晋西黄土区核桃花生间作系统的种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对晋西黄土区核桃—花生间作系统小气候、光合作用、土壤水分、土壤养分、根系等数据的测定,研究了核桃—花生间作系统种间关系,旨在使核桃与花生间作系统能最有效的利用资源,为该地区果农复合系统调控和管理技术的研究提供重要的基础理论依据和决策依据。
     (1)小气候研究结果显示:核桃—花生间作系统在改善农田小气候方面效果明显;核桃—花生间作系统中核桃对花生有遮阴作用。受到核桃的影响,花生的光合有效辐射、净光合速率均出现不同程度的降低,并且离树行越近,影响越大。
     (2)土壤水分研究结果显示:时间上,2008年与2009年年内间作系统内各层土壤水分含量变化均呈现先增后减的趋势,2008年和2009年年内表层土壤较其他层变化更为剧烈,随深度的增加,土壤水分变化趋于稳定;在垂直方向上,随土层深度的增加,土壤水分呈递增趋势,土壤变异系数呈降低趋势;在水平方向上,随距林带距离的增加,土壤含水量呈增加趋势并逐渐趋于稳定;与单作花生比较,在花期-荚期,核桃-花生间作系统各层土壤水分含量均大于单作系统,土壤水分含量随土层深度的增加而增加,在苗期-花期及荚期-成熟期,间作系统各层土壤水分含量均小于单作系统,土壤水分含量均随土层深度的增加而减小
     (3)土壤养分研究结果显示:核桃—花生间作系统土壤有机质、全氮、速效磷、速效钾含量均有一定的表聚性。在垂直方向上,土壤养分随土层深度的增加而减少;在水平方向上,在距林带1.5米范围内,离核桃树行越近,各土层土壤养分呈下降趋势,距林带1.5-3.5米范围内,离核桃树行树越远,各层土壤养分呈上升趋势。与单作比较,核桃花生间作系统的土壤养分均低于单作。试验区土壤养分情况为富钾、贫磷、贫氮。
     (4)根系研究结果显示:核桃根系主要集中在20cm~40cm土层。距林带距离1.5m范围内,间作系统中花生根系主要集中在0cm~10cm土层内,单作花生根系主要集中于10cm~20cm土层内;垂直方向上,0cm~10cm土层内,间作系统中的花生在距核桃1m范围内受核桃影响较大;10cm~40cm土层内,单作花生的总根长、总根长密度、总根表面积均明显大于核挑—花生间作系统中的花生。
In this paper, microclimate, photosynthetic, soil moisture, soil nutrient and roots of walnut-peanut intercropping system in loess region of western Shanxi Province was researched to find suitable intercropping models and management in Loess Plateau. The objectives of the paper are:1) to minimize the competition between trees and crops and maximize resource utilization,2) to provide a theoretical basis for the agroforestry control and management in this region. The results were as following:
     (1)Micro-climatic effect and light distribution in walnut-peanut intercropping system showed that: walnut-peanuts farm intercropping system had the micro-climatic effects in improving the farmwater conditions; The crops were influenced by trees, the photosynthetic active radiation and net photosynthetic rate of crops were significantly decreased by trees, and the decreasing degree is decreased with the increasing of distance from tree rows.
     (2) Soil moisture distribution in walnut-peanut intercropping system showed that:In temporal, soil moisture of different layer in walnut-peanut intercropping system increased first and decreased then in 2008 and 2009; Compared with other layer, change of soil moisture of surface soil is more severe, then, soil moisture change remained stable with increasing soil depth. In spatial, soil moisture increased and the variation coefficient of soil moisture decreased with increasing soil depth; In horizontal direction, soil moisture was related to distance from tree row. The closer to trees sampling points, the lower the soil moistures. In comparison with peanut monoculture, soil moisture of different layer in walnut-peanut intercropping system is more than peanut monoculture and increased with increasing soil depth in flowering-pod period of peanut. It is relative in seedling- flowering period and pod- maturity period.
     (3) Soil nutrient distribution in walnut-peanut intercropping system showed that:soil organic matter, total nitrogen, phosphorus and potassium of Walnut-peanut intercropping System have the highest content in surface soil; In vertical direction, soil nutrient decreased with increasing soil depth; In horizontal direction, soil nutrient decreased with the decrease of the distance from the tree row in 1.5 meters from walnut trees and soil nutrient increased with the increase of the distance from the tree row in 1.5-3.5 meters from walnut trees. In comparison with peanut monoculture, soil nutrient of different layer in walnut-peanut intercropping system is less than peanut monoculture. It is rich in potassium and is lacking in nitrogen and phosphorus in research area.
     (4) Roots distribution in walnut-peanut intercropping system showed that:walnuts roots is most in 20cm~40cm soil layer. In horizontal direction, peanut roots is most in 0cm~10cm soil layer of walnut-peanut intereropping system and in 10cm~20cm soil layer of peanut monoculture in 1.5 meters from walnut trees:In vertical direction.the peanut were influenced by walnut trees in walnut-peanut intercropping system in 0cm~10cm soil layer in 1 meters from walnut trees. Total root length, total root length density and total root surface area of peanut monoculture were more than that in walnut-peanut intercropping system in 10cm-40cm soil layer.
引文
1.蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析[J].水土保持研究,2000,7(3):219-221,252.
    2.陈伟,薛立.根系间的相互作用—竞争与互利[J],生态学报,2004,24(6):1243-1251.
    3.丁瑞兴.茶园间作乌桕的气候生态效应[J].应用生态学报,1992,3(2):131-137.
    4.杜峰,梁宗锁,胡莉娟.植物竞争研究综述[J].生态学杂志,2004,23(4):157-163.
    5.樊巍,卢琦,高喜荣.果农复合系统根系分布格局与生长动态研究生态学报[J].1999,19(6):860-863.
    6.郭永盛,白育英,周心澄.大青山油松人工林生态效益研究[J].水土保持研究,2008,15(3):204-206.
    7.高椿翔,高杰,邓国胜,等.林粮间作生态效果分析[J].防护林科技,2000,44(3):97-98.
    8.贺庆棠.气象学[M].北京:中国林业出版社,1986.
    9.黄绍文,金继运,杨俐苹,等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40(1):79-88.
    10.黄绍文,金继运,杨俐苹,等.县级区域粮田土壤养分的空间变异性[J].土壤通报,2002,33(3):188-193.
    11.蒋建平,李荣幸,程绍荣.关于农桐间作的几个问题[J].河南农学院学报,1981(3):1-8.
    12.景元书,吴运英.农桐间作中光辐射分量实测分析[J].1999,26(3):25-28.
    13.李博,陈家宽,沃金森A.R.植物竞争研究进展[J].植物学通报,1998,15(4):18-29.
    14.李巍,郝明德,王学春.黄土高原沟壑区不同种植系统土壤水分消耗和恢复[J].农业工程学报,2010,26(3),99-105.
    15.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究,1999,12(5):10-13.
    16.李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,4(13):391-394.
    17.李丽光,何兴元,李秀珍,等.岷江上游干旱河谷农林边界影响域的研究[J].应用生态学报,2004,15(10):1804-1808.
    18.李丽光,何兴元,李秀珍,等.岷江上游花椒地/林地边界土壤水分影响域的定量判定[J].应用生态学报,2006,17(11):2011-2015.
    19.李笑吟.晋西黄土区土壤水分时空变化规律研究[D].北京:北京林业大学,2006.
    20.李学曾.黄土高原是中华民族的摇篮和古文化的发祥地.西北大学学报(自然科学版),1985,2:89-93.
    21.李增嘉,张明亮,李凤超,等.粮果间作复合群体地上部分生态因子变化动态的研究[J].作物杂志,1994,(2):13~15.
    22.刘兴宇,曾德慧.农林复合系统种间关系研究进展[J].生态学杂志,2007,26(9):1464-1470.
    23.卢琦.农用林业研究的回顾与展望.世界林业研究[J].1996,(2):39-47.
    24.马锋旺.苹果产业发展的思考加快西北黄土高原[J].科学种养,2006,4:4-6.
    25.马雯静.晋西黄土区农林复合系统植物根系分布研究[D].北京:北京林业大学,2010.
    26.马雯静,毕华兴,云雷,等.晋西黄土区林草复合界面土壤水分养分分布规律研究[J].水土保持研究,2009,16(5):78-82.
    27.毛瑢,曾德慧.农林复合系统植物竞争研究进展[J].中国生态农业学报,2009,17(2):379-386.
    28.孟平.张劲松,樊巍等.中国复合农林业研究[M].北京:中国林业出版社,2003
    29.孟平,张劲松,宋兆民,等.农林复合模式耗水的研究[J].林业科学研究,1996,9(3):221-226.
    30.孟平,张劲松.梨麦间作系统水分效应与土地利用效应的研究[J].林业科学研究,2004,17(2):167-171.
    31.孟平,张劲松,尹昌君,等.农林复合系统与单作作物系统作物根系差异特征的研究[J].林业科学研究,2002,15(4):369-373.
    32.彭奎,欧阳华,朱波.农林复合生态系统氮素平衡及其评价-以中国科学院盐亭农业生态试验站为例[J].长江流域资源与环境,2004,13(3):252-257.
    33.彭晓邦,仲崇高,沈平,等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报,2010,30(3):0710-0716.
    34.裴保华,袁玉欣,贾玉彬,等.杨农间作光能利用的研究[J].林业科学,2000,36(3):13-18.
    35.石培礼,李文华.生态交错带的定量判定[J].生态学报,2002,22(4):586-592.
    36.石培礼,刘兴良.游动分割窗技术在生态交错带定量判定中的应用:以四川巴郎山岷江冷杉林线为例[J].植物生态学报,2002,26(2):189-194.
    37.孙守家,孟平,张劲松,等.华北石质山区核桃—绿豆复合系统氘同位素变化及其水分利用[J].生态学报,2010,30(14):3717-3726.
    38.田晓玲,毕华兴,云雷,等.晋西黄土区林草复合系统草本植物多样性特征[J].北京林业大学学报,2011,33(1):64-69.
    39.万开元,陈防,余常兵,等.杨树-农作物复合系统中的化感作用[J].生态科学,2005,24(1):57-60.
    40.王德利.关于生态场的几点评述[J].应用生态学报,2000,11(3):472-476.
    41.王德利.植物生态场导论[M].吉林:吉林科学技术出版社,1994.
    42.王洪杰,史学正,李宪文,等.小流域尺度土壤养分的空间分布特征及其与土地利用的关系[J].水土保持学报,2004,18(1):15-18,42..
    43.王青.黄土高原丘陵沟壑区农业结构调整的思考[J].中国农业资源与区划,2001,22(5):47-50.
    44.王秋杰,张福锁,蔡聪.农林牧复合生态经济系统在我国农业可持续发展中的地位与作用[J].生态农业研究,1998,6(1):52-56.
    45.王荣华,马仁彪,苏建国,等.西吉县农田土壤养分丰缺指标评价与对策[J].宁夏农林科技,2008,6:71-73,99.
    46.王兴祥,张桃林,张斌,等.低丘红壤花生南酸枣间作系统研究.Ⅱ.氮素竞争[J].土壤,2003b,35(1):66-68.
    47.王学雷,吴宜进.江汉平原湖区农田防护林的小气候效应研究[J].长江流域资源与环境,1999,8(4):418-422.
    48.王延平,张海,刘生禹,等.黄土区杏苜蓿复合系统的土壤水分环境及效益研究[J].中国水土保持,2004,2(1):74-78.
    49.王广钦,樊巍.农田林网内土壤水分变化动态的研究[J].河南农业大学学报,1988,22(3):285-293.
    50.王欣然,彭晓邦,蔡靖,等.杜仲叶水提液对3种作物的化感效应研究[J].西北林学院学报,2010,25(4):157-160.
    51.吴力立.农业间作系统树冠遮荫面积的探讨-中国农林复合经营研究与实践[M].南京:江苏科技出版社,1994.
    52.吴刚,杨修.桐粮间作林带的配置方式与农作物产量关系的研究[J].生态学报,1998,18(2):168-170.
    53.卫春,陈建群,张鹏飞.复合农林系统中水杉他感作用的生物测定[J].南京林业大学学报.1999, 23(4),85-88.
    54.杨培岭,罗远培,石元春.土壤—植物根系统的水分传输[J].北京农业大学学报,1993,19(2):25-30.
    55.杨文治.黄土高原土壤水资源与植树造林[J].自然资源学,2001,16(05):433-438.
    56.叶彦辉,宋西德,张永,等.黄土丘陵区林草景观界面土壤养分分布特征和空间变异性研究.西北林学院学报[J].2007,22(3):1-6.
    57.云雷,毕华兴,马雯静,等.晋西黄土区林草复合系统土壤养分分布特征及边界效应[J].北京林业大学学报,,2011,33(2):37-42.
    58.云雷,毕华兴,任怡,等.晋西黄土区果农间作界面土壤水分分布[J].东北林业大学学报,2009,37(9):70-73.
    59.云雷,毕华兴,田晓玲,等.晋西黄土区林草复合界面雨后土壤水分空间变异规律研究[J].生态环境学报,2010,19(4):938-944.
    60.云雷,毕华兴,任怡等.晋西黄土区核桃花生复合土壤水分效应研究[J].水土保持通报,2009,29(5):61-64.
    61.张劲松,孟平,宋兆民,等.我国平原农区复合农林业小气候效应研究概述[J].中国农业气象,2004,25(3):53-55,62.
    62.张劲松,孟平,辛学兵,等.太行山低山丘陵区苹果生姜间作系统综合效应研究[J].林业科学,2001,37(2):74-78.
    63.张劲松,孟平,尹昌君,等.农林复合系统的水分生态特征研究述评[J].世界林业研究,2003,16(1):10-14.
    64.张劲松,孟平.农林复合系统水分生态特征的模拟研究[J].生态学报,2004,24(6):1172-1177.
    65.张均营,刘亚民,吴炳奇,等.河北平原农区农林复合生态系统对生态环境的影响[J].河北林业科技,1999,(增刊):40-42.
    66.张立宇.核(桃)农间作系统小气候效应的研究[D].乌鲁木齐:新疆农业大学,2009.
    67.张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    68.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    69.赵忠宝,万福绪,刘奕琳,等.杨粮复合系统内生态因子的变化及对小麦产量的影响[J].南京林业大学学报:自然科学版,2008,32(1):136-138.
    70.朱清科,朱金兆.黄土塬面农林复合系统的生态位特征[J].中国水土保持科学,2003,1(1):49-52.
    71.朱廷曜,关德新.农出防护林生态效益研究回顾与展望[A].农业生物学研究与农业可持续发展[C].北京:科学出版社,1997.
    72.祝廷成,钟章成等.植物生态学[M].北京:高等教育出版社,1992.
    73. Buck.LE.AgroforestryPolicyissuesandresearchdirectionsintheUSandlessdevelopedcountries:insishts and challenges from recent experience.Agroforestry Systems,1995,30(1/2):57-73.
    74. Caldwell M M,Richards J H.Hydraulic lift:water efflux from upper roots improves effectiveness of water uptake by deep roots[J].Oecologia,1989,79:1-5.
    75. Cannell M G R,Van Noordwijk M,Ong C K.The central agroforestry hypothesis:the tree must acquire resources that the crop would not otherwise acquire[J].Agroforestry Systems, 1996,34:27-31.
    76. Dawson T E.Hydraulic lift and water use by plants:implications for water balance.performance and plant-plant interactions[J].Oecologia,1993,95:554-565.
    77. Deans J D, Lindley D K, Munro R C.Deep beneath the trees in Senegal.In:Annual Report of the Institute of Terrestrial Ecology 1993-1994,NERC,Swindon,UK,1994,12-14.
    78. Eastam J,Rose C W,Cameron D M,et al.The effect of tree spacing on evaporation from an agroforestry experiment[J].Agricultural and Forest Meteorology,1988,42(4):355-368.
    79. Fang S Z,Xu X Z,Yu X,et al.Polar in wetland agroforestry:a case study of ecological benefits,siteproductivity and economics[J].Wetlands Ecology and Management,2005,13:93-104.
    80. Franzen D W,Hofman V L.Halvorson AD,et al. Sampling for site-specific farming:Topography and nutrient considerations[J]. Better Crop,1996,80(3):14-18.
    81. Friday J B,Fownes J H.Competition for light between hedgerows and maize in an alley cropping system in Hawaii,USA[J].Agroforestry Systems,2002,55:125-137.
    82. Gillespie A R,Jose S,Mengel D B,et al.Defining competition vectors in a temperate alley cropping system in the midwestern USA:1.Production physiology[J].Agroforestry Systems,2000,48:25-40.
    83. Hirota I,Sakuratani T,Sato T,et al.A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops[J].Agroforestry Systems,2004,60:181-187.
    84. Horton J L,Hart S C.Hydraulic lift:a potentially important ecosystem process[J].Trends in Ecology and Evolution,1998,13(6):232-235.
    85. Hou Q J,Brandle J,Hubbard K,et al.Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska,USA[J]. Agroforestry Systems,2003,57:137-147.
    86. Jobbery E G and Jackson R B. The vertical distribution soil organic carbon and its relation to climate and vegetation[J]. EcologicalApplications,2000,10:423-436.
    87. Jose S,Gillespie A R,Seifert J R,et al. Defining competition vectors in a temperate alley cropping system in the Midwestern USA:3.Competition for nitrogen and litter decomposition dynamics[J].Agroforestry Systems,2000,48:61-77.
    88. Jose S,Gillespie A R,Seifert J R,et al.Defining competition vectors in a temperate alley cropping system in the Midwestern USA:2.Competition for water [J].Agroforestry Systems,2000,48:41-59.
    89. Jose S,Williams R,Zamora D.Belowground ecological interactions in mixed-species forest plantations[J].Forest Ecology and Management,2006,233(2-3):231-239.
    90. Lundgren B O.ICRAF's First Ten Years[J]. Agroforestry System,1987,(5):197-218..
    91. Marshall F M.Resource partitioning and productivity of perennial pigeonpea/groundnut agroforestry systems in India Ph D.Thesis,University of Nottingham,UK.1995.
    92. Miller A W and Pallardy S G.Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri[J].Agroforestry Systems,2001,53:247-259.
    93. Monteith J L, Ong C K, Corlett J E. Microclimatic interactions in agroforestry systems[J]. Forest Ecology and Management,1991,45(1):31-44.
    94. Narasimham P.Effect of meteorological on fruit maturation for apple[J].1998,Sci Hortic, 35:217-226.
    95. Noordwijk M V,Lawson G,Soumare A,et al.Root distribution of trees and crops:Competition and/or complementarity[M]//Ong C K,Huxley P.Tree-Crop Interactions:A Physiological Approach. Wallingford:CAB International,1996:319-364.
    96. Ong C K,Corlett J E,Singh R P. Above and below ground interaction in agroforestry systems[J]. Forest Ecology and Management,1991,45(1):45-57.
    97. Pank A K. Water table and soil moisture distribution below some agroforestry tree species[J]. Indian Journal of Forestry,1998,21(20):119-123.
    98. Pinto L S,Perfecto I,Hernandez J C.et al.Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas,Mexico.Agriculture,Ecosystems&Environment,2000,80(1-2):61-69.
    99. Pugnaire F I and Luque M T. Changes in plant interactions along a gradient of environmental stress[J].Oikos,2001,93:42-49.
    100. Rao M R,Nair P K R,Ong C K.Biophysical interactions in tropical agroforestry systems[J]. Agroforestry Systems,1998,38:3-50.
    101. Rao M R,Ong C K,Pathak P,et al. Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India[J].Agroforestry Systems,1991,15:51-63.
    102. Rao M R,Nair P K R,Ong C K.1998. Biophysical interactions intropical agroforestry systems.Agroforestry Systems,38:3-50.
    103. Rice E L.Allelopathy(2nd ed.)[M].Academic Press Inc,New York:1984,1-5.
    104. Richards J H,Caldwell M M.Hydraulic lift:substantial nocturnal water transport between soil layers by Artemisia tridentate roots[J].Oecologia,1987,73:486-589.
    105. Sankar C R,Swamy S M.Influence of light and temperature on leaf area index,chlorophyll content,and yield of ginger[J].Journal of Mahrash University,1988,13(2):216-217.
    106. Schroth G.A review of belowground interactions in agroforestry,focusing on mechanisms and management options[J].Agroforestey Systems,1999,43:5-34.
    107. Singh R P,Ong C K,Saharan N. Above and below ground interactions in alley-cropping in semi-arid India[J]. Agroforestry Systems,1989,9:259-274.
    108. Singh R P,Ong C K,Saharan N.Above and below ground interactions in alley-cropping in semi-arid India[J].Agroforestry Systems,1989,9:259-274.
    109. Sudmeyer R A,Speijers J.Influence of windbreak orientation,shade and rainfall interception on wheat and lupin growth in the absence of below-ground competition[J].Agroforestry Systems,2007,71:201-214.
    110. Thevathasan N V,Gordon A M,Simpson J A,et al.Biophysical and ecological interactions in a temperate tree-based intercropping system[J]. Journal of Crop Improvement,2004,12(12):339-363.
    111. Thevathasan N V, Gordon A M. Ecology of tree intercropping systems in the north temperate region:Experiencesfrom southern Ontario, Canada.Agroforestry Systems,2004,61:257-268.
    112. Wang Q,Shogren J F.Characteristics of the crop-paulownia system in China[J].Agriculture Ecosystems and Environment,1992,39(3-4):145-152.
    113. Wanvestraut R H,Jose S,Nair P K R,et al.Competition for water in a pecan(Carya illinoensis K.Koch)-cotton(Gossypium hirsutum Lalley.)cropping system in the southern United States[J]. Agroforestry Systems,2004,60:167-179.
    114. Whittaker R H.Vegetation of the Siskiyou Mountains[J],Oregon and California.Ecological Monographs,1960,30:279-338.
    115. Yonker C M,Schimel D S,Paroussis E,et al.Patterns of organic carbon accumulation in a semiarid shortgrass steppe,Colorado[J].Soil Science Society of America Journal,1988,52:478-483.
    116. Zamora D S,Jose S,Nair P K R,et al.Interspecific competition in a pecan-cotton alleycropping system in the southern United States:Production physiology [J].Canadian Journal of Botany,2006,84:1686-169.