximal tubule and mammalian cells have developed several protective mechanisms to prevent ROS formation or detoxify ROS, which include low-molecular-mass antioxidants (ascorbic acid, glutathione, tocopherols, and others), ROS-interacting enzymes (superoxide dismutase, peroxidases, and catalases), and redox regulation enzymes. I/R excessively produces reactive oxygen species (ROS) beyond this organ's scavenging capacity for ROS, simultaneously impairs antioxidant enzymes, and causes cell damage by lipid peroxidation, DNA breakdown, and protein damage. Studies have shown that ischemia/reperfusion (I/R) inevitably accompanied with renal transplantation is well characterized oxidative stress-induced tissue injury immediately after kidney transplantation. Injury initiated by the lack of oxygen during cold presentation is augumented by ROS during subsequent warm reperfusion of grafts through activation of imflammatory cascade. Reactive oxygen species (ROS) is also markedly increased after kidney transplantation and may participate in the development and/or progression of chronic renal allograft nephropathy [3]. ROS-induced mitochondrial swelling, caspase-3 activation, which contributes to both necrotic and apoptotic forms of cell death have been documented after I/R injury in the kidney and in posthypoxic isolated proximal tubules occurred. The expression of both the antiapoptotic Bcl-2 family of proteins, Bcl-2 and Bcl-XL, and the proapoptotic proteins Bax, p53, FADD, and Bak in the distal and proximal tubules during the first 24 h were increased after I/R injury in the kidney, with the net effect determining the severity of injury and dysfunction. Antioxidant strategy may reduce oxidative stress and inhibit apoptotic signaling and cell death which will allow better preservation of graft function and ameliorate the associated injury and inflammation in kidney.
     L-Carnitine (4-N-trimethylammonium-3-hydroxybutyric acid), an L-lysine derivative, is an endogenous mitochondrial membrane compound. The main physical function of L-carnitine in human body is facilitating the transport of long chain fatty acids into mitochondria in order to enter the P-oxidation cycle. Used as a safe and effective nutritional supplement for more than three decades, the protective effect of 1-carnitine on kidney tissue has been proved in various models involving oxidative stress, such as cisplatin-induced injury of the kidney and small intestine, gentamycin-induced nephrotoxicity, ischaemia- reperfusion injury of the kidney and chronic renal failure. It has been demonstrated that L-carnitine administration inhibits both serum and kidney tissue MDA formation in response to renal ischaemia/reperfusion injury. By using different antioxidant assays,Ⅰlhami Gulcin demonstrated that L-carnitine had an effective DPPH·scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, total reducing power and metal chelating on ferrous ions activities compared to a-tocopherol and trolox as references antioxidants. Carnitine can also act as a chelator by decreasing the concentration of cytosolic iron, which plays a very important role in free radical chemistry. And carnitine supplementation enhances the activities of anti-oxidant enzymes, such as SOD, CAT and GPx, and GSH levels and decreases the MDA concentration in kidney tissues of 24-month-old rats.
     In light of the findings described above, the present study employed the human proximal tubule epithelial cell line, HK-2 cells as a cell model system and aimed to elucidate the molecular mechanisms of L-carnitine on renal oxidative stress. As the major component of ROS, H2O2 is produced during the redox process and is considered as a messenger in intracellular signaling cascades. H2O2 could cause lipid peroxidation and DNA damage. So we used H2O2 as an inducer of oxidative stress for HK-2 cells and tested whether pretreatment cells with L-carnitine resulted in the resistance of HK-2 to H2O2 challenge. Furthermore, the effect of L-carnitine on oxidative stress conditions such as ROS production, lipid peroxidation, antioxidant defensive system, mitochondrial dysfunction and DNA damage associated with cell apoptosis were also studied.
     Chapter one Protective effect of L-carnitine on human kidney tubular epithelial cell line damaged by oxidative stress
     Objective To establish the HK-2 cell oxidative model induced by H2O2, and investigate the protective effect and its mechanism of L-carnitine on human kidney tubular epithelial cell line damaged by hydrogen peroxide (H2O2)-mediated oxidative stress.
     Methods Human kidney tubular epithelial cell line (HK-2 cells) were exposed to H2O2 of different concentration. The exact dose of H2O2 for the oxidative model was determined according to the cell viability evaluted by MTT assays. Then the HK-2 cells were divided into 5 group:normal control group, LC alone group, H2O2 group, LC protected group(pretreated with L-carnitine for 12hs and then injuryed by H2O2), and NAC group. The cell viability evaluted by MTT assays. Enzyme activities including superoxide dismutase (SOD), glutat hione peroxidase (GSH-Px), catalase (CAT), total antioxidative capacity (T-AOC) and malondialdehyde (MDA) were determined by biochemical methods. Intracellular ROS was detected by means of an oxidation sensitive fluorescent probe (DCF-DA) and the cell apoptosis were quantified by determining DNA content of cells by propidium iodide staining by flow cytometry. The Data was shown as mean±sd, analysed by One-way ANOVA and LSD-t test, SPSS 16.0, P<0.05 was statistically significant difference.
     Results H2O2 500μM X 30min decreased the cell viability significantly compared to the normal control group (P<0.001). L-carnitine(LC) 1OμM、50μM、100μM alone for 12h increased the cell viability compared to the normal control group (P<0.001) Pretreated by LC for 12h could inhibit H2O2-induced cell viability loss(P<0.001). The activities of intracellar superoxide dismutase(SOD), glutathione peroxidase(GPx), catalase(CAT) and total anti-oxidative capacity (T-AOC) decresed 12h after the cells exposed to H2O2 500μM for 30 min(P<0.001) compared to the normal control group. Pretreated by LC for 12h could enhance the activities of these antioxidant enzymes significantly in a concentration-dependent manner compared to the H2O2 group(P<0.001). Also, L-carnitine pretreatment increased total anti-oxidative capacity (T-AOC) and inhibited MDA formation. The intracellular reactive oxygen species generation and cell apoptosis triggered by H2O2 characterized with the DNA fragment were also inhibited by L-carnitine.
     Conclusions These results indicated that L-carnitine exhibited protective effects on HK-2 cells injuried by oxidative stress. It may be related to its antioxidative action which included enhancing endogenous antioxiant defense components, inhibiting the ROS production, MDA formation and cell apoptosis.
     Chapter two Role of the mitochondrial in L-carnitine inhibiting oxidative stress-induced human kidney tubular epithelial cell apoptosis
     Objective To investigate the role of the mitochondrial in the inhibiting effect of L-carnitine on hydrogen peroxide (H2O2)-induced human kidney tubular epithelial cell apoptosis.
     Methods Human kidney tubular epithelial cell line (HK-2 cells) were pretreated with L-carnitine for 12hs and then injuryed by H2O2. The cell apoptosis were evaluted by nuclear staining assay using chromatin dye Hoechst 33258 and flow cytometric detection of caspase-3 activity. Mitochondrial membrane potential was monitored using the fluorescent dye Rh123 by flow cytometry. Expression levels of Bcl-2, Bax and the release of cytochrome c were determined by Western blot analysis. The Data was shown as mean±sd, analysed by One-way ANOVA and LSD-t test, SPSS16.0, P<0.05 was statistically significant difference.
     Results The apoptosis rate of H2O2 injured cells was significantly higher than that of L-carnitine pretreatment cells(P<0.001). Activities of caspase-3 in H2O2 injured cells seemed higher than normal cells, and L-cartine pretreatment could prohibit the activation of caspase-3 in a concentration-dependent manner(P<0.001). The mitochondrial trans-membrane potential (ΔψM) was rapidly reduced when HK-2 cells were exposed to H2O2 and H2O-induced dissipation ofΔψM was significantly blocked by the pretreatment with L-carnitine. There was significant decrease in the mitochondrial cytochrome c level after H2O2 injury, which was accompanied by a simultaneous increase in cytochrome c level in the cytosol. Treatment of HK-2 cells with L-carnitine reduced cytochrome c in the cytosol and increased the mitochondrial cytochrome c. In H2O2 group, the expression rate of Bcl-2 was significantly reduced and the expression of Bax was increased compared to normal group(P<0.001). When HK-2 cells were treated with 50μM L-carnitine before H2O2 injury, the expression rate of Bcl-2 was markedly increased compared with H2O2 group.
     Conclusions These results suggested that L-carnitine could inhibit H2O2-induced kidney tubalar epithelial cell apoptosis through the mitochondrial pathway.
引文
[1]Rock P, Yao Z. Ischemia reperfusion injury, preconditioning and critical illness. Curr Opin Anaesthesiol.2002 Apr; 15(2):139-46.
    [2]Perco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int. 2007 Jan;20(1):2-11.
    [3]Parikh CR, Edelstein CL, Devarajan P, Cantley L. Biomarkers of acute kidney injury:early diagnosis, pathogenesis, and recovery. J Investig Med.2007 Nov;55(7):333-40.
    [4]Djamali, A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am. J. Physiol. Renal Physiol.293:445-455; 2007.
    [5]Snoeijs MG, van Heurn LE, Buurman WA. Biological modulation of renal ischemia-reperfusion injury. Curr Opin Organ Transplant.2010 Apr; 15(2):190-9.
    [6]Bohmova R, Viklicky O. Renal ischemia--reperfusion injury:an inescapable event affecting kidney transplantation outcome. Folia Microbiol (Praha).2001; 46(4):267-76.
    [7]Koo DD, Welsh KI, Roake JA, Morris PJ, Fuggle SV. Ischemia/reperfusion injury in human kidney transplantation: an immunohistochemical analysis of changes after reperfusion.Am J Pathol.1998 Aug;153(2):557-66.
    [8]Nankivell BJ, Chapman JR. Chronic allograft nephropathy:current concepts and future directions. Transplantation.2006 Mar 15;81(5):643-54.
    [9]Perez Fontan M, Rodriguez-Carmona A, Garcia Falcon T et al. Early immunologic and nonimmunologic predictors of arterial hypertension after renal transplantation.Am J Kidney Dis.1999 Jan;33(1):21-8.
    [10]Pascher A, Klupp J. Biologics in the treatment of transplant rejection and ischemia/reperfusion injury:new applications for TNF alpha inhibitors? BioDrugs.2005;19(4):211-31.
    [11]Loverre A, Capobianco C, Stallone G et al. Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function. Kidney Int.2007 Oct;72(8):994-1003.
    [12]Sun K, Kiss E, Bedke J, Stojanovic T, Li Y, Gwinner W, Grone HJ. Role of xanthine oxidoreductase in experimental acute renal-allograft rejection. Transplantation.2004 Jun 15;77(11):1683-92.
    [13]Peeters P, Vanholder R. Therapeutic interventions favorably influencing delayed and slow graft function in kidney transplantation:mission impossible? Transplantation.2008 Apr 15;85(7 Suppl):S31-7.
    [14]Ha H, Park J, Kim YS, Endou H. Oxidative stress and chronic allograft nephropathy. Yonsei Med J.2004 Dec 31;45(6):1049-52.
    [15]Kim J, Seok YM, Jung KJ, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol.2009 Aug;297(2):F461-70.
    [16]Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol,2000,279(6):L1005-L1028
    [17]Kevin LG,Novalija E,Stowe DF. Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice. Anesth.Analg,2005; 101 (5):1275-1287
    [18]Freeman BA, Crapo JD. Biology of disease:free radicals and tissue injury. Lab Invest,1982:47:412-26
    [19]McCord JM: Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem,1993,26(5):3511-3517
    [20]Princemail J, Defraigne JO, Franssen C. Evidence for free radical formation during human kidney transplantation. Free Radic Biol Med,1993;15(3):343-7
    [21]Baker GL, Corry RJ, Autor AP:Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg,1985,202:628-641
    [22]BonVentre JV:Mechanisms of ischemic acute renal failure. Kidney Int,1993, 43:1160-1178
    [23]Johnson KJ, Weinberg JM:Postischemic renal injury due to oxygen radicals. Curr Opin Nephrol Hypertens,1993,2:625-635
    [24]Simic-Ogrizovic S, Simic T, Reljic Z, et al. Markers of oxidative stress after renal transplantation. Transplant Int,1998,11:suppl 1:s125-9
    [25]Giral-Classe M, Hourmant M, Cantarovich D, et al. Delayed graft function of more than six days strongly decreases long-term survival of transplant kidneys. Kidney Int,1998;54:972-8
    [26]Rovertson H, Ali S, Mcdonnell BJ,et al. Chronic renal allograft dysfunction: The role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol,2004;15:390-7
    [27]Djamali A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol,2007,293(2):445-455.
    [28]Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK. Kidney ischemia-reperfusion:modulation of antioxidant defenses. Mol Cell Biochem, 2000,205(1-2):1-11.
    [29]Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, Arfors KE, Messmer K. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57:211-217,
    [30]Davenport A, Hopton M, Bolton C. Measurement of malondialdehyde as a marker of oxygen free radical production during renal allograft transplantation and the effect of early graft function. Clin Transplant,1995;9:171-5
    [31]Rhyu DY, Yang Y, Ha H et al. Role of reactive oxygen species in TGF-betal-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol.2005 Mar;16(3):667-75.
    [32]Raj DSC, Lim C, Levi M, et al. Advanced glycation end products and oxidative stress are increased in chronic allograft nephropathy. Am J Kidney Dis, 2004;43(1):154-60
    [33]Bedi S, Vidysasgar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplantation Reviews,2008, 22(1):1-5.
    [34]Kaminski KA, Bonda TA, Korecki J, Musial WJ. Oxidative stress and neutrophil activation-the two key stones of ischemia/reperfusion injury. Int J Cardiol,2002,86(1):41-59.
    [35]Jonassen JA, Cao LC, Honeyman et al. Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Eukaryot Gene Expr. 2003;13(1):55-72.
    [36]Modlinger PS, Wilcox CS, Aslam S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol.2004 Jul;24(4):354-65.
    [37]Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes.2008 Jun;57(6):1446-54.
    [38]Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract.2008 Nov 13;82 Suppl1:S42-5.
    [39]Hernandez-Garcia D, Wood CD, Castro-Obregon S et al. Reactive oxygen species:A radical role in development? Free Radic Biol Med.2010 Mar 27.
    [40]Le Bras M, Clement MV, Pervaiz S, Brenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol.2005 Jan;20(1):205-19.
    [41]Vela C, Crestol JP, Ribstein, et al. Antioxidant supplementation and chronic renal transplant dysfunction. Transplant Proc,2000,32(2):427-8
    [42]Shoskes D, Lapierre C, Cruz-Correa M et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation:a randomized placebo controlled trial. Transplantation.2005 Dec 15;80(11):1556-9.
    [43]Gottmann U, Oltersdorf J, Schaub M et al. Oxidative stress in chronic renal allograft nephropathy in rats:effects of long-term treatment with carvedilol, BM 91.0228, or alpha-tocopherol. J Cardiovasc Pharmacol.2003 Sep;42(3):442-50.
    [44]Kerner J, Hoppel C. Generic disorders of carnitine metabolism and their nutritional management. Annu Rev Nutr,1998,18(2):179-206
    [45]Reda E, Iddio D, Nicolai R, et al. The carnitine system and body composition. Acta diabetol,2003,40(11):106-113
    [46]Mario M, Guido B, Gilusepppe C, et al. History of L-carnitine:Implications for renal disease. J Ren Nutr,2003,13(1):2-14
    [47]Giafranco G, Roberta S, Gianni B. Carnitine metabolism in uremia. Am J Kidney Dis,2001,38(4):63-67.
    [48]Ramsay R. The carnitine acyltransferases:modulators of acyl-CoA-dependent reactions. Biochem Soci Tran,2000,28(2):182-186.
    [49]Giilcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci,2006,78 (8)803-811.
    [50]Arockia Rani PJ, Panneerselvam C. Carnitine as a free radical scavenger in aging. Exp. Gerontol,2001,36 (10) 1713-1726.
    [51]Gorur S, Bagdatoglu OT, Polat G.. Protctive effect of L-carnitine on renal ischaemia-reperfusion injury in the rat. Cell Biochem Funct,2005,23(5): 151-155
    [52]Kopple J, Ding H, Letoha A, et al. L-carnitine ameliorates gentamicin-induced renal injury in rats. Nephrol Dial Transplant.2002,17(12):2122-31
    [53]Mister M, Noris M, Szymczuk J, et al. Propionyl-L-carnitine prevents renal function dererioration due to ischemia/reperfusion. Kidney Int,2002; 61(3): 1064-1078
    [54]Castaneda MP, Swiatecka-Urban A, Mitsnefes MM et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation.2003 Jul 15;76(1):50-4.
    [55]Kerr MR, Wllie AH,Currie AR. Apoptosis:A basic biological phenomenon with wide ranging placation in tissue kinetics. Br J Cancer,1972,26(4):239-257
    [56]Mcdonnell TJ, Beham A, Sarkiss M, et al. Importance of the Bcl-2 family in cell death regulation. Experientia,1996,52:1008
    [57]Yin C, Kundoson CM, Korsmeyer SJ, et al. Bax suppresses of tumor i-genesis and stimulates apoptosis in vivo. Nature,1997,385(6617):637-640
    [58]Swanton E, Savory P,Cosulich S, et al. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene,1999,18(10):1781-1787
    [1]Weight, S. C.; Bell, P. R.; Nicholson, M. L. Renal ischaemia- reperfusion injury. Br.J.Surg.83:162-170; 1996.
    [2]Verzola, D.; Bertolotto, M. B.; Villaggio, B.; Ottonello, L.; Dallegri, F.; Salvatore, F.;Berruti, V.; Gandolfo, M. T.; Garibotto, G.; Deferrari, G. Oxidative stress mediates apoptotic changes induced by hyperglycemia in human tubular kidney cells. J. Am. Soc. Nephrol.15 (Suppl.1):S85-S87; 2004.
    [3]Djamali, A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am. J. Physiol. Renal Physiol.293:445-455; 2007.
    [4]Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK. Kidney ischemia-reperfusion:modulation of antioxidant defenses. Mol Cell Biochem, 2000,205:1-11.
    [5]Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM: De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 12: 973-982,2001
    [6]Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol.39:44-84; 2007.
    [7]T. Finkel, Oxygen radicals and signaling. Curr. Opin. Cell Biol.10 (1998) 248-253.
    [8]Vela C, Crestol JP, Ribstein, et al. Antioxidant supplementation and chronic renal transplant dysfunction. Transplant Proc,2000; 32:427-8
    [9]Shoskes D, Lapierre C, Cruz-Correa M et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation.2005 Dec 15;80(11):1556-9.
    [10]Gottmann U, Oltersdorf J, Schaub M et al. Oxidative stress in chronic renal allograft nephropathy in rats:effects of long-term treatment with carvedilol, BM 91.0228, or alpha-tocopherol. J Cardiovasc Pharmacol.2003 Sep;42(3):442-50.
    [11]Rebouche CJ, Seim H. Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr.1998; 18:39-61.
    [12]Giilcin I., Antioxidant and antiradical activities of L-carnitine. Life Sci. Jan 78 (2006)803-11.
    [13]P.J. Rani, C. Panneerselvam, Carnitine as a free radical scavenger in aging. Exp. Gerontol.36(2001)1713-26.
    [14]Ergun O, Ulman C, Kilicalp AS, Ulman I. Carnitine as a preventive agent in experimental renal ischemia-reperfusion injury. Urol. Res.2001; 29:186-9.
    [15]Ronca G, Ronca F, Yu G, et al. Protection of isolated perfused working rat heart from oxidative stress by exogenous L-propionyl carnitine. Drugs Exp Clin Res. 1992;18(11-12):475-480.
    [16]Demirdag K, Bahcecioglu IH, Ozercan IH, et al. Role of L-carnitine in the prevention of acute liver damage induced by carbon tetrachloride in rats. Gastroenterol Hepatol,2004,19(3):333-338
    [17]Storz, G.; Imlay, J. A. Oxidative stress. Curr. Opin. Microbiol.2:188-194; 1999.
    [18]Martindale, J. L.; Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol.192:1-15; 2002.
    [19]Thannickal, V. J.; Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol.279:L1005-L1028; 2000.
    [20]Mosmann T. Rapid colorimetric assay for cellular grouth snd survival: application to proliferation and cytotoxicity assays[J]. J Immunol Meth 1983; 65(1):55-58.
    [21]Ronca G, Ronca F, Yu G, et al. Protection of isolated perfused working rat heart from oxidative stress by exogenous L-propionyl carnitine. Drugs Exp Clin Res. 1992;18(11-12):475-480.
    [22]Rani P.J., C. Panneerselvam, Carnitine as a free radical scavenger in aging. Exp. Gerontol.36(2001)1713-26.
    [23]Giilcin I., Antioxidant and antiradical activities of L-carnitine. Life Sci. Jan 78 (2006)803-11.
    [24]Ergun O, Ulman C, Kilicalp AS, Ulman I. Carnitine as a preventive agent in experimental renal ischemia-reperfusion injury. Urol. Res.2001; 29:186-9.
    [25]Demirdag K, Bahcecioglu IH, Ozercan IH, et al. Role of L-carnitine in the prevention of acute liver damage induced by carbon tetrachloride in rats. Gastroenterol Hepatol,2004,19(3):333-338
    [26]Sener G, Paskaloglu K, Satiroglu H, Alican I, Kacmaz A, Sakarcan A. 1-Carnitine ameliorates oxidative damage due to chronic renal failure in rats. J. Cardiovasc. Pharmacol.2004; 43:698-705.
    [27]Vesela E, Racek J, Trefil L et al. Effect of L-carnitine supplementation in hemodialysis patientS。Nephron,2001,88:218-223.
    [28]Penugonda S, Mare S, Goldstein G et al. Effects of N-acetylcysteine amide (NAC), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC 12. Brain Res.2005 Sep 21;1056(2):132-8.
    [29]Katiyar, S. K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287-294; 2001.
    [30]Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem.95:351-358; 1979.
    [31]Katiyar, S. K.; Agarwal, R.; Mukhtar, H. Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett.79:61-66; 1994.
    [32]Katiyar, S. K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287-294; 2001.
    [33]Finkel T., Oxygen radicals and signaling. Curr. Opin. Cell Biol.10 (1998) 248-253.Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology.2003 Jul 15;189(1-2):41-54.
    [34]Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM.(2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9 (1): 49-89.
    [35]Telford WG, King LE, Fraker PJ. Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif.1991 Sep;24(5):447-59.
    [1]Weight, S. C.; Bell, P. R.; Nicholson, M. L. Renal ischaemia- reperfusion injury. Br.J.Surg.83:162-170; 1996.
    [2]Burns AT, Davies DR, McLaren AJ, et al.Apoptosis in ischemia-reperfusion injury of human renal allografts[J].Transplantation,1998,66 (7):872-876.
    [3]Daemen MA, Van't Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA:Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104:541-549,1999
    [4]Saikumar P, Venkata Chalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol,2003,23(6):511-521.
    [5]Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM: De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 12: 973-982,2001
    [6]Djamali, A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am. J. Physiol. Renal Physiol.293:445-455; 2007.
    [7]Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P: Differential gene expression following early renal ischemia/reperfusion. Kidney Int 63:1714-1724,2003
    [8]Kaushal GP, Singh AB, Shah SV: Identification of gene family of caspases in rat kidney and altered expression in ischemiareperfusion injury. Am J Physiol 274:F587-F595,1998
    [9]Yoshida T, Kurella M, Beato F, Min H, Ingelfinger JR, Stears RL, Swinford RD, Gullans SR, Tang SS:Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidneylnt 61:1646-1654,2002
    [10]Rebouche CJ, Seim H. Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr.1998; 18:39-61.
    [11]Kadiroglu AK, YilmazME, Sit D, et al. The evaluation of postdialysis L carnitine administration and its effect on weekly requiring doses of rHuEPO in hemodialysis patients[J]. Ren Fail,2005,27 (4):367-372.
    [12]I. Gulcin, Antioxidant and antiradical activities of L-carnitine. Life Sci. Jan 78 (2006)803-11.
    [13]P.J. Rani, C. Panneerselvam, Carnitine as a free radical scavenger in aging. Exp. Gerontol.36(2001)1713-26.
    [14]Sener G, Paskaloglu K, Satiroglu H, Alican I, Kacmaz A, Sakarcan A. 1-Carnitine ameliorates oxidative damage due to chronic renal failure in rats. J. Cardiovasc. Pharmacol.2004; 43:698-705.
    [15]Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M.1-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch.Biochem. Biophys.2002; 405:55-64.
    [16]Ergun O, Ulman C, Kilicalp AS, Ulman I. Carnitine as a preventive agent in experimental renal ischemia-reperfusion injury. Urol. Res.2001; 29:186-9.
    [17]Kopple JD, Ding H, Letoha A et al.1-Carnitine ameliorates gentamicininduced renal injury in rats. Nephrol. Dial Transplant.2002; 17:2122-31.
    [18]Takasawa R,Tanuma R. Sustained release of Smac/DIABLO from mitochondria commits to undergo UVB-induced apoptosis[J].Apoptosis,2003,8(3):291-299.
    [19]吴英理,印彤,孙云等.甲异靛联合imatinib对CML K562细胞的促凋亡作用[J].上海第二医科大学学报,2005,25(5):433-436
    [20]Ly JD, Grubb DR, Lawen A, et al. The mitochondrial membrane potential (Δψ m) in apoptosis; an update. Apoptosis,2003,8(2):115-128.
    [21]Cory S, Adams JM. The Bcl-2 family:regulators of cellular life-or-death switch. Nat. Rev. Cancer.2 (2002) 647-656.
    [22]Basnakian AG, Kaushal GP, Shah SV. Apoptotic pathways of oxidative damage to renal tubular epithelial cells. Antioxid Redox Signal.2002 Dec;4(6):915-24.
    [23]Yang J, Liu X, Bhalla K, Kim CN, Ibrado A, Cai J. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science.275 (1997) 1129-1132.
    [24]Kowaltowski AJ, Fiskum G, Redox mechanisms of cytoprotection by Bcl-2. Antioxid Redox Signal.7 (2005) 508-14.
    [25]Dinsdale D, Lee JC, Dewson G, et al. Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am J Pathol, 2004,164:395-407.
    [26]Yang B, Jain S, Ashra SY, Furness PN, Nicholson ML. Apoptosis and caspase-3 in long-term renal ischemia/reperfusion injury in rats and divergent effects of immunosuppressants. Transplantation.2006 May 27;81(10):1442-50.
    [1]Bohmova R, Viklicky O. Renal ischemia--reperfusion injury:an inescapable event affecting kidney transplantation outcome. Folia Microbiol (Praha).2001; 46(4):267-76.
    [2]Koo DD, Welsh KI, Roake JA et al. Ischemia/reperfusion injury in human kidney transplantation:an immunohistochemical analysis of changes after reperfusion.Am J Pathol.1998 Aug;153(2):557-66.
    [3]Nankivell BJ, Chapman JR. Chronic allograft nephropathy:current concepts and future directions. Transplantation.2006 Mar 15;81(5):643-54.
    [4]Rock P, Yao Z. Ischemia reperfusion injury, preconditioning and critical illness. Curr Opin Anaesthesiol.2002 Apr; 15(2):139-46.
    [5]Perco P, Pleban C, Kainz A et al. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int.2007 Jan;20(1):2-11.
    [6]Parikh CR, Edelstein CL, Devarajan P, Cantley L. Biomarkers of acute kidney injury:early diagnosis, pathogenesis, and recovery. J Investig Med.2007 Nov;55(7):333-40.
    [7]Djamali, A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am. J. Physiol. Renal Physiol.293:445-455; 2007.
    [8]Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol,2000,279(6):L1005-L1028
    [9]Kevin LG,Novalija E,Stowe DF. Reactive Oxygen Species as Mediators of Cardiac Injury and Protection:The Relevance to Anesthesia Practice. Anesth.Analg,2005;101(5):1275-1287
    [10]Freeman BA, Crapo JD. Biology of disease:free radicals and tissue injury. Lab Invest,1982:47:412-26.
    [11]Snoeijs MG, van Heurn LE, Buurman WA. Biological modulation of renal ischemia-reperfusion injury. Curr Opin Organ Transplant.2010 Apr; 15(2):190-9.
    [12]Perez Fontan M, Rodriguez-Carmona A, Garcia Falcon T et al. Early immunologic and nonimmunologic predictors of arterial hypertension after renal transplantation.Am J Kidney Dis.1999 Jan;33(1):21-8.
    [13]Pascher A, Klupp J. Biologics in the treatment of transplant rejection and ischemia/reperfusion injury:new applications for TNF alpha inhibitors? BioDrugs.2005;19(4):211-31.
    [14]Loverre A, Capobianco C, Stallone G et al. Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function. Kidney Int.2007 Oct;72(8):994-1003.
    [15]Sun K, Kiss E, Bedke J et al. Role of xanthine oxidoreductase in experimental acute renal-allograft rejection. Transplantation.2004 Jun 15;77(11):1683-92.
    [16]Ha H, Park J, Kim YS, Endou H. Oxidative stress and chronic allograft nephropathy. Yonsei Med J.2004 Dec 31;45(6):1049-52.
    [17]Kim J, Seok YM, Jung KJ, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol.2009 Aug;297(2):F461-70.
    [18]Koyama I, Bulkley GB, Williams GM et al. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation.1985 Dec;40(6):590-5.
    [19]Vural A, Yilmaz MI, Caglar K et al. Assessment of oxidative stress in the early posttransplant period:comparison of cyclosporine A and tacrolimus-based regimens. Am J Nephrol.2005 May-Jun;25(3):250-5. Epub 2005 May 27.
    [20]Domanski L, Dolegowska B, Safranow K, et al. Activity of CuZn-superoxide dismutase, catalase and glutathione peroxidase in erythrocytes in kidney allografts during reperfusion in patients with and without delayed graft function. Clin Transplant.2006 Jan-Feb;20(1):67-71.
    [21]Gulec B, Coskun K, Oner K, et al. Effects of perfusion solutions on kidney ischemia-reperfusion injury in pigs. Transplant Proc.2006 Mar;38(2):371-4.
    [22]Zachara BA, Gromadzinska J, Wasowicz W, et al. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease:a review. Acta Biochim Pol.2006;53(4):663-77.
    [23]McCord JM:Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem,1993,26:3511-3517.
    [24]Basu M, Banerjee A, Bhattacharya UK et al.Beta-carotene prolongs survival, decreases lipid peroxidation and enhances glutathione status in transplantable murine lymphoma. Phytomedicine.2000 Apr;7(2):151-9.
    [25]Zachara BA, Wlodarczyk Z, Andruszkiewicz J et al. Glutathione and glutathione peroxidase activities in blood of patients in early stages following kidney transplantation. Ren Fail.2005;27(6):751-5.
    [26]Vural A, Yilmaz MI, Caglar K et al. Assessment of oxidative stress in the early posttransplant period:comparison of cyclosporine A and tacrolimus-based regimens. Am J Nephrol.2005 May-Jun;25(3):250-5.
    [27]Lucchi L, Bergamini S, Iannone A et al. Erythrocyte susceptibility to oxidative stress in chronic renal failure patients under different substitutive treatments. Artif Organs.2005 Jan;29(1):67-72.
    [28]Zachara BA, Wlodarczyk Z, Masztalerz M et al. Selenium concentrations and glutathione peroxidase activities in blood of patients before and after allogenic kidney transplantation. Biol Trace Elem Res.2004 Jan;97(1):1-13. PubMed PMID:14742896.
    [29]Kuntscher V, Treska V, Racek J, Kobr J, Trefil L, Hes O. Does the administration of antioxidants as scavengers of reactive oxygen species in kidney transplantation really have sense? Bratisl Lek Listy.2007;108(9):385-7.
    [30]Zachara BA, Gromadzinska J, Wasowicz W et al. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease:a review. Acta Biochim Pol.2006;53(4):663-77.
    [31]Vreugdenhil PK, Belzer FO, Southard JH. Effect of cold storage on tissue and cellular glutathione. Cryobiology.1991 Apr;28(2):143-9.
    [32]Fujino G, Noguchi T, Takeda K et al. Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol.2006 Dec;16(6):427-35.
    [33]Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J.2006 Feb;20(2):259-68.
    [34]Ueda S, Masutani H, Nakamura H et al. Redox control of cell death. Antioxid Redox Signal.2002 Jun;4(3):405-14.
    [35]Li Z, Nickkholgh A, Yi X, et al. J Pineal Res. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation.2009 May;46(4):365-72.
    [36]Rhyu DY, Yang Y, Ha H et al. Role of reactive oxygen species in TGF-betal-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol.2005 Mar;16(3):667-75.
    [37]Princemail J, Defraigne JO, Franssen C. Evidence for free radical formation during human kidney transplantation. Free Radic Biol Med,1993; 15:343-7
    [38]Baker GL, Corry RJ, Autor AP:Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg,1985,202:628-641
    [39]BonVentre JV:Mechanisms of ischemic acute renal failure. Kidney Int,1993, 43:1160-1178
    [40]Simic-Ogrizovic S, Simic T, Reljic Z, et al. Markers of oxidative stress after renal transplantation. Transplant Int,1998,11:suppl 1:s125-9
    [41]Johnson KJ, Weinberg JM:Postischemic renal injury due to oxygen radicals. Curr Opin Nephrol Hypertens,1993,2:625-635
    [42]Schmid H, Mall A, Bockhorn H. Altered distribution pattern of Na+-K+-ATPase and succinate dehydrogenase activities along the nephron in human acute post-transplant renal failure. J Clin Chem Clin Biochem.1985 Jan;23(1):27-34.
    [43]Hauet T, Baumert H, Mothes D et al. Lipid peroxidation after cold storage and normothermic reperfusion:the effect of trimetazidine. Transpl Int.1998; 11 Suppl 1:S408-9.
    [44]Cristol JP, Vela C, Maggi MF et al. Oxidative stress and lipid abnormalities in renal transplant recipients with or without chronic rejection. Transplantation. 1998 May 27;65(10):1322-8. PubMed PMID:9625013.
    [45]Ghanem H, van den Dorpel MA et al. Increased low density lipoprotein oxidation in stable kidney transplant recipients. Kidney Int.1996 Feb;49(2):488-93.
    [46]Hower R, Minor T, Schneeberger H et al. Assessment of oxygen radicals during kidney transplantation--effect of radical scavenger. Transpl Int.1996;9
    [47]Vianello A, Mastrosimone S, Calconi G et al. Influence of donor age on cadaver kidney graft function and survival:univariate and multivariate analyses. Nephron.1993;65(4):541-8.
    [48]Rabl H, Khoschsorur G, Colombo T et al. Human plasma lipid peroxide levels show a strong transient increase after successful revascularization operations. Free Radic Biol Med.1992 Oct;13(4):281-8.
    [49]Knight JA, Cheung AK, Pieper RK et al. Increased urinary lipoperoxide levels in renal transplant patients. Ann Clin Lab Sci.1989 Jul-Aug;19(4):238-41. [25]. Giral-Classe M, Hourmant M, Cantarovich D, et al. Delayed graft function of more than six days strongly decreases long-term survival of transplant kidneys. Kidney Int,1998;54:972-8.
    [50]Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta.2010 Feb 1
    [51]Forkink M, Smeitink JA, Brock R et al. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta.2010 Jan 25.
    [52]Hernandez-Garcia D, Wood CD, Castro-Obregon S et al. Reactive oxygen species:A radical role in development? Free Radic Biol Med.2010 Mar 27.
    [53]Ristow M, Zarse K. How Increased Oxidative Stress Promotes Longevity and Metabolic Health:The Concept of Mitochondrial Hormesis (Mitohormesis). Exp Gerontol.2010 Mar 26.
    [54]Tirapelli LF, Bagnato VS, Tirapelli DP,et al. Renal ischemia in rats: mitochondria function and laser autofluorescence. Transplant Proc.2008 Jun;40(5):1679-84.
    [55]Brezniceanu ML, Lau CJ, Godin N et al. Reactive Oxygen Species Promote Caspase-12 Expression and Tubular Apoptosis in Diabetic Nephropathy. J Am Soc Nephrol.2010 Mar 18.
    [56]Stacchiotti A, Morandini F, Bettoni F et al. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology.2009 Oct 29;264(3):215-24.
    [57]Lee YJ, Suh HN, Han HJ. Effect of BSA-induced ER stress on SGLT protein expression levels and alpha-MG uptake in renal proximal tubule cells. Am J Physiol Renal Physiol.2009 Jun;296(6):F1405-16.
    [58]Dalle-Donne I, Scaloni A, Giustarini D et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases:the contribution of redox proteomics. Mass Spectrom Rev 2005; 24:55-99.
    [59]McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312:159-163.
    [60]Nohl H, Jordan W. The metabolic fate of mitochon-drial hydrogen peroxide. Eur J Biochem 1980; 111:203-210.
    [61]Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997; 11:118-124.
    [62]Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003; 22:5734-5754.
    [63]Staal FJ, Anderson MT, Staal GE, Herzenberg LA, Gitler C, Herzenberg LA. Redox regulation of signal transduction:tyrosine phosphorylation and calcium influx. Proc Natl Acad Sci USA 1994; 91:3619-3622.
    [64]Sun X, Majumder P, Shioya H et al. Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J Biol Chem 2000; 275: 17237-17240.
    [65]Dong J, Everitt JI, Lau SS et al. Induction of ERK1/2 and histone H3 phosphoryla- tion within the outer stripe of the outer medulla of the Eker rat by 2,3,5-tris-(glutathion-S-yl)hydroquinone. Toxicol Sci.2004 Aug;80(2):350-7.
    [66]Tanifuji C, Suzuki Y, Geot WM et al. Reactive oxygen species-mediated signaling pathways in angiotensin Ⅱ-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal.2005 Sep-Oct;7(9-10):1261-8.
    [67]Gadd SL, Hobbs G, Miller MR. Acetaminophen-induced proliferation of estrogen-responsive breast cancer cells is associated with increases in c-myc RNA expression and NF-kappaB activity. Toxicol Sci.2002 Apr;66(2):233-43.
    [68]Bray TM. Antioxidants and oxidative stress in health and disease:introduction. Proc Soc Exp Biol Med 1999; 222:195.
    [69]Burns AT, Davies DR, McLaren AJ et al. Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation.1998 Oct 15;66(7):872-6.
    [70]Sekhon CS, Sekhon BK, Singh I et al. Attenuation of renal ischemia/reperfusion injury by a triple drug combination therapy. J Nephrol. 2003 Jan-Feb;16(1):63-74.
    [71]Wagner M, Cadetg P, Ruf R et al. Heme oxygenase-1 attenuates ischemia /reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int.2003 Apr;63(4):1564-73.
    [72]Castaneda MP, Swiatecka-Urban A, Mitsnefes MM et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation.2003 Jul 15;76(1):50-4.
    [73]Paradies G, Petrosillo G, Paradies V et al. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium.2009 Jun;45(6):643-50.
    [74]Valko M, Leibfritz D, Moncol J et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol.2007; 39(1):44-84.
    [75]Circu ML, Aw TY.Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med.2010 Mar 15;48(6):749-62.
    [76]Pourova J, Kottova M, Voprsalova M et al. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf).2010 Jan;198(1):15-35.
    [77]Maher S, Toomey D, Condron C et al. Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol Cell Biol.2002 Apr;80(2):131-7.
    [78]Paquet P, Pierard GE. Toxic epidermal necrolysis:revisiting the tentative link between early apoptosis and late necrosis (review). Int J Mol Med.2007 Jan;19(1):3-10.
    [79]Luo J, Sun Y, Lin H et al. Activation of JNK by vanadate induces a Fas-associated death domain (FADD)-dependent death of cerebellar granule progenitors in vitro. J Biol Chem.2003 Feb 14;278(7):4542-51.
    [80]Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, Arfors KE, Messmer K. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57:211-217.
    [81]Vela C, Crestol JP, Ribstein, et al. Antioxidant supplementation and chronic renal transplant dysfunction. Transplant Proc,2000; 32:427-8.
    [82]Shoskes D, Lapierre C, Cruz-Correa M et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation.2005 Dec 15;80(11):1556-9.
    [83]Gottmann U, Oltersdorf J, Schaub M et al. Oxidative stress in chronic renal allograft nephropathy in rats:effects of long-term treatment with carvedilol, BM 91.0228, or alpha-tocopherol. J Cardiovasc Pharmacol.2003 Sep;42(3):442-50.
    [84]Di Giorno C, Pinheiro HS, Heinke T et al. Beneficial effect of N-acetyl-cysteine on renal injury triggered by ischemia and reperfusion. Transplant Proc.2006 Nov; 38 (9):2774-6.
    [85]Yunoki M, Kawauchi M, Ukita N et al. Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg Neurol.2003 Mar;59(3):156-60.
    [86]Titova E, Ostrowski RP, Rowe J et al. Effects of superoxide dismutase and catalase derivates on intracerebral hemorrhage-induced brain injury in rats. Acta Neurochir Suppl.2008;105:33-5.
    [87]Nakagawa K, Koo DD, Davies DR et al. Lecithinized superoxide dismutase reduces cold ischemia-induced chronic allograft dysfunction. Kidney Int.2002 Mar; 61(3):1160-9
    [88]Li Z, Nickkholgh A, Yi X, et al. J Pineal Res. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation.2009 May;46(4):365-72.
    [89]Bray TM. Antioxidants and oxidative stress in health and disease:introduction. Proc Soc Exp Biol Med 1999; 222:195.
    [90]Sasaki M, Joh T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J Clin Biochem Nutr. 2007Jan;40(1):1-12.
    [91]Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury:a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol.2007 Oct;376(1-2):1-43.
    [92]Ma A, Qi S, Chen H. Antioxidant therapy for prevention of inflammation, ischemic reperfusion injuries and allograft rejection. Cardiovasc Hematol Agents Med Chem.2008 Jan;6(1):20-43.
    [93]Marchetti P, Decaudin D, Macho A et al. Redox regulation of apoptosis:impact of thioloxidation status on mitochondrial function. Eur J Immunol 1997; 27: 289-296 PubMed
    [94]Tirapelli LF, Bagnato VS, Tirapelli DP,et al. Renal ischemia in rats: mitochondria function and laser autofluorescence. Transplant Proc.2008 Jun;40(5):1679-84.
    [95]Kuzminova AE, Zhuravlyova AV, Vyssokikh MY et al. The permea-bility transition pore induced under anaerobic conditions in mitochondria energized with ATP. FEBS Lett 1998; 434:313-316.
    [96]Krasnikov BF, Kuzminova AE, Zorov DB. The Ca2+ -induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett 1997; 419:137-140.
    [97]Zorov DB, Kobrinsky E, Juhaszova M et al. Examining intracellular organelle function using fluorescent probes:from animalcules to quantum dots. Circ Res 2004; 95:239-252.
    [98]Pouliquen D, Bellot G, Guihard G et al. Mitochondrial membrane permea-bilization produced by PTP, Bax and apoptosis:a 1H-NMR relaxation study. Cell Death Differ 2006; 13:301-310.
    [99]Armstrong JS. Mitochondrial membrane permeabili-zation: the sine qua non for cell death. Bioessays 2006; 28:253-260.
    [100]Kim JS, He L, Qian T et al. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med 2003; 3:527-535.
    [101]Kim JS, He L, Lemasters JJ. Mitochondrial permea-bility transition:a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 2003; 304: 463-470.
    [102].Kinnally KW, Zorov D, Antonenko Y et al. Calcium modulation of mitochondrial inner membrane channel activity. Biochem Biophys Res Commun 1991; 176:1183-1188.
    [103]Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci 2005; 1047:248-258.
    [104]Skulachev VP. Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci 2002; 959:214-237.
    [105]Ouyang YB, Giffard RG. Changes in astrocyte mitochondrial function with stress:effects of Bcl-2 family proteins. Neurochem Int 2004; 45:371-379.
    [106]Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 2004; 62:497-504
    [107]Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002; 84:131-141.
    [108]Hochman A, Sternin H, Gorodin S, Korsmeyer S, Ziv I, Melamed E, Offen D. Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 1998; 71:741-748
    [109]Tang XQ, Feng JQ, Chen J et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells:mechanisms via MMP, ROS, and Bcl-2. Brain Res 2005; 1057:57-64.
    [110]Casillas-Ramirez A, Ben Mosbah I, Franco-Gou R et al. Ischemia-reperfusion syndrome associated with liver transplantation:an update. Gastroenterol Hepatol 2006; 29:306-313.
    [111]Huet PM, Nagaoka MR, Desbiens G et al. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 2004; 39:1110-1119.
    [112]Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG. Mitochon-drial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 1995; 486 (Pt1):1-13
    [113]Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release:a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192:1001-1014
    [114]Aon MA, Cortassa S, Marban E, O'Rourke B. Synchronized whole cell oscillations in mitochon-drial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278: 44735-44744.
    [115]Isaev NK, Andreeva NA, Stel'mashuk EV, Zorov DB. Role of mitochondria in the mechanisms of glutamate toxicity. Biochemistry (Mosc) 2005; 70:611-618.
    [116]Darley-Usmar VM, Stone D, Smith D, Martin JF. Mitochondria, oxygen and reperfusion damage. Ann Med 1991; 23:583-588.
    [117]Castaneda MP, Swiatecka-Urban A, Mitsnefes MM et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation.2003 Jul 15;76(1):50-4.
    [118]Mcdonnell TJ, Beham A, Sarkiss M, et al. Importance of the Bcl-2 family in cell death regulation. Experientia,1996,52:1008.
    [119]Yin C, Kundoson CM, Korsmeyer SJ, et al. Bax suppresses of tumor i-genesis and stimulates apoptosis in vivo. Nature,1997,385:637
    [120]Swanton E, Savory P,Cosulich S, et al. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene,1999,18(10):1781.
    [121]Rajesh KG, Sasaguri S, Zhitian Z, et al. Second window of ischemic preconditioning regulates mitochondrial permeability transition pore by enhancing Bcl2 expression. Cardiovasc Res,2003; 59(2):297-307.
    [122]Maulik N, Engelman RM, Rousou JA, et al. Ischemic preconditioning reduces apoptosis by upregulating antideath gene bcl-2. Circulation,1999; 100:11369-11375.
    [123]Kim HS, Park KG, Koo TB et al. The modulating effects of the overexpression of uncoupling protein 2 on the formation of reactive oxygen species in vascular cells. Diabetes Res Clin Pract.2007 Sep;77 Suppl 1:S46-8.
    [124]Argiles JM, Busquets S, Lopez-Soriano FJ. The role of uncoupling proteins in pathophysiological states. Biochem Biophys Res Commun.2002 May 17; 293(4):1145-52.