下腰椎退变多因素有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分腰椎运动节段精确三维非线性有限元模型的建立与验证
     研究设计:
     腰椎运动节段有限元建模研究。
     目的:
     采用一种新型计算机辅助设计方法精确建立腰椎L4-L5节段三维非线性有限元模型,并进行充分验证。
     背景知识:
     脊柱有限元模型建模方法有基于医学图像建模方法、使用数字化仪建模方法和采用解剖学数据建模方法。使用数字化仪建模方法,手工操作过程繁琐,误差较大,且只能在裸露的尸体腰椎上测量,不能完整体现脊柱生理弯曲等解剖结构,也无法实现脊柱有限元建模的个体化。采用解剖学数据建模方法(如基于3D-MAX软件的腰椎几何模型建模法)属手工建模法;无法实现有限元建模的数字化,且不包含任何先进的算法,建模技术粗糙,国外有限元研究多不采用。基于CT图像的建模方法具有自动、标准、快速建模等优点,是腰椎运动节段几何模型建模的主要研究方法。
     目前基于CT图像的腰椎有限元建模方法多为首先在其他CAD软件中创建几何模型,然后通过数据接口导入有限元软件进行网格划分的间接建模法。这种间接建模法虽然建模效率、网格划分质量较Goel(1988)的直接建模法有所提高,但在从CT扫描图像获取建模数据时,多数间接建模法仍局限于将每个单层图像的轮廓形状信息叠加在一起获取椎体的原始几何信息;同时,生成有限元模型中的体元是以平齐于CT扫描平面的方式排列,未能正确反映脊柱的复杂解剖结构特征(如生理前凸等)。此外,腰椎有限元模型不同部位单元的大小疏密要求也不相同,以往的建模方法缺少相应的控制机制。
     方法:
     采用改良的“非种子区域分割方法”提取腰椎CT图像数据中目标区域得到二值图像,用Marching Cubes方法由二值数据生成初始表面模型。采用反应腰椎生理弯曲的“最佳切割平面”从初始表面模型获得非平行的切割轮廓线并建立“分段线性子空间”,后者经仿射变换到“规则子空间”快速重构腰椎曲面,最后逆变换恢复腰椎原三维空间形状特征。将表面模型所有结点的坐标数据和三角面片信息导入ANSYS有限元软件进行网格划分精确建立L4-L5节段三维非线性有限元模型。约束L5椎体和棘突底面上所有结点平移和转动共6个自由度,有限元模型分别在垂直压缩载荷3000N,屈曲、后伸、侧屈、扭转力矩载荷15Nm条件下分步加载。有限元模型预测结果与相同边界条件体外实验生物力学研究结果进行比较验证。
     结果:
     所构建IA-L5运动节段有限元模型包括94794个Solid单元,1196个Link单元,1170个Shell单元,768个Target单元,464个Contact单元;包含终板、关节突关节面等所有重要解剖结构,同时包含了几何非线性、材料非线性与接触非线性三种非线性类型。不同载荷条件下L4-L5节段有限元模型的预测结果与相同边界条件下体外实验生物力学研究结果近似。
     结论:
     基于先进算法精确建立的腰椎L4-L5节段表面模型实现了二值图像提取、腰椎曲面重构的全数字化过程,具有极佳的仿真效果:不同载荷条件下,L4-L5节段非线形有限元模型获得充分验证。
     第二部分个性化退变腰椎有限元模型库的建立与验证
     目的:根据退变腰椎的形态特征,采用CAD方法精确建立不同形态改变的退变腰椎L4-L5运动节段三维有限元模型。
     方法:
     采用一系列新型CAD方法精确建立L4-L5运动节段有限元模型。利用人性化交互修改工具,通过“界面”划分,将L4-L5节段表面模型分解为前部椎体和后部结构2个基本“结构模块”。分别改变正常腰椎基本“结构模块”的椎间盘高度、上下终板凹陷角角度、椎间盘前凸角度、小关节矢状面角度等几何参数,建立包括椎间盘高度降低、终板凹陷角改变、椎间盘前凸角改变以及小关节角改变在内的9种退变腰椎基本“结构模块”表面模型,表面模型数据导入ANSYS获得各“结构模块”有限元模型后,通过界面间的拼接粘贴构建退变腰椎有限元模型,通过纤维环纤维及各组韧带结点的固定编码确定纤维环纤维及韧带Link单元起止点位置,最终得到包含18种不同形态改变的退变腰椎有限元模型。退变腰椎有限元模型分别在垂直压缩载荷150N,屈曲、后伸力矩载荷7.5Nm,前剪、后剪载荷150N条件下加载,不同载荷条件下退变有限元模型预测结果与相同边界条件体外实验生物力学研究结果进行比较。
     结果:
     所构建的单参数变化的退变腰椎有限元模型包含L4-L5节段所有重要解剖结构,不同载荷条件下退变腰椎有限元模型预测结果与体外实验生物力学研究结果相符合。
     结论:
     基于CT数据的CAD方法实现了个性化退变腰椎有限元模型库的建立。
     第三部分小关节角矢状化、椎间盘退变对退变性腰椎滑移作用的有限元研究
     目的:
     探讨小关节矢状化与椎间盘退变间的关系及其对退变性腰椎滑移的作用和意义。
     方法:
     采用一系列新型CAD方法精确构建65°小关节角、45°小关节角、25°小关节角与正常椎间盘、轻度退变椎间盘、重度退变椎间盘相组配的9种腰椎L4-L5运动节段有限元模型。生理压缩载荷下,分别对9种有限元模型的生物力学参数进行测试。
     结果:
     与小关节角45°、25°有限元模型相比,小关节角65°有限元模型的矢状方向椎体前移位增加,关节突、峡部等效应力,关节突水平方向接触力明显增加:同时,小关节角65°有限元模型的终板膨出减小,纤维环基质应力增加。与正常有限元模型相比,椎间盘轻度退变有限元模型刚度下降,小关节突及峡部应力轻度增加。9种有限元模型中,轻度退变椎间盘结合小关节角65°有限元模型的抗前剪力能力最差。
     结论:
     小关节角矢状化既是退变性腰椎滑移的原发诱因,又是局部应力变化导致关节突塑形的继发病理改变,矢状型小关节腰椎运动节段矢状方向内在不稳定性受椎间盘退变程度的影响,椎间盘退变对小关节角矢状化无明显促进作用。
     第四部分终板凹陷角变化对腰椎运动节段生物力学影响的有限元分析
     目的:
     探讨终板凹陷程度变化对腰椎运动节段生物力学影响。
     方法:
     在以往建立的腰椎L4-L5运动节段三维非线性有限元模型基础上,采用CAD方法精确构建三种不同终板凹陷角改变的有限元模型,有限元模型的椎间盘前凸角、小关节间隙等其余形态学参数及网格划分均保持一致。垂直压缩、屈曲、伸直、前后剪力5种载荷条件下,分别对三种有限元模型生物力学参数进行测试。
     结果:
     加载条件下,终板凹陷角增加、终板凹陷程度减小可导致终板-椎间盘界面应变减小,椎间盘刚度及髓核内压增加,椎间盘膨出、纤维环纤维张应力、纤维环基质应力、腰椎后部结构应力以及关节突接触力减小。
     结论:
     终板凹陷程度的减小增强了椎间盘对椎体的保护作用,同时可通过影响终板的形变减小对椎间盘的营养传递。
Study Design:
    Foundation and validation of FE model of lumbar motion segment. Objective:
    To present a new kind of CAD method for constructing a detailed, 3-D, anatomically accurate FE model of lumbar L4-L5 segment from CT data and to thoroughly validate it.
    Summary and Background Data:
    Currently there are many spinal FE modeling approaches proposed in the literature, which can be roughly ranged into three major groups based on the source data used. One group extracts geometric information from medical image, one group is based on direct measurement on embalmed vertebra using a digitiser, the third group uses anatomy data from literature. With the manual operation process being tedious and the error bigger, the modelling method basing on digitiser only can survey on the embalmed vertebra of the corpse, cannot completely embody complex anatomical structure such as the physical curve of the spine and is unable to realize the spinal FE modelling individuation. With the modelling technology being rough, the modelling method using anatomy data (for example geometrial model modelling of lumbar spine basing on 3D-MAX software) belongs to the manual modelling method, which is unable to realize the FE modelling digitization and does not contain any advanced algorithm, so the overseas FE studies commonly does not adopt it. Respecting its advantage of automation, standard and prompt modelling, the spinal FE
    modeling approach basing CT scans is the predominant research method of reconstruction of lumbar geometry model.
    At present the lumbar FE modelling methods basing on CT mostly belong to indirect modelling approaches. These kind of indirect modelling approaches first set up the geometry model in other CAD software, which was then imported into FE software through the data connection to carry on the grid division. However, though the modelling efficiency and the quality of the mesh partition of the spinal FE modelling approach basing CT scans have upgraded than that of Goel(1988). When acquiring CT scans data, most methods still took the primitive geometrial data from superposition of monolayer profile information. Meanwhile, the base geometry information was extracted on cross-section planes parallel to orthogonal plane of the CT images, which does not properly account for the preferential orientation feature (e.g. lordosis) of the lumbar spine . Besides, the request of the size and density of FE elements in the different regions of lumbar spine is not uniform, and the foregoing modelling approaches lack the corresponding control mechanism.
    Methods:
    A modified "no-seed region segmentation" was done to extract the interest region in the CT scan images and produce a binary image. "Best cross-section planes" accounting for the preferential direction dictated by lumbar spine were placed on the initial iso-surface model, forming a "non-regular piecewise subspace". This subspace and the embedded iso-surface mode were transformed by local affine transforms to a "regular subspace", in which a surface mesh of high quality was generated quickly. Finally a reverse transform procedure was employed to recover the shape feature of the lumbar surface mesh of lumbar L4-L5 in the original 3-D space, which was then importing into ANSYS for the 3-D FE mesh construction. All nodes of the inferior surface of L5 vertebral body and its spinous process were fixed in 6 freedom degree of translation and rotation. Axial compressive force of 3000N and flexion、
    extension、 lateral bending and axial torsion moment of 15Nm were applied in given increments. Under the same boundary conditions, the predicted results of the current FE model are compared with the results from experimental studies in vitro.
    Results:
    The developed FE model consisted of 94794 solid elements, 1196 link elements, 1170 shell elements, 768 target elements and 464 contact elements. The model well replicated the actual geometry of all complicated anatomical features of the spine. Three types of non-linearities (i.e. geometrical, material and contact non-linearity) exhibited by the lumbar motion segment were incorporated into the model. The predicted results of FE model correlated well with experimental data under similar loading configurations.
    Conclusion:
    Accurately represented surface model of L4-L5 segment implements the total digitization of extraction of binary imaging and reconstruction of lumbar lordosis, taking on the best simulation. The current non-linear FE model of L4-L5 segment acquires adequate validation under different loading condition.
    Objective:
    To develop and validate 3-D FE models of the degenerative lumbar L4-L5 segment with different morphological characteristics using CAD technique.
    Methods:
    A series of new CAD methods were used to accurately establish FE model of lumbar L4-L5 motion segment. Humane interactive modification means is employed to construct the "interface" which divided the surface model of L4-L5 segment into two basic "structure module" of anterior vertebral body and posterior structure. 9 surface models of the degenerative lumbar spine were constituted by the basic "structure modules" by altering the parameter of disc height, endplate concave angle, sagittal angle of facet joint and lordosis angle of the intervertebral disc. The data of surface model were respectively input into ANSYS to form FE models of "structure module", which then constituted FE models of degenerative lumbar spine with different morphous through gluing and splicing of the interfaces. 18 FE models of degenerative lumbar spine were obtained at last by determining the location of enthesis of anulus fibrosus and lumbar ligaments from their fixed coding. FE models of degenerative lumbar spine were loaded respectively under the axial compression loading of 150N, moment loading of flexion and extension of 7.5Nm and anterior and posterior shear forces of 150N. Under the different loading, the predicted results of FE models of degenerative lumbar spine are compared with the previous findings of experimental biomechanics in the
    identical boundary condition. Results:
    The FE models of lumbar L4-L5 segment represented all complex spinal components. The predicted results of intact and degenerative L4-L5 segment FE models were closely correlated with published experimental data.
    Conclusions:
    The individually FE models libraries of degenerative lumbar spine were established basing CT data and CAD method.
    Objective:
    To research the association between the sagittal orientation of facet joints and disc degeneration in lumbar spine and to investigate the contribution and significance of which to development of the degenerative spondylolisthesis.
    Methods:
    A new effective CAD method was used to accurately establish 9 FE models which were assembled respectively by facet-joint angle 65° 、facet-joint angle 45° 、 facet-joint angle 25 ° and normal disc 、 light degenerative disc 、 severe degenerative disc. The biomechanical parameters of 9 FE models were measured under axial compressive load within physiological range.
    Results:
    Compared with FE models with facet-joint angle 45° and 25°, anterior displacement of L4 vertebra in FE models with facet-joint angle 65° was increased, where the maximum von Mises stresses on facet surface and isthmus and the contact force on facet surface in horizontal orientation were obviously increased. Meanwhile, FE models with facet-joint angle 65° showed a decrease in end-plate bulge and an increase in stress of annular matrix. The stiffness in light degenerative disc FE models was reduced and the von Mises stresses on facet surface and isthmus was slightly increased compared with the normal disc FE models. In all FE models, the FE models with facet-joint angle 65° and light degenerative disc displayed a poorest appearance in resisting anterior shear force.
    Conclusions:
    Sagittal orientation of facet joints is not only the primary motivation of the degenerative spondylolisthesis, but the secondary pathological change of remodelling of the facet-joints induced by the regional stress change. The inherent instability of lumbar motion segment of sagittal orientation of facet joints is influenced by the lumbar disc degeneration. The lumbar disc degeneration has no manifested contribution to the aggravation of the sagittal orientation of facet joints.
    Objective:
    To investigate the effect of variations in vertebral endplate concavity on the mechanical behavior of the lumbar motion segment.
    Methods:
    A 3-D nonlinear geometrical and mechanical accurate FE model of lumbar L4-L5 segment was developed. CAD methods were used to establish three FE models with different endplate concave angle, where disc lordosis angle, the gap of facet joint and all other geometrical parameters and FE mesh partition were kept constant. The effect of endplate concavity on the mechanical properties of the lumbar segment was studied for two moment loads (flexion and extension) and for three different direct forces (compression, anterior and posterior shear forces).
    Results:
    The decrease in the endplate concavity, simulated by an increasing endplate concave angle would result in decreased strains of the endplate and vertebral body, increased disc stiffness and nucleus pressure, decreased annular fiber stress, radial disc bulge and stress in the annulus ground substance, and simultaneously produce decreased facet contact force and stresses in posterior structure.
    Conclusions:
    The decrease of endplate concavity enhances the protective effect of the
    disc on the breakage of the vertebral body. Smaller endplate deformations resulted from the decreasing endplate concavity would contribute to reduction of the nutritional diffusion to the disc.
引文
[1] DU Ping-an, GAN E-zhong, YU Ya-ting(杜平安,甘娥忠,于亚婷). Finite Element Method: Principle, Modeling and Application(有限元法:原理、建模及应用) (M). Bingjin: National Defence Industry Press, 2004: 1-6. (in Chinese)
    [2] LIU YK, RAY G, HIRSCH C. The resistance of the lumbar spine to direct shear [J]. Orthop Clin North Am, 1975, 6(1): 33-49.
    [3] Gilbertson LG, Goel VK, Kong WZ, et al. Finite element methods in spine biome-chanics research [J]. Crit Rev Biomed Eng, 1995, 23(5-6): 411-473.
    [4] TEO EC, LEE KK, Ng HW, et al. Determination of load transmission and contact force at facet joints of L2-L3 segment using finite element method[J]. Journal of Musculoskeletal Research, 2003, 7(2): 97-109.
    [5] ROHLMANN A, ZANDER T, SCHMIDT H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method [J]. J Biomech, 2006, 39(13): 2484-2490.
    [6] LEE KK, TEO EC, QIU TX, et al. Finite element modelling of lumbar motion segment using digitiser [J]. Int. J. Computer Applications in Technology, 2004, 21(1/2): 23-31.
    [7] QIU TX, TEO EC, LEE KK, et al. Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes[J]. Spine, 2003, 28(24): 2694-2699.
    [8] WU Hao-bo, YAN Shi-gui, CHEN Qi-xin, et al (吴浩波,严世贵,陈其昕,等). Nonlinear finite element analysis of lumbar spine stress at various loading[J]. Chinese Journal of Sports Medicine(中国运动医学杂志),2004, 23(5): 480-484. (in Chinese)
    [9] SHIRAZI-ADL SA, SHRIVASWTAVA SC, AHMED AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study [J]. Spine, 1984, 9(2): 120-134.
    [10] SHARMA M, LANGRANA NA, RODRRIGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887-900.
    [11] Kim YE. An analytical investigation of ligamentous lumbar spine mechanics [D]. Ph. D. Dissertation, University of lowa. lowa City, IA, 1984.
    [12] GOEL VK, KIM YE, LIM TH, et al. An analytical investigation of the mechanics of spinal instrumentation [J]. Spine, 1988, 13(9): 1003-1011.
    [13] NATARAJAN RN, ANDERSSON GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading [J]. Spine, 1999, 24(18): 1873-1881.
    [14] POLIKEIT A, NOLLT LP, FERGUSONM SJ. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit [J]. J Biomech, 2004, 37(7): 1061-1069.
    [15] HUANG Qi-jin, LIU Guo-quan, MAYuan-zheng, et al(黄启今,刘国权,马远征等). Three dimension finite element model of the lumbar motion segments reconstruced from CT images and its applications [J]. Chinese Journal of Stereology and Image Analysis(中国体视学与图像分析), 2004, 9(2): 120-124. (in Chinese)
    [16] XU Yi-chun, LIU Shang-li, ZHANG Mei-chao, et al (徐义春,刘尚礼,张美超等). Establishment of artificial lumbar intervertebral disc three dimensional finite element and its stress analysis [J]. Chinese Journal of Orthopaedics(中华骨科杂志), 2003, 23(3): 173-176. (in Chinese)
    [17] NATARAJAN, ANDERSSON BJ, PATWARDHAN, et al. Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints [J]. J Biomech Eng, 1999, 121(2): 215-221.
    [18] SHARMA M, LANGRANA NA, RODRIGUEZ J. Modeling of facet articulation as a nonlinear moving contact problem: Sensitivity study on lumbar facet response [J]. J Biomech Eng, 1998, 120(1): 118-125,.
    [19] Sheng-hui LIAO, Ruo-feng TONG, Jin-xiang DONG. 3D Human Mandible Reconstruction from CT Data [C]. In: The Eighth International Conference on Computer Supported Cooperative Work in Design, CSCWD2004, May, 26-28, 2004, Xiamen, China.
    [20] MONTANI C, SCATENI R., SCOPIGNO R. Discretized marching cubes[A]. In: Bergeron, RD, Kaufman, AE. Proceedings of the Visualization 94(C), 1994.281287.
    
    [21] BURSTEINH AH, REILY DT, MARTENS M. Aging of bone tissue: mechanical properties [J]. J Bone Joint Surg Am, 1976, 58(1): 82- 86.
    [22] Evans FG. Strength of biological materials [M]. Baltiomore: Williams and Wilkins, 1970.
    [23] LU YM, HUTTON WC, GHARPURAY VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model [J]. Spine, 1996: 21(22): 2570- 2579.
    [24] SHIRAZI-ADL A, AHMED AM, SHRIVASTAVA SC. A FE study of a lumbar motion segment subjected to pure sagittal plane moments [J]. J Biomech, 1986, 19(4): 331- 350.
    [25] WUY HC, YAO RF. Mechanical behavior of the human annulus fibrosus[J]. J Biomech, 1976:9(1): 1-7.
    [26] HAUT RC, LITTLE RW. A constitutive equation for collagen fibers [J]. J Biomech, 1972, 5(5): 423- 430.
    [27] SANJEEVI R, SOMANATHAN N, RAMASWAMY D. A viscoelastic model for collagen fibres [J]. J Biomech, 1982, 15(3): 181-183.
    [28] WHITE AA, PANJABI MM. Clinical biomechabics of the spine(M). 2nd ed. Philadelphia: JB Lippincott, 1990.
    [29] CHAZAL J, TANGUY A, BOURGES M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction [J]. J Biomech, 1985, 18(3): 167-176.
    
    [30] PANBJBI MM, GREENSTEIN G, DURANCEAU J, et al. Three dimensional quantitative morphology of lumbar spinal ligaments [J]. J Spinal Disord, 1991, 4(1): 54-62.
    [31] SHIRAZI-ADL SA, SHRIVASTAVA SC, AHMED AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study [J]. Spine, 1984, 9(2): 120-134.
    
    [32] STEVENS RL, RYVAR R, ROBERTSON WR, et al. Biological changes in the annulus fibrosus in patients with low-back pain [J]. Spine, 1982, 7(3): 223- 233.
    [33] CHEN Zhi-qing, CHEN Qi-xin, LI Fang-cai, et al(陈之青,陈其昕,李方财, 等). Correlation between the concave angle of vertebral end-plate and lumbar disc degeneration [J]. China Journal of Orthopaedics and Traumatology(中国骨伤), 2004, 7(17) :396- 399. (in Chinese)
    
    [34] HAUT RC, LITTLE RW. A constitutive equation for collagen fibers. [J] J Biomech, 1972, 5(5): 423- 430.
    [35] WHITE AA, PANJABI MM. Clinical Biomechanics of the Spine (M). Philadelphia, Pa: JB Lippincott, 1990.
    [36] BROWN T, HANSTEN, YORRA AJ. Some mechanical tests on the lumbosacral spine with particular reference to intervertebral discs [J]. J Bone Joint Surg Am, 1957, 39(5): 1135-1164.
    [37] MARKOLF KL. Deformation of the thoracolumbar intervertebral joints in response to external load: a biomechanical study using autopsy material[J]. J. Bone Joint Surg Am, 1972, 54(3): 511- 533.
    [38] MARKOLF KL, MORRIS JM. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces [J]. J Bone Joint Surg Am, 1974, 56(4): 675- 687.
    [39] VIRGIN WJ. Experimental investigations into the physical properties of the intervertebral disc [J]. J Bone Joint Surg Br, 1951, 33(4): 607- 611.
    [40] TENCER AF, AHMED AM, BURKE DL. Some static mechanical properties of the lumbar intervertebral joint: intact and injured [J]. Biomech Eng, 1982, 104(3): 193-201.
    [41] WHITE AA, KRAG M, PANBJABI MM, et al. Effect of preload on load displacement curves of the lumbar spine [J]. Orthop Clin North Am, 1977, 8(1): 181-192.
    [42] SCHLTZ AB, WARWICH DN, BERKSON MH, et al. Mechanical properties of human lumbar spine motion segments part 1 :responses in flexion, extension, lateral bending, and torsion [J]. J Biomech Eng, 1979, (101): 46- 52.
    [43] ANDERSSON GB, SCHULTZ AB. Effects of fluid injection on mechanical properties of intervertebral discs [J]. J Biomech, 1979, 12(6): 453-458.
    [44] GOEL VK, GIBERTSON LG. Applications of the finite element method to thora-columbar spinal research-past, present, and future [J]. Spine, 1995, 20(15): 1719-1727.
    [45] YOGANANDAN N, KUMARESAN S, VOO L, et al. finite element applications in human cervical spine modeling [J]. Spine, 1996, 21(15): 1824-1834.
    [46] NATARAJAN RN, ANDERSSON BJ, PATWARDHAN AG, et al. Study on effect of graded facetectomyon change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints [J]. J Biomech Eng, 1999, (121): 215- 221.
    [47] SHARMA M, LANGRANA NA, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887- 900.
    [1] FERGUSON SJ, STEFFEN T. Biomechanics of the aging spine [J]. Eur Spine J, 2003, 12 (Suppl2): S97-S103.
    [2] KUROWSKI P, KUBO A. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae [J]. Spine, 1986, 11(7): 726-731.
    [3] KIM YE, GOEL VK, WEINSTEIN JN, et al. Effect of disc degeneration at one level on the adjacent level in axial mode [J]. Spine, 1991, 16(3): 331-335.
    [4] KLIMWERESAN S, YOGANADAN N, PINTAR FA, et al. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation [J]. J Orthop Res, 2001, 19(5): 977-984.
    [5] NATERAJAN RN, WILLIAMS JR, ANDERSSON GB. Recent advances in analytical modeling of lumbar disc degeneration [J]. Spine, 2004, 29(23): 2733-2741.
    [6] ROHLMANN A, ZANDER T, SCHMIDT H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method [J]. J Biomech, 2006, 39(13): 2484-2490.
    [7] LIU Yao-sheng, CHEN Qi-xin(刘耀升,陈其昕). Recent advance in finite element research of disc degeneration and lumbar intervertebral fusion[J]. International Journal of Biomedical Engineering(国际生物医学工程杂志), 2007, 30(1): 14-17. (in Chinese)
    [8] LIU Yao-sheng, CHEN Qi-xin, LI Fang-cai, et al. An accurately represented finite element model of lumbar motion segment [J]. Space Medicine & Medical Engineering, 2007, 20(2), 79-86.
    [9] CHEN Zhi-qing, CHEN Qi-xin, LI Fang-cai, et al.(陈之青,陈其昕,李方财,等). Correlation between the concave angle of vertebral end-plate and lumbar disc degeneration [J]. China Journal of Orthopaedics and Traumatology(中国骨伤), 2004, 7(17): 396-399. (in Chinese)
    [10] LAN Jun, CHEN Qi-xin, ZHAI Xiao-jun, et al(兰俊,陈其昕,翟其昕,翟晓军,等).The change of shape and curvature in degenerative lumbar disc and its clinical significance [J]. Chinese Journal of Clinical Anatomy(中国临床解剖学杂志), 2005, 23(2): 157-159. (in Chinese)
    [11] CHEN Qi-xin, CHEN Wei-shan, XU Shao-wen, et al(陈其昕,陈维善,徐少文,等). Orientat ion of the lumbar facet joints and its clinical significance in diseases of the lower lumbar spine [J]. Chinese Journal of Orthopaedics(中国骨科杂志), 2000, 20(1): 55-59. (in Chinese)
    [12] PANJABI MM, GRAG MH, CHUNG TQ. Effects of disc injury on mechanical behavior of the human spine [J]. Spine, 1984, 9(7): 707-713.
    [13] NACHEMSONA L. Disc pressure measurements [J]. Spine, 1981, 6(1): 93-97.
    [14] ROLANDER SD, BLAIR WE. Deformation and fracture of the lumbar vertebral end plate [J]. Orthop Clin North Am, 1975; 6(1): 75-81.
    [15] BROWN T, HANSTEN RJ, YORRA AJ. Some mechanical tests on the lumbosacral spine with particular reference to intervertebral discs [J]. J Bone Joint Surg Am, 1957, 39(5): 1135-1164.
    [16] SHAH JS, HAMPSON WG, JAYSON MI. The distribution of surface strain in the cadaveric lumbar spine [J]. J Bone Joint Surg Br, 1978, 60(2): 139-148.
    [17] SHIRAZI-ADL A, AHMED AM, SHRIVASTAVA SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments [J]. J Biomech, 1986; 19(4): 331-350.
    [18] MARKOLF KL. Deformation of the thoracolumbar intervertebral joints in response to external load: a biomechanical study using autopsy material[J]. J. Bone Joint Surg Am, 1972, 54(3): 511-533.
    [19] SCHULT7AB, WARWICH DN, BERKSON MH, et al. Mechanical properties of human lumbar spine motion segments part 1: responses in flexion, extension, lateral bending, and torsion [J]. J Biomech Eng, 1979, 101(1): 46-52.
    [20] TENCER AF, AHMED AM, BURKE DL. Some static mechanical properties of the lumbar intervertebral joint: intact and injured [J]. Biomech Eng, 1982, 104(3): 193-201.
    [21] WHITE AA, KRAG M, PANJABI MM, et al. Effect of preload on load displacement curves of the lumbar spine [J]. Orthop Clin North Am, 1977, 8(1): 181-192.
    [22] LIU Yao-Sheng, CHEN Qi-Xin, LIAO Sheng-Hui, et al (刘耀升,陈其昕,廖胜辉等). The effect of disc height and degeneration on the mechanical behavior of lumbar spine: Afinite element analysis [J]. Chinese Journal of Clinical Anatomy(中国临床解剖学杂志), 2006, 24(5), 566-570. (in Chinese)
    [23] TEO EC, LEE KK, Ng HW, et al. Determination of load transmission and contact force at facet joints of L2-L3 segment using FE method [J]. Journal of Musculoskeletal Research, 2003, 7(2): 97-109.
    [24] SHARAMA M, LANGRANA NA, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887-900.
    [25] NATERAJAN RN, ANDERSSON GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading [J]. Spine, 1999, 24(18): 1873-1881.
    [26] GOEL VK, KIM YE, LIM TH, et al. An analytical investigation of the mechanics of spinal instrumentation [J]. Spine, 1988, 13(9): 1003-1011.
    [27] YOGGANADAN N, KLJMWERESAN S, VOO L, et al. Finite element applications in human cervical spine modeling [J]. Spine, 1996, 21(15): 1824-1834.
    [1] HAMMERBERG KW. Newconcepts on the pathogenesis and classification of spondylolisthesis [J]. Spine, 200, 30(6 Suppl): S4-S11.
    [2] CINOTTI G, POSTACCJHINI F, FASSARI F, et al. Predisposing factors in degenerative spondylolisthesis. A radiographic and CT study [J]. Int Orthop, 1997, 21(5): 337-342.
    [3] BOLESTA MJ, BOHLMAN HH. Degenerative spondylolisthesis [J]. Instr Course Lect, 1989, 38: 157-165.
    [4] BERLEMANN U, JESZENSZKY DJ, BUHLER DW, et al. The role of lumbar lordosis, vertebral end-plate inclination, disc height, and facet orientation in degenerative spondylolisthesis [J]. J Spinal Disord, 1999, 12(1): 68-73.
    [5] IMADA K, MATSUI H, TSUJI H. Oophorectomy predisposes to degenerative spondylolisthesis [J]. J Bone Joint Surg Br, 1995, 77(1): 126-130.
    [6] ROSENBERG NJ. Degenerative spondylolisthesis. Predisposing factors [J]. J Bone Joint Surg Am, 1975, 57(4): 467-474.
    [7] BERLEMANN U, JESZENSZKY DJ, BUHLER DW, et al. Facet joint remodeling in degenerative spondylolisthesis: an investigation of joint orientation and tropism [J]. Eur Spine J, 1998, 7(5): 376-380.
    [8] LOVE TW, FAGAN AB, FRASER RD. Degenerative spondylolisthesis. Developmental or acquired [J]? J Bone Joint Surg Br, 1999, 81(4): 670-674.
    [9] BODEN SD, RIEW KD, YAMAGUCHI, et al. Orientation of the lumbar facet joints: association with degenerative disc disease [J]. J Bone Joint Surg Am, 1996, 78(3): 403-411.
    [10] GROBLER LJ, ROBERTSON PA, NOVOTNY JE, et al. Etiology of spondylolisthesis. Assessment of the role played by lumbar facet joint morphology [J]. Spine, 1993, 18(1): 80-91.
    [11] LIU Yao-sheng, CHEN Qi-xin, LIAO Sheng-hui, et al(陈耀升,陈其昕,廖胜辉 等). Development and validation of a finite element model for lumbar motion segment (L4-L5) [J]. Academic Journal of Second Military Medical University(第二军医大学学报), 2006, 26(7): 665- 669. (in Chinese)
    [12] GOEL VK, KIM YE, LIM TH, et al. An analytical investigation of the mechanics of spinal instrumentation [J]. Spine, 1988,13(9): 1003-1111.
    [13] TEO EC, LEE KK, NG HW, et al. Determination of load transmission and contact force at facet joints of L2-L3 segment using FE method [J]. Journal of Musculoskeletal Research, 2003, 7(2): 97-109.
    [14] SHIRAZI-ADL A, AHMED AM, SHRIVASTAVA SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments [J]. J Biomech, 1986, 19(4): 331- 350.
    [15] SHARMA M, LANGRANA NA, RODRIGUGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887- 900.
    [16] KIM YE, GOEL VK, WEINSTEIN JN, et al. Effect of disc degeneration at one level on the adjacent level in axial mode [J]. Spine, 1991, 16(3): 331- 335.
    [17] SHIRAZI-ADL A. Finite-element simulation of changes in the fluid content of human lumbar discs. Mechanical and clinical implications [J]. Spine, 1992, 17(2): 206-212.
    [18] TROU JD. Mechanical factors in spondylolisthesis and spondylolysis [J]. Clin Orthop Relat Res, 1976, (117): 59- 67.
    [19] ADAMAS MA, HUTTON WC. The mechanical function of the lumbar apophyseal joints [J]. Spine, 1983, 8(3): 327- 330.
    [20] FREI H, OXLAND TR, RATHONYI GC, et al. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading [J]. Spine, 2001, 26(19): 2080-2089.
    [21] KIRKALDY-WILLIS WH, FARFAN HF. Instability of the lumbar spine [J]. Clin Orthop Relat Res, 1982, (165); 110-123.
    [22] RESNICK D, NIWAYAMA G. Degenerative Disease of Extraspinal Locations[A]. In: Resnick D, Niwayama G Diagnosis of Bone and Joint Disorders [M]. Philadelphia: WB Saunders, 1981: 1278-1279.
    
    [23] SCHULITZ KP, NIETHARD FU. Strain on the interarticular stress distribution. Measurements regarding the development of spondylolysis [J]. Arch Orthop Trauma Surg, 1980, 96(3): 197- 202.
    
    [24] INOUUE S, WATANABE T, GOTO S, et al. Degenerative spondylolisthesis. Pathophysiology and results of anterior interbody fusion [J]. Clin Orthop Relat Res, 1988, (227): 90- 98.
    [1] EDWARDS WT, ZHENG Y, FERRARA LA, et al. Structural features and thickness of the vertebral cortex in the thoracolumbar spine [J]. Spine, 2001, 26(2): 218-225.
    [2] HARRIGTON J Jr, SUNGARARIAN A, ROGG J, et al. The relation between vertebral endplate shape and lumbar disc hemiations [J]. Spine, 2001, 26(19): 2133-2138.
    [3] CHEN Zhi-qing, CHEN Qi-xin, LI Fang-cai, et al.(陈之青,陈其昕,李方财,等). Correlation between the concave angle of vertebral end-plate and lumbar disc degeneration [J]. China Journal-of Orthopaedics and Traumatology(中国骨伤), 2004, 7(17): 396-399. (in Chinese)
    [4] CINOTTI G, DELLA ROCCA C, ROMEO S, et al. Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries [J]. Spine, 2005, 30(2): 174-180.
    [5] LIU Yao-sheng, CHEN Qi-xin, LIAO Sheng-hui, et al(刘耀升,陈其昕,廖胜辉等). Development and validation of a f inite element model for lumbar motion segment (L4-L5) [J]. Academic Journal of Second Military Medical. University(第二军医大学学报), 2006, 26(7), 665-669. (in Chinese)
    [6] TANG Xiao-jun, LIU Yao-sheng, CHEN Qi-xin, et al(唐小君,刘耀升,陈其昕等). The establishment of individually finite element models libraries of degenerative lumbar spine basing CAD technique [J]. International Journal of Biomedical Engineering(国际生物医学工程杂志), 2007, 30(2): 65-69. (in Chinese)
    [7] URBAN JP, SMITH S, FAIRBANK JC. Nutrition of the intervertebral disc[J]. Spine, 2004, 9(23): 2700-2709.
    [8] FREI H, OXLAND TR, RATHONYI GC, et al. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading [J]. Spine, 2001, 21(19): 2080-2089.
    
    [9] DAI L. The relationship between vertebral body deformity and disc degeneration in lumbar spine of the senile [J]. European Spine J, 1998, 7(1): 40- 44.
    [10] LU YM, HUTTON WC, GHARPURAY VM. Can variations in intervertebral disc height affect the mechanical function of the disc [J]? Spine, 1996, 21(19): 2208-2216.
    [11] NATARAJAN RN, ANDERSSON GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading [J]. Spine, 1999, 24(18): 1873-1881.
    [12] LEE KK, TEO EC. Material sensitivity study on lumbar motion segment (L2-L3) under sagittal plane loadings using probabilistic method [J]. J Spinal Disord Tech, 2005, 18(2): 163-170.
    [13] KNMARESAN S, YOGANANDAN N, PINTAR FA, et al. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation [J]. J Orthop Res, 2001,19(5): 977- 984.
    [14] SHIRAZI-ADL A. On the fibre composite material models of disc annu- lus-comparison of predicted stresses [J]. J Biomech, 1989, 22(4): 357- 365.
    [15] SHARMA M, LANGRANA NA, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887- 900.
    [1] BELYSCHKO T, KULAK RF, SCHLTZ AB, et al. Finite element stress analysis of an intervertebral disc [J]. J Biomech, 1974, 7(3): 277- 285.
    
    [2] YOGANANDAN N, KUMARESAN S, VOO L, et al. Finite element applications in human cervical spine modeling [J]. Spine, 1996, 21(15): 1824-1834.
    
    [3] GOEL VK, KIM YE, LIM TH, et al. An analytical investigation of the mechanics of spinal instrumentation [J]. Spine, 1988,13(9): 1003-1011.
    
    [4] SHARMA M, LANGRANA NA, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability [J]. Spine, 1995, 20(8): 887- 900.
    
    [5] LU YM, HUTTON WC, GHARPURAY VM. Can variations in intervertebral disc height affect the mechanical function of the disc [J]? Spine, 1996,21 (19): 2208-2216.
    
    [6] LEE KK, TEO EC, QIU TX, et al. Finite element modeling of lumbar motion segment using digitizer [J]. Int J Comput Appl Technol, 2004, 21(1/2): 23-31.
    
    [7] PANJABI MM, KRAG MH, CHUNG TQ. Effects of disc injury on mechanical behavior of the human spine [J]. Spine, 1984, 9(7): 707-713.
    [8] SCHULTZ AB, WAREICK DN, BERKSON MH, et al. Mechanical properties of human lumbar spine motion segments: responses in flexion, extension, lateral bending and torsion [J]. J Biomech Eng, 1979, 101: 46- 52.
    [9] LEE KK, TEO EC, QIU TX, et al. Effect of facetectomy on lumbar spinal stability under sagittal plane loadings [J]. Spine, 2004, 29(15): 1624-1631.
    [10] TEO EC, LEE KK, QIU TX, et al. The biomechanics of lumbar graded facetectomy under anterior-shear load [J]. IEEE Trans Biomed Eng, 2004, 51(3): 443-449.
    [11] BERKSON MH, NCCHEMOISON AL, SCHULTZ AB. Mechanical properties of human lumbar spine motion segments—Part II: Response in compression and shear, influence of gross morphology [J]. J Biomech Eng, 1979, 101(1): 53-57.
    [12] NATARAJAN RN, WILLIAMS JR, ANDERSSON GB. Recent advances in analytical modeling of lumbar disc degeneration [J]. Spine, 2004, 29(23): 2733-2741.
    [13] KIM YE, GOEL VK, WEINTEIN JN, et al. Effect of disc degeneration at one level on the adjacent level in axial mode [J]. Spine, 1991,16(3): 331-335.
    [14] CHOSA E, GOTOA K, TOTORIBRE K, et al. Analysis of the effect of lumbar spine fusion, on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method [J]. J Spinal Disord Tech, 2004,17(2): 134-139.
    [15] SKALLI W, ROBIN S, LAVASTE F, et al. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model [J]. Spine, 1993,18(5): 536- 545.
    [16] NATARAJAN RN, GARRETSON RB 3rd, BIYANI A, et al. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study [J]. Spine, 2003, 28(11): 1103-1112.
    [17] PANIJANBI MM, OXLAND TR, YAMAMMOTO I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves [J]. J Bone Joint Surg Am, 1994, 76(3): 413-424
    [18] GOEL VK, GRAUER JN, PATEL TCh, et al. Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol [J]. Spine, 2005, 30(24): 2755- 2764.
    [19] GOTO K, TAJIMA N, CHOSA E, et al. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis) [J]. J Orthop Sci, 2003, 8(4): 577- 584.
    [20] YAMAMOTO I, PANIJABI MM, CRISCO T, et al. Three-dimensional movement of the whole lumbar spine and lumbosacral joint [J]. Spine, 1989,14(11): 1256-1260.
    [21] CHEN CS, CHENG CK, LIU CL. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine [J]. J Spinal Disord Tech, 2002,15(1): 53- 63.
    [22] CHEN CS, CHENG CK, LIU CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine [J]. Med Eng Phys, 2001, 23(7): 483- 491
    [23] Shirazi-Adl A. Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation [J]. J Biomech, 1994,27(3): 289- 299.
    [24] EZQUERRO ,F, SIMON A, PRADO M, et al. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation [J]. Med Eng Phys, 2004, 26(1): 11-22.
    [25] BROLION K, HALLDIN P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics [J]. Spine, 2004, 29(4): 376- 385.
    [26] PANJABI M, DVORAK J, CRISCO J 3rd, et al. Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transactions [J]. J Spinal Disord, 1991, 4(2): 157-167.
    [27] WALKER LB, HARRIS EH, PONTIUS UR. Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body [R]. Stapp Car Crash Conference. Borttaget: Proceedings of the 17th STAPP Car Crash Conference SAE 1973, 730985,1973, 525- 537.
    [28] GOEL V, WINTERBOTTOM J, SCHULTE K, et al. Ligamentous laxity across C0-C1-C2 complex axial torque: Rotation characteristics until failure [J]. Spine, 1990,15(10): 990-996.
    [29] GOEL VK, CLAUSEN JD. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach [J]. Spine, 1998, 23(6): 684- 691.
    [30] MORONEY SP, SCHULTZ AB, MILLER JA, et al. Load-displacement properties of lower cervical spine motion segments[J]. J Biomech, 1988, 21(9): 769-779.
    [31] YOGANANDAN N, KUMARESAN SC, VOO L, et al. Finite element modeling of the C4-C6 cervical spine unit [J]. Med Eng Phys, 1996, 18(7): 569-574.
    [32] Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading [J]. J Spinal Disord, 2001,14(3): 201- 210.
    [33] ZHANG QH, TEO EC, Ng HW. Development and validation of a C0-C7 FE complex for biomechanical study [J]. J Biomech Eng, 2005,127(5): 729- 735.
    [34] PANJABI MM. Cervical spine models for biomechanical research [J]. Spine, 1998, 23(24): 2684- 2700.
    [35] PANJABI MM, CRISCO JJ, VASAVADA A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves [J]. Spine, 2001, 26(24): 2692- 2700.
    [36] CAMACHOI DL, NIGHTINGALE RW, MYERS BS. Surface friction in near-vertex head and neck impact increases risk of injury [J]. J Biomech, 1999, 32(3): 293-301.
    [37] STREMPER, BD. Whiplash Affects Cervical Spine Biomechanics [D]. Ph.D. thesis, Marquette University. 2004.
    [38] QIU TX, TEO EC, LEE KK, et al. Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes [J]. Spine, 2003, 28(24): 2694- 2699.
    [39] PANJABI MM, BRAND RA, WHITE AA Ⅲ. Three-dimensional flexibility and stiffness properties of the human thoracic spine [J]. J Biomech, 1976, 9(4): 185-192.
    [40] MARKOLF KL. Deformation of the thoracolumbar intervertebral joints in response to external loads [J]. J Bone and Joint Surg, 1972, 54(3): 511-533.
    [41] LU YM, HUTTONJ WC, GHARPURAY VM. Can variations in intervertebral disc height affect the mechanical function of the disc [J]? Spine, 1996, 21(19): 2208-2216.
    [42] TOTORIBE K, CHOSA E, TAJIMA N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method [J]. J Spinal Disord Tech, 2004, 17(2): 147-153.
    [43] ZHANG QH, TANM SH, CHOU SM. Effects of bone materials on the screw pull-out strength in human Spine [J]. Med Eng Phys, 2006, 28(8): 795-801.
    [44] NATARRAJAN RN, ANDERSSON GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading [J]. Spine, 1999, 24(18): 1873-1881.
    [45] NATARAJAN RN, GARRESON RB 3rd, Biyani A, et al. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study [J]. Spine, 2003, 28(11): 1103-1112.
    [46] GROBLER LJ, NOVOTNY JE, WILDER DG, et al. L4-5 isthmic spondylolisthesis. A biomechanical analysis comparing stability in L4-5 and L5-S1 isthmic spondylolisthesis [J]. Spine, 1994, 19(2): 222-227.
    [47] BOARD D, STEMPER BD, YOGANANDAN N, et al. Biomechanics of the aging spine [J]. Biomed Sci Instrum, 2006, 42: 1-6.
    [48] Ng HW, Teo EC. Influence of preload magnitudes and orientation angles on the cervical biomechanics: a finite element study [J]. J Spinal Disord Tech, 2005, 18(1): 72-79
    [1] KUROWSKI P, KUBO A. The relationship of degeneration of the in- tervertebral disc to mechanical loading conditions on lumbar vertebrae [J]. Spine, 1986, 11(7): 726- 731.
    [2] GOTO K, TAJIMA N, CHOSA E, et al. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model [J]. J Orthop Sci, 2002, 7(2): 243- 246.
    [3] KIM YE, GOEL VK, WEINSTEIN JN, et al. Effect of disc degeneration at one level on the adjacent level in axial mode [J]. Spine, 1991, 16(3): 331- 335.
    [4] SHIRADO O, KANEDA K, TADANA S, et al. Influence of disc degeneration on mechanism of thoracolumbar burst fractures [J]. Spine, 1992,17(3): 286- 292.
    [5] KIM Y. Prediction of peripheral tears in the annulus of the intervertebral disc[J]. Spine, 2000, 25(14): 1771-1774.
    [6] KUMARESAN S, YOGANANDANN, PINTAR FA, et al. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation [J]. J Orthop Res, 2001,19(5): 977- 984.
    
    [7] POLIKEIT A, NOLTELP, FERGUSON SJ. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit [J]. Biomech, 2004, 37(7): 1061-1069.
    [8] NATARAJIA RN, WILLIAMS JR, ANDERSSON GB. Recent advances in analytical modeling of lumbar disc degeneration [J]. Spine, 2004, 29(23):2733-2741.
    [9] ROHLMANN A, ZANDER T, SCHMIDT H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method [J]. J Biomech, 2006, 39(13): 2484- 2490.
    [10] LU YM, HUTTON WC, GHARPURAY VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model [J]. Spine, 1996, 21(22): 2570- 2579.
    [11] NATARAJAN RN, KE JH, ANDERSSON GBJ. A model to study the disc degeneration process [J]. Spine, 1994,19(3): 259- 265.
    [12] KIM Y. Prediction of peripheral tears in the anulus of the intervertebrai disc[J]. Spine, 2000, 25(14): 1771-1774.
    [13] NATARAJAN RN, ANDERSSON GBJ. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc tophysiologic loading [J]. Spine, 1999, 24(18): 1873-1881.
    [14] LU YM, HUTTON WC, GHARPURAY VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element mode [J], Spine, 1996, 21 (22): 2570- 2579.
    [15] CHOSA E, GOTO K, TOTORIBE K, et al. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebrai disk in the presence of disk degeneration, using the three-dimensional finite element method [J]. J Spinal Disord Tech, 2004,17(2): 134-139.
    [16] CHEN CS, CHENG CK, LIU CL. Stress analysis of the disc adjacent to interbody fusion in lumbar spine [J]. Med Eng Phys, 2001, 23(7): 483- 491.
    [17] TOTORIBE K, CHOSA E, TAJIMA N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method [J]. J Spinal Disord Tech, 2004,17(2): 147-153.
    [18] CHEN CS, CHENG CK, LIU CL. A biomechanical comparison of postero- lateral fusion and posterior fusion in the lumbar spine [J]. J Spinal Disord Tech, 2002,15(1): 53-63.
    [19] CHENG CK, CHEN CS, LIU CL. Biomechanical analysis of the lumbar spine with anterior interbody fusion on the different locations of the bone grafts[J]. Biomed Mater Eng, 2002, 12(4): 367- 374.
    [20] ZANDER T, ROHLMANN A, KLOCKNER C, et al. Effect of bone graft characteristics on the mechanical behavior of the lumbar spine [J]. J Biomech, 2002, 35(4): 491-497.
    [21] GOTO K, TAJIMA N, CHOSA E, et al. Effects of lumbar spinal fusion on the other lumbar intervertebrai levels (three-dimensional finite element analysis)[J]. J Orthop Sci, 2003, 8(4): 577- 584.
    
    [22] KUMAR, JUDITH MR, KUMAR A, et al. Analysis of stress distribution in lumbar interbody fusion [J]: Spine, 2005, 30(15):1731-1725.
    
    [23] POLIKEIT A, FERGUSON SJ, NOLTE LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis [J]. Eur Spine J, 2003,12(4): 413- 420.
    
    [24] POLIKEIT A, FERGUSON SJ, NOLTE LP, et al. The importance of the endplate for interbody cages in the lumbar spine [J]. Eur Spine J, 2003, 12(6): 556-561.
    
    [25] PALM WJ 4th, ROSENBERG WS, KEAVENY TM. Load transfer mechanisms in cylindrical interbody cage constructs [J]. Spine, 2002, 27(19): 2101-2107.
    
    [26] LEE KK, TEO EC, FUSS FK, et al. Finite-element analysis for lumbar interbody fusion under axial loading [J]. IEEE Trans Biomed Eng, 2004, 51 (3): 393- 400.
    
    [27] KIM Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments [J]. Spine, 2001, 26(13): 1437-1442.
    
    [28] PITZEN T, GEISLER FH, MATTHIS D, et al. Motion of threaded cages in posterior lumbar interbody fusion [J]. Eur Spine J, 2000, 9(6): 571- 576.